

https://doi.org/10.26637/MJM0901/0124

Fuglede-Putnam type commutativity theorems for *EP* **operators**

P. Sam Johnson^{1*}, Vinoth A.² and K. Kamaraj ³

Abstract

Fuglede-Putnam theorem is not true in general for *EP* operators on Hilbert spaces. We prove that under some conditions the theorem holds good. If the adjoint operation is replaced by Moore-Penrose inverse in the theorem, we get Fuglede-Putnam type theorem for *EP* operators – however proofs are totally different. Finally, interesting results on *EP* operators have been proved using several versions of Fuglede-Putnam type theorems for *EP* operators on Hilbert spaces.

Keywords

Fuglede-Putnam theorem, Moore-Penrose inverse, *EP* operator.

AMS Subject Classification

47A05, 15A09, 47B99.

¹*Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, Mangaluru 575 025, India.* ²*Department of Mathematics, St. Xavier's College, Palayamkottai 627 002, India.*

³*Department of Mathematics, University College of Engineering Arni, Anna University, Arni 632 326, India.*

***Corresponding author**: ¹ sam@nitk.edu.in; ² vinoth.antony1729@gmail.com ³ krajkj@yahoo.com

Article History: Received **12** January **2021**; Accepted **23** February **2021** c 2021 MJM.

Contents

1. Introduction

A square matrix *A* over the complex field C is said to be an *EP* matrix if ranges of *A* and *A* ∗ are equal. Although the *EP* matrix was defined by Schwerdtfeger [\[19\]](#page-5-0) in 1950, it could not get any greater attention until Pearl [\[15\]](#page-5-1) characterized it through Moore-Penrose inverse in 1966. The normed space of all bounded linear operators from a Hilbert space \mathcal{H} to a Hilbert space $\mathscr K$ is denoted by $\mathscr B(\mathscr H,\mathscr K)$. We write $\mathscr{B}(\mathscr{H},\mathscr{H})=\mathscr{B}(\mathscr{H})$. If $T\in\mathscr{B}(\mathscr{H},\mathscr{K})$, we denote the kernel of *T* by $\mathcal{N}(T)$ and the range of *T* by $\mathcal{R}(T)$. The operator *T* is said to be invertible if its inverse exists and is bounded. Given $T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, $S \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ is the adjoint operator on H if $\langle Tx, y \rangle = \langle x, Sy \rangle$ for all $x \in \mathcal{H}$ and $y \in \mathcal{K}$; in this case the operator *S* is denoted by T^* . If $T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ with a closed range, then T^{\dagger} is the unique linear operator in

 $B(\mathscr{K},\mathscr{H})$ satisfying

 $TT^{\dagger}T = T$, $T^{\dagger}TT^{\dagger} = T^{\dagger}$, $TT^{\dagger} = (TT^{\dagger})^*$ and $T^{\dagger}T = (T^{\dagger}T)^*$.

The operator T^{\dagger} is called the Moore-Penrose inverse of *T*. It is well-known that an operator *T* has a closed range if and only if its Moore-Penrose inverse T^{\dagger} exists. The class $\mathscr{B}_{c}(\mathscr{H})$ denotes the set of all operators in $\mathscr{B}(\mathscr{H})$ having closed ranges. For any nonempty set $\mathcal M$ in $\mathcal H$, $\mathcal M^{\perp}$ denotes the orthogonal complement of M . Note that if $T \in \mathcal{B}_c(\mathcal{H})$, then $T^* \in \mathscr{B}_c(\mathscr{H})$, $\mathscr{N}(T)^{\perp} = \mathscr{R}(T^*)$, $\mathscr{N}(T^*)^{\perp} = \mathscr{R}(T)$ and $\mathcal{R}(T) = \mathcal{R}(TT^*)$. An operator $T \in \mathcal{B}_c(\mathcal{H})$ is said to be an *EP* operator if $\mathcal{R}(T) = \mathcal{R}(T^*)$. *EP* matrices and operators have been studied by many authors [\[1,](#page-4-1) [2,](#page-4-2) [5,](#page-4-3) [10,](#page-4-4) [11,](#page-5-2) [13,](#page-5-3) [14,](#page-5-4) [20\]](#page-5-5). It is well-known that if *T* is normal with a closed range, or an invertible operator, then *T* is *EP*. The converse is not true even in a finite dimensional space.

The Fuglede-Putnam theorem (first proved by B. Fuglede [\[7\]](#page-4-5) and then by C. R. Putnam [\[16\]](#page-5-6) in a more general version) plays a major role in the theory of bounded (and unbounded) operators. Many authors have worked on it since the papers of Fuglede and Putnam got published [\[6,](#page-4-6) [8,](#page-4-7) [9,](#page-4-8) [12\]](#page-5-7). There are various generalizations of the Fuglede-Putnam theorem to non-normal operators, for instance, hyponormal, subnormal, etc. This paper is devoted to the study of Fuglede-Putnam type theorems for *EP* operators.

In section 2, we give some known characterizations for *EP* operators and we give a procedure to construct an *EP* matrix T (preferably non-normal) for the given subspace $\mathcal W$ of the unitary space \mathbb{C}^n such that $\mathcal{R}(T) = \mathcal{W}$. This construction has been used in the paper to construct suitable examples of *EP* matrices. We show in section 3 that the Fuglede theorem [\[7\]](#page-4-5) is not true in general for *EP* operators (Example [3.2\)](#page-2-1) and we prove that the commutativity relation in Fuglede-Putnam theorem is true for *EP* operators if the adjoint operation is replaced by Moore-Penrose inverse. Moreover, several versions of Fuglede-Putnam type theorems are given for *EP* operators. In the last section, we prove some interesting results using Fuglede-Putnam type theorems for *EP* operators on Hilbert spaces.

2. Preliminaries

Let $\mathcal H$ be a complex Hilbert space. An operator on $\mathcal H$ means a linear operator from $\mathcal H$ into itself. Given an *EP* operator *T* on \mathcal{H} , we get a closed subspace $\mathcal{R}(T)$ which is the same as $\mathscr{R}(T^*)$. On the other hand, one may ask whether every closed subspace $\mathcal M$ of $\mathcal H$ is the range of some *EP* operator (not necessarily normal) on \mathcal{H} . The answer is in the affirmative in a finite dimensional Hilbert space \mathcal{H} . We give a procedure to construct such *EP* matrices and this construction has been used in the sequel to provide suitable examples of *EP* matrices. We use the letters *S*,*T* for *EP* operators ; *M*,*N* for normal operators and *A*,*B* for bounded operators.

We start with some known characterizations of *EP* operators.

Theorem 2.1. [\[1,](#page-4-1) [15\]](#page-5-1) Let $T \in \mathcal{B}_c(\mathcal{H})$. Then the following *are equivalent :*

- *1. T is EP ;*
- *2.* $TT^{\dagger} = T^{\dagger}T$;
- 3. $\mathcal{N}(T)^{\perp} = \mathcal{R}(T)$;
- *4.* $\mathcal{N}(T) = \mathcal{N}(T^*)$;
- *5. T* [∗] = *PT, where P is some bijective bounded operator on* \mathscr{H} *.*

Example 2.2. Let $T : \ell_2 \to \ell_2$ be defined by

$$
T(x_1,x_2,x_3,\ldots)=(x_1+x_2,2x_1+x_2+x_3,-x_1-x_3,x_4,x_5,\ldots).
$$

Then $T^*(x_1, x_2, x_3, x_4, x_5,...) = (x_1 + 2x_2 - x_3, x_1 + x_2, x_2 - x_4)$ $f(x_3, x_4,...)$ *and* $\mathcal{N}(T) = \mathcal{N}(T^*) = \{(x_1, -x_1, -x_1, 0, 0,...):$ $x_1 \in \mathbb{C}$ *}. But* $TT^* \neq T^*T$ *. Since* $\mathcal{N}(T)$ *is finite dimensional,* $\mathcal{R}(T)$ *is closed. Hence* T *is an EP operator but not normal.*

Theorem 2.3. If \mathcal{W} is a subspace of \mathbb{C}^n , then there exists an *EP matrix T of order n such that* $\mathcal{R}(T) = \mathcal{W}$ *.*

Proof. If W is a trivial subspace of \mathbb{C}^n , then it holds trivially. Without loss of generality, let $\mathcal W$ be a subspace of $\mathbb C^n$ with of dimension $n-1$. Then W can be expressed as

$$
\{(x_1, x_2, ..., x_{i-1}, \sum_{k=1}^{n-1} a_k x_k, x_i, ..., x_{n-1}) : x_k \in \mathbb{C}, k = 1, 2, ..., n-1\}.
$$
 Let

$$
\{v_j = (x_{j1}, x_{j2}, ..., x_{j(i-1)}, \sum_{k=1}^{n-1} a_k x_{jk}, x_{ji}, ..., x_{j(n-1)}), j = 1, 2, ..., n-1\}
$$
 be a basis for *W* which can be regarded as
column vectors.

Take $T = \begin{bmatrix} v_1 & v_2 & \cdots & v_{i-1} & v' & v_i & \cdots & v_{n-1} \end{bmatrix}$ where

$$
v' = \left(\sum_{k=1}^{n-1} \overline{a_k} x_{k1}, \sum_{k=1}^{n-1} \overline{a_k} x_{k2}, \ldots, \sum_{j=1}^{n-1} \sum_{k=1}^{n-1} a_j \overline{a_k} x_{kj}, \ldots, \sum_{k=1}^{n-1} \overline{a_k} x_{k(n-1)}\right).
$$

Since the columns of *T* contain a basis of $\mathcal{W}, \mathcal{R}(T) = \mathcal{W}$. Now we need to show that *T* is *EP*. But the selection of *v*' ensures that each row of *T* is in *W*. Hence $\mathcal{R}(T^*) = W$. Therefore the result is true when dimension of W is *n*−1.

For the sake of completeness we also prove the result when the dimension of W is $n-2$ and continuing the same technique to construct *EP* matrices for lesser dimension of *W*. Suppose that *W* is of dimension *n* − 2. Then *W* can be expressed as

$$
\Big\{(x_1,x_2,\ldots,x_{i-1},\sum_{k=1}^{n-2}a_kx_k,x_i,\ldots,x_{\ell-1},\sum_{k=1}^{n-2}b_kx_k,x_{\ell},\ldots,x_{n-2}):\\x_k\in\mathbb{C},k=1,2,\ldots,n-2\Big\}.
$$

Let

$$
\left\{v_j = (x_{j1}, \dots, x_{j(i-1)}, \sum_{k=1}^{n-2} a_k x_{jk}, x_{ji}, \dots, x_{j(\ell-1)}, \sum_{k=1}^{n-2} b_k x_{jk}, x_{ji}, \dots, x_{j(n-2)}\right\}
$$

be a basis for W which can be regarded as column vectors. Take *T* $\sqrt{2}$ $v_1 \quad \cdots \quad v_{i-1} \quad v' \quad v_i$ \cdots *v*_{$\ell-1$} *v*^{ℓ} *v*_{ℓ} \cdots *v*_{n-2}] where

$$
v' = \left(\sum_{k=1}^{n-2} \overline{a_k} x_{k1}, \sum_{k=1}^{n-2} \overline{a_k} x_{k2}, \dots, \sum_{j=1}^{n-2} \sum_{k=1}^{n-2} a_j \overline{a_k} x_{kj}, \dots, \sum_{j=1}^{n-2} \sum_{k=1}^{n-2} b_j \overline{a_k} x_{kj}, \dots, \sum_{k=1}^{n-2} \overline{a_k} x_{k(n-2)}\right)
$$

and

$$
v'' = \left(\sum_{k=1}^{n-2} \overline{b_k} x_{k1}, \sum_{k=1}^{n-2} \overline{b_k} x_{k2}, \dots, \sum_{j=1}^{n-2} \sum_{k=1}^{n-2} a_j \overline{b_k} x_{kj}, \dots, \sum_{j=1}^{n-2} \sum_{k=1}^{n-2} b_j \overline{b_k} x_{kj}, \dots, \sum_{k=1}^{n-2} \overline{b_k} x_{k(n-2)}\right).
$$

As in the first case, $\mathcal{R}(T) = \mathcal{R}(T^*) = \mathcal{W}$.

Remark 2.4. *If T is a complex EP matrix of rank* 1*, then it must be normal, by the result ([\[3\]](#page-4-9), Theorem 1.3.3): If T is a complex matrix of rank* 1*, then its Moore-Penrose inverse is of the form* $T^{\dagger} = \frac{1}{\alpha} T^*$, where $\alpha = \text{trace}(T^*T)$.

 \Box

Remark 2.5. *If T is a real EP matrix of rank 1, then it must be a symmetric matrix. Indeed, as in Remark [2.4,](#page-1-1) T is a normal matrix. Hence by spectral theorem T* = *UDU*[∗] *, for some unitary matrix U and*

$$
D=\begin{bmatrix} d & \mathbb{O}\\ \mathbb{O} & \mathbb{O} \end{bmatrix}
$$

where $d = \text{trace}(T)$ *and* Θ *is the zero matrix of appropriate order.* As *T is real and* $T^* = UD^*U^*$ *, we have* $D = D^*$ *and hence T is symmetric.*

Example 2.6. *Let* $\mathcal{W} = \{(x_1, x_1 + x_2, x_2) : x_1, x_2 \in \mathbb{C}\}$ *be a subspace of* \mathbb{C}^3 *with basis* $v_1 = (1, 1+i, i), v_2 = (1, 0, -1)$ *. By the proof of the Theorem [2.3,](#page-1-2) we have* $v' = (2, 1 + i, 1)$ *.*

Then $T = \begin{bmatrix} 1+i & 1+i & 0 \\ 1+i & 1+i & 0 \end{bmatrix}$. Here T is an EP matrix \lceil $1 \quad 2$ $i \quad i-1 \quad -1$ $1⁷$

(non-normal) with $\mathcal{R}(T) = \mathcal{W}$.

Conjecture 2.7. *Let* W *be a closed subspace of a Hilbert space* H . Then there exists an EP (non-normal) operator T *on* \mathcal{H} *such that* $\mathcal{R}(T) = \mathcal{W}$ *.*

3. Fuglede-Putnam type theorems for *EP* **operators**

The well-known Fuglede theorem for a bounded operator is stated as follows.

Theorem 3.1. [\[7\]](#page-4-5)*.* Let $N \in \mathcal{B}(\mathcal{H})$ be a normal operator and $A \in \mathcal{B}(\mathcal{H})$ *.* If $AN = NA$ *, then* $AN^* = N^*A$ *.*

The following example illustrates that Fuglede theorem does not hold good for *EP* operators. The theorem cannot be extended to the set of EP operators on $\mathcal H$ even though every normal operator with a closed range is *EP*.

Example 3.2. Consider the EP operator T on ℓ_2 defined $by T(x_1, x_2, x_3,...) = (x_1 - x_2, x_1 + x_3, 2x_1 - x_2 + x_3, x_4,...)$ $\mathscr{B}(\ell_2)$ *defined by* $A(x_1, x_2, x_3,...) = (x_2, -x_1 + x_2$ $x_3, -2x_1 + x_2, x_4, \ldots$ *). Here AT* = *TA but AT*^{*} $\neq T^*A$.

We have seen in the above example that Fuglede theorem is not true in general for *EP* operators. The following theorem is a Fuglede type theorem which proves that if an *EP* operator and a bounded operator commute, then the *EP* operator commutes with the Moore-Penrose inverse of the bounded operator. Our result just replaces the "adjoint" operation by the "Moore-Penrose inverse" in the Fuglede theorem stated in Theorem [3.1,](#page-2-2) however proofs are totally different.

Theorem 3.3. Let T be an EP operator on $\mathcal H$ and $A \in$ $\mathscr{B}(\mathscr{H})$ *.* If $AT = TA$ *, then* $AT^{\dagger} = T^{\dagger}A$ *.*

Proof. As *T* is an *EP* operator, we have $TT^{\dagger} = T^{\dagger}T$. From the assumption $AT = TA$, we have $AT^\dagger = AT^\dagger TT^\dagger = AT(T^\dagger)^2 = TA(T^\dagger)^2 = TT^\dagger TA(T^\dagger)^2 =$ $T^\dagger T A T (T^\dagger)^2 = T^\dagger T A T^\dagger = T^\dagger A T T^\dagger = T^\dagger T T^\dagger A T^\dagger T = (T^\dagger)^2$ $TAT^{\dagger}T = (T^{\dagger})^2ATT^{\dagger}T = (T^{\dagger})^2AT = (T^{\dagger})^2TA = T^{\dagger}A.$

Example 3.4. *The assumption that T is an EP operator cannot be dropped in Theorem [3.3.](#page-2-3) For instance,* $A = T$ *is an bounded operator on* ℓ_2 *defined by* $T(x_1, x_2, x_3,...) =$ $(x_1 + x_2, 2x_1 + 2x_2, x_3, \ldots)$ *. Then* $T^{\dagger}(x_1, x_2, x_3, \ldots) = (\frac{1}{10}(x_1 +$ $(2x_2), \frac{1}{10}(x_1+2x_2), x_3,...)$ *. Note that T is not an EP operator and* $AT = TA$ *but* $AT^{\dagger} \neq T^{\dagger}A$.

Under some conditions, we prove that Fuglede theorem is true for *EP* operators and we give examples which embellish that those conditions are necessary.

Theorem 3.5. Let *T* be an *EP* operator on \mathcal{H} and $A \in$ $\mathscr{B}(\mathscr{H})$ *.* If $AT = TA$ and $AT^*T = T^*TA$, then $AT^* = T^*A$.

Proof. Suppose $T \in \mathcal{B}(\mathcal{H})$ is an *EP* operator with $AT =$ *TA* and $AT^*T = T^*TA$. Then by Theorem [3.3,](#page-2-3) we have $AT^* = A(TT^\dagger T)^* = AT^*(TT^\dagger)^* = AT^*TT^\dagger = T^*TAT^\dagger = 0$ $T^*TT^{\dagger}A = (TT^{\dagger}T)^*A = T^*A.$ \Box

Theorem 3.6. Let *T* be an *EP* operator on $\mathcal H$ and $A \in$ $\mathscr{B}(\mathscr{H})$ *.* If $AT = TA$ and $AT^{\dagger}T^* = T^{\dagger}T^*A$, then $AT^* = T^*A$.

Proof. As $T \in \mathcal{B}(\mathcal{H})$ is an *EP* operator, we have $TT^{\dagger} =$ $T^{\dagger}T$. From the given facts $AT = TA$ and $AT^{\dagger}T^* = T^{\dagger}T^*A$, we $A^{\dagger}A^{\d$ $TT^{\dagger}T^*A = (TT^{\dagger}T)^*A = T^*A.$ \Box

Example 3.7. *The condition* $AT^*T = T^*TA$ *is essential in Theorem* [3.5.](#page-2-4) *Consider the EP operator T on* ℓ_2 *defined by* $T(x_1, x_2, x_3,...) = (x_1 + x_3, 0, x_3,...)$ *and* $A \in \mathcal{B}(\ell_2)$ *defined* $by A(x_1, x_2, x_3,...) = (x_1 + 2x_3, -x_2, x_3,...)$ *. Then* $AT = TA$ $and AT^*T \neq T^*TA$. But $AT^* \neq T^*A$.

Example 3.8. *The condition* $AT^{\dagger}T^* = T^{\dagger}T^*A$ *cannot be dropped in Theorem [3.6.](#page-2-5) Let A and T be as in Example [3.2.](#page-2-1) Then* $AT = TA$ and $AT^{\dagger}T^* \neq T^{\dagger}T^*A$. But $AT^* \neq T^*A$.

Fuglede theorem was generalized for two normal operators by Putnam, which is well-known as Fuglede-Putnam theorem and is stated as follows.

Theorem 3.9. *[\[16\]](#page-5-6) Let N*,*M be bounded normal operators on* \mathcal{H} and $A \in \mathcal{B}(\mathcal{H})$ *. If AN* = *MA, then AN^{*} = M^{*}A.*

Fuglede-Putnam theorem is not true in general if we replace bounded normal operators by *EP* operators, as shown in the following example.

Example 3.10. *Consider the EP operators* T *and* S *on* ℓ_2 *are defined by*

$$
T(x_1,x_2,x_3,\ldots)=(x_1+x_3,0,x_3,\ldots)
$$

and $S(x_1, x_2, x_3,...) = (x_1 + x_2, x_2, 0, x_4,...)$ *and* $A \in \mathcal{B}(\ell_2)$ *is defined by* $A(x_1, x_2, x_3, ...)$ = $(x_1 − x_3, x_3, 2x_2, x_4, ...)$ *. Then* $AT = SA$. *But* $AT^* \neq S^*A$.

Theorem 3.11. *Let T*, *S be EP operators on* \mathcal{H} *and* $A \in$ $\mathscr{B}(\mathscr{H})$ *.* If $AT = SA$ and $AT^*T = S^*SA$, then $AT^* = S^*A$.

Proof. Suppose that $T, S \in \mathcal{B}(\mathcal{H})$ are *EP* operators with $AT = SA$ and $AT^*T = S^*SA$. Then we have $AT^* = A(TT^{\dagger}T)^*$ $= AT^*TT^{\dagger} = S^*SAT^{\dagger} = S^*SS^{\dagger}A = (SS^{\dagger}S)^*A = S^*A$. \Box

Example 3.12. *The condition* $AT^*T = S^*SA$ *in Theorem* [3.11](#page-2-6) *is essential. Let T*,*S be EP operators and A be the operator* $as in Example 3.10.$ $as in Example 3.10.$ *Here* $AT^*T \neq S^*SA$ *and* $AT = SA$ *but* $AT^* \neq S^*A$.

Theorem 3.13. Let *T*, *S be EP operators on* \mathcal{H} *and* $A \in$ $\mathscr{B}(\mathscr{H})$ *.* If $AT = SA$ and $AT^{\dagger}T^* = S^{\dagger}S^*A$, then $AT^* = S^*A$.

Proof. As *T* and *S* are *EP* operators with *AT* = *SA* and $AT^{\dagger}T^* = S^{\dagger}S^*A$, we have $AT^* = A(TT^{\dagger}T)^* = AT^{\dagger}TT^* =$ $ATT^{\dagger}T^* = SAT^{\dagger}T^* = SS^{\dagger}S^*A = (SS^{\dagger}S)^*A = S^*A.$ \Box

Example 3.14. *The condition* $AT^{\dagger}T^* = S^{\dagger}S^*A$ *in Theorem [3.13](#page-3-1) is essential. Let T*,*S be EP operators and A be the operator as in Example [3.10.](#page-2-7) Here* $AT^{\dagger}T^* \neq S^{\dagger}S^*A$ *and* $AT =$ *SA but* $AT^* \neq S^*A$ *.*

The following Fuglede-Putnam type theorem for *EP* operators is a generalization of Theorem [3.3](#page-2-3) involving two *EP* operators.

Theorem 3.15. *Let T*, *S be EP operators on* H *and* $A \in$ $\mathscr{B}(\mathscr{H})$ *.* If $AT = SA$ *, then* $AT^{\dagger} = S^{\dagger}A$ *.*

Proof. As *T* and *S* are *EP* operators, we have $TT^{\dagger} = T^{\dagger}T$ and $SS^{\dagger} = S^{\dagger}S$. From the given fact $AT = SA$, we have $AT^{\dagger} = AT^{\dagger}TTT^{\dagger} = AT(T^{\dagger})^2 = SA(T^{\dagger})^2 = SS^{\dagger}SA(T^{\dagger})^2 = S^{\dagger}SS$ $AT(T^{\dagger})^2 = S^{\dagger}SAT^{\dagger} = S^{\dagger}ATT^{\dagger} = S^{\dagger}SS^{\dagger}AT^{\dagger}T = (S^{\dagger})^2SAT^{\dagger}$ $T = (S^{\dagger})^2 A T T^{\dagger} T = (S^{\dagger})^2 A T = (S^{\dagger})^2 S A = S^{\dagger} A.$ \Box

Example 3.16. *In the Theorem [3.15,](#page-3-2) if one of the operators, T or S fails to be EP, then the theorem is not valid. Consider the EP operator T on* ℓ_2 *defined by* $T(x_1, x_2, x_3,...) =$ $(x_1 + x_3, 0, x_3,...)$ *and the non-EP operator S on* ℓ_2 *defined by* $S(x_1, x_2, x_3,...) = (x_1 + x_2, 0, 0, x_4,...)$ *. Let* $A \in \mathcal{B}(\ell_2)$ *be defined by* $A(x_1, x_2, x_3,...) = (x_2 + 2x_3, -x_2, -x_2, x_4)$ *. Then* $AT = SA$. But $AT^{\dagger} \neq S^{\dagger}A$.

Theorem 3.17. *Let T*, *S be EP operators on* \mathcal{H} *. If* $A, B \in$ $\mathscr{B}(\mathscr{H})$ with $AT = SB$ and $AT^2 = S^2B$, then $AT^{\dagger} = S^{\dagger}B$.

Proof. Suppose that $A, B, T, S \in \mathcal{B}(\mathcal{H})$ with $AT = SB$ and $AT^2 = S^2B$, where *T* and *S* are *EP* operators. Then $A T^\dagger = A (T^\dagger T T^\dagger) = A T T^\dagger T^\dagger = S B T^\dagger T^\dagger = S S^\dagger S B T^\dagger T^\dagger = 0$ $S^{\dagger}S^2BT^{\dagger}T^{\dagger} = S^{\dagger}AT^2T^{\dagger}T^{\dagger} = S^{\dagger}ATT^{\dagger} = S^{\dagger}S^{\dagger}SATT^{\dagger} = S^{\dagger}S^{\dagger}S^2$ $BT^{\dagger} = S^{\dagger}S^{\dagger}AT^2T^{\dagger} = S^{\dagger}S^{\dagger}AT = S^{\dagger}S^{\dagger}SB = S^{\dagger}B$. \Box

Example 3.18. *The assumptions that T and S are EP operators in Theorem [3.17](#page-3-3) cannot be dropped. For instance, let* $A, B, T, S \in \mathcal{B}(\ell_2)$ *be defined by*

$$
A(x_1, x_2, x_3, \ldots) = (x_2, x_1, x_3, \ldots),
$$

\n
$$
B = I,
$$

\n
$$
T(x_1, x_2, x_3, \ldots) = (x_1 + x_2, -x_1 - x_2, x_3, \ldots),
$$

\n
$$
S(x_1, x_2, x_3, \ldots) = (-x_1 - x_2, x_1 + x_2, x_3, \ldots).
$$

Here both T *, S are not* EP *operators with* $AT = S = SB$. *But* $AT^{\dagger} \neq S^{\dagger}B$.

Example 3.19. *The condition* $AT^2 = S^2B$ *in Theorem [3.17](#page-3-3) is essential. For instance, let* $T, S \in \mathcal{B}(\ell_2)$ *be EP operators defined by* $T(x_1, x_2, x_3,...) = (x_1 - x_2, x_1 + x_3, 2x_1 - x_2 +$ $x_3, x_4,...$ *and* $S(x_1, x_2, x_3,...) = (x_1 + x_2, x_2, x_3,...)$ *and let* $A, B \in \mathcal{B}(\ell_2)$ *be defined by* $A(x_1, x_2, x_3,...) = (x_1 + 2x_2$ $x_3, -x_1 - x_2 + x_3, 2x_1 + 2x_2 - 2x_3, x_4, \ldots$) *and* $B(x_1, x_2, \ldots) =$ $(x_1 + x_3, 0, x_1 + x_2, x_4, \ldots)$ *be such that* $AT = SB$ *and* $AT^2 \neq$ S^2B *. But* $AT^{\dagger} \neq S^{\dagger}B$ *.*

Theorem 3.20. *Let T be an EP operator on* \mathcal{H} *and* $A, B \in$ $\mathscr{B}(\mathscr{H})$ *.* If $AT = TB$ and $BT = TA$, then $AT^{\dagger} = T^{\dagger}B$ and $BT^{\dagger} = T^{\dagger}A$.

Proof. From given hypotheses, $(A + B)T = T(A + B)$. By Theorem [3.3,](#page-2-3)

$$
(A + B)T^{\dagger} = T^{\dagger}(A + B)
$$

\n
$$
AT^{\dagger} + BT^{\dagger} = T^{\dagger}A + T^{\dagger}B
$$

\n
$$
AT^{\dagger} - T^{\dagger}B = T^{\dagger}A - BT^{\dagger}.
$$
\n(3.1)

Again using given hypotheses, $(A - B)T = -T(A - B)$. By Theorem [3.15,](#page-3-2)

$$
(A - B)T^{\dagger} = -T^{\dagger}(A - B)
$$

\n
$$
AT^{\dagger} - BT^{\dagger} = -T^{\dagger}A + T^{\dagger}B
$$

\n
$$
AT^{\dagger} - T^{\dagger}B = -T^{\dagger}A + BT^{\dagger}.
$$
\n(3.2)

Adding [\(3.1\)](#page-3-4) and [\(3.2\)](#page-3-5), we have $AT^{\dagger} = T^{\dagger}B$. Similarly subtracting [\(3.2\)](#page-3-5) from [\(3.1\)](#page-3-4), we have $BT^{\dagger} = T^{\dagger}A$. \Box

Theorem 3.21. *Let T*, *S be EP operators on* \mathcal{H} *and* $A, B \in$ $\mathscr{B}(\mathscr{H})$ *.* If $AT = SB$ and $BT = SA$, then $AT^{\dagger} = S^{\dagger}B$ and $BT^{\dagger} = S^{\dagger}A$.

Proof. From given hypotheses, $(A + B)T = S(A + B)$. By Theorem [3.15,](#page-3-2)

$$
(A + B)T^{\dagger} = S^{\dagger}(A + B)
$$

\n
$$
AT^{\dagger} + BT^{\dagger} = S^{\dagger}A + S^{\dagger}B
$$

\n
$$
AT^{\dagger} - S^{\dagger}B = S^{\dagger}A - BT^{\dagger}.
$$
\n(3.3)

Again using given hypotheses, $(A - B)T = -S(A - B)$. By Theorem [3.15,](#page-3-2)

$$
(A - B)T^{\dagger} = -S^{\dagger}(A - B)
$$

\n
$$
AT^{\dagger} - BT^{\dagger} = -S^{\dagger}A + S^{\dagger}B
$$

\n
$$
AT^{\dagger} - S^{\dagger}B = -S^{\dagger}A + BT^{\dagger}.
$$
\n(3.4)

Adding [\(3.3\)](#page-3-6) and [\(3.4\)](#page-3-7), we have $AT^{\dagger} = S^{\dagger}B$. Similarly subtracting [\(3.4\)](#page-3-7) from [\(3.3\)](#page-3-6), we have $BT^{\dagger} = S^{\dagger}A$.

4. Consequences of Fuglede-Putnam type theorems for *EP* **operators**

The product of *EP* operators is not an *EP* operator in general.

Example 4.1. Let
$$
S, T \in \mathcal{B}(\ell_2)
$$
 be defined by

$$
S(x_1, x_2, x_3, \ldots) = (x_1 + x_2, x_1 + x_2, x_3, \ldots)
$$

and $T(x_1, x_2, x_3,...) = (0, x_2, x_3,...)$ *. Here S and T are EP operators, but the product ST is not an EP operator.*

Djordjevic has given a necessary and sufficient condition ´ for product of two *EP* operators to be an *EP* operator again.

Theorem 4.2. [\[4\]](#page-4-10) Let S, T be EP operators on H . Then the *following statements are equivalent:*

- *1. ST is an EP operator ;*
- 2. $\mathcal{R}(ST) = \mathcal{R}(S) \cap \mathcal{R}(T)$ and $\mathcal{N}(ST) = \mathcal{N}(S) + \mathcal{N}(T)$.

The following example illustrates the fact that there are operators *S* and *T* in $\mathscr{B}_c(\mathscr{H})$ such that $ST \in \mathscr{B}_c(\mathscr{H})$ but $TS \notin \mathcal{B}_{c}(\mathcal{H})$. We have proved that when *S* and *T* are *EP* operators, the closed rangeness of *ST* implies the closed rangeness of *T S* and vice-versa.

Example 4.3. [\[17\]](#page-5-9) Let *S* be an operator on ℓ_2 defined by $S(x_1, x_2, x_3,...) = (x_1, 0, x_2, 0,...)$ *and T be another operator on* ℓ_2 *defined by* $T(x_1, x_2, x_3,...) = (\frac{x_1}{1} + x_2, \frac{x_3}{3} + x_4, \frac{x_5}{5} + x_5)$ x_6 ,...). One can verify that both *S* and *T* are bounded opera*tors and are having closed ranges. Also,* $\mathcal{R}(ST)$ *is closed but* R(*T S*) *is not closed.*

Theorem 4.4. $[18]$ Let S and T be EP operators on H . Then $\mathcal{R}(ST)$ *is closed if and only if* $\mathcal{R}(TS)$ *is closed.*

Example 4.5. *Consider the EP operators* $S, T \in \mathcal{B}(\ell_2)$ *defined by*

$$
S(x_1, x_2, x_3, \ldots) = (x_1 + x_2, x_2, x_3, \ldots)
$$

and $T(x_1, x_2, x_3,...) = (x_1, 0, x_3,...)$ *. Here ST is an EP operator, but T S is not EP.*

Theorem 4.6. *Let* $S, T \in \mathcal{B}(\mathcal{H})$ *such that* $(ST)^{\dagger} = T^{\dagger}S^{\dagger}$ *. Then ST and TS are EP if and only if* $S^{\dagger}ST = TSS^{\dagger}$ *and* $STT^{\dagger} = T^{\dagger}TS.$

Proof. Suppose *ST* and *TS* are *EP*. Then $(ST)^{\dagger}$ and $(TS)^{\dagger}$ are also *EP*. Hence we have $S^{\dagger}(ST)^{\dagger} = S^{\dagger}T^{\dagger}S^{\dagger} = (TS)^{\dagger}S^{\dagger}$. Therefore by Theorem [3.15,](#page-3-2) we have $S^{\dagger}ST = TSS^{\dagger}$. In a similar way we have $(ST)^{\dagger}T^{\dagger} = T^{\dagger}S^{\dagger}T^{\dagger} = T^{\dagger}(TS)^{\dagger}$. Now we use Theorem [3.15,](#page-3-2) we get $STT^{\dagger} = T^{\dagger}TS$. Conversely, suppose we have

$$
S^{\dagger}ST = TSS^{\dagger} \tag{4.1}
$$

$$
STT^{\dagger} = T^{\dagger}TS. \tag{4.2}
$$

From the equation [\(4.1\)](#page-4-11), we get $T^{\dagger}S^{\dagger}ST = T^{\dagger}TSS^{\dagger}$ and from the equation [\(4.2\)](#page-4-11), we get $STT^{\dagger}S^{\dagger} = T^{\dagger}TSS^{\dagger}$. Since the right side of these two equations are same, we have $T^{\dagger}S^{\dagger}ST =$ $STT^{\dagger}S^{\dagger}$. Hence $(ST)^{\dagger}ST = ST(ST)^{\dagger}$. Therefore *ST* is *EP*. Similarly from the equation [\(4.1\)](#page-4-11), we get $S^{\dagger}STT^{\dagger} = TSS^{\dagger}T^{\dagger}$ and from the equation [\(4.2\)](#page-4-11), we get $S^{\dagger}STT^{\dagger} = S^{\dagger}T^{\dagger}TS$. Therefore $T S S^{\dagger} T^{\dagger} = S^{\dagger} T^{\dagger} T S$. Hence $T S (T S)^{\dagger} = (T S)^{\dagger} T S$. Thus *T S* is *EP*. П

Corollary 4.7. *Let* $S = UP \in \mathbb{C}^{n \times n}$ *be a polar decomposition of S* where $U \in \mathbb{C}^{n \times n}$ *is unitary and* $P \in \mathbb{C}^{n \times n}$ *is positive semidefinite Hermitian and let* $T \in \mathbb{C}^{n \times n}$ *with* $(ST)^{\dagger} = T^{\dagger}S^{\dagger}$ *. If TU is EP and PTU* = TUP , then ST and TS are EP.

Proof. Suppose *TU* is *EP* and $PTU = TUP$, then $TSS^{\dagger} =$ $T(UP)(UP)^{\dagger} = TUPP^{\dagger}U^* = PTUP^{\dagger}U^* = PP^{\dagger}TUU^* = PP^{\dagger}$ $T = P^{\dagger}PT = P^{\dagger}U^*UPT = (UP)^{\dagger}UPT = S^{\dagger}ST$. Since *TU* is *EP* and $PTU = TUP$, we have $P(TU)^{\dagger} = (TU)^{\dagger}P$. Therefore $\begin{aligned} \mathit{ST} T^\dagger \!=\! \mathit{UPTUU}^* T^\dagger \!=\! \mathit{UPTU} (TU)^\dagger \!=\! \mathit{UTUP} (TU)^\dagger \!=\! \mathit{UT} \end{aligned}$ $U(TU)^{\dagger}P = U(TU)^{\dagger}TUP = UU^*T^{\dagger}TUP = T^{\dagger}TS$. Thus by Theorem [4.6,](#page-4-12) *ST* and *T S* are *EP*. \Box

Acknowledgment

The present work of first author was partially supported by National Board for Higher Mathematics (NBHM), Ministry of Atomic Energy, Government of India (Reference No.2/48(16)/ 2012/NBHM(R.P.)/R&D 11/9133).

References

- [1] K. G. Brock. A note on commutativity of a linear operator and its Moore-Penrose inverse. *Numer. Funct. Anal. Optim.*, 11(7-8), (1990), 673–678.
- [2] S. L. Campbell and C. D. Meyer. *EP* operators and generalized inverses. *Canad. Math. Bull*, 18(3), (1975), 327–333.
- [3] S. L. Campbell and C. D. Meyer. *Generalized inverses of linear transformations*, volume 56 of *Classics in Applied Mathematics*. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (2009).
- ^[4] D. S. Djordjević. Products of EP operators on Hilbert spaces. *Proc. Amer. Math. Soc.*, 129(6), (2001), 1727– 1731.
- [5] D. S. Djordjević and J. J. Koliha. Characterizing Hermitian, normal and EP operators. *Filomat*, 21(1), (2007), 39–54.
- [6] B. P. Duggal. A remark on generalised Putnam-Fuglede theorems. *Proc. Amer. Math. Soc.*, 129(1), (2001), 83–87.
- $[7]$ B. Fuglede. A commutativity theorem for normal operators. *Proc. Nat. Acad. Sci. U. S. A.*, 36, (1950), 35–40.
- $[8]$ W. B. Gong. A simple proof of an extension of the Fuglede-Putnam theorem. *Proc. Amer. Math. Soc.*, 100(3), (1987), 599–600.
- [9] B. C. Gupta and S. M. Patel. On extensions of Fuglede-Putnam theorem. *Indian J. Pure Appl. Math.*, 19(1), (1988), 55–58.
- [10] R. E. Hartwig and I. J. Katz. On products of EP matrices. *Linear Algebra Appl.*, 252, (1997), 339–345.

- [11] I. J. Katz and M. H. Pearl. On *EPr* and normal *EPr* matrices. *J. Res. Nat. Bur. Standards Sect. B*, 70B, (1966), 47–77.
- [12] S. Mecheri. An extension of the Fuglede-Putnam theorem to *p*-hyponormal operators. *J. Pure Math.*, 21, (2004), 25–30.
- [13] C. D. Meyer, Jr. Some remarks on EP*^r* matrices, and generalized inverses. *Linear Algebra and Appl.*, 3, (1970), 275–278.
- ^[14] D. Mosić. Reflexive-EP elements in rings. *Bull. Malays*. *Math. Sci. Soc.*, 40(2), (2017), 655–664.
- [15] M. H. Pearl. On generalized inverses of matrices. *Proc. Cambridge Philos. Soc.*, 62, (1966), 673–677.
- [16] C. R. Putnam. On normal operators in Hilbert space. *Amer. J. Math.*, 73, (1951), 357–362.
- [17] P. Sam Johnson and C. Ganesa Moorthy. Composition of operators with closed range. *J. Anal.*, 14, (2006), 79–80.
- [18] P. Sam Johnson and A. Vinoth. Product and factorization of hypo-EP operators. *Spec. Matrices*, 6, (2018), 376– 382.
- [19] H. Schwerdtfeger. *Introduction to Linear Algebra and the Theory of Matrices*. P. Noordhoff, Groningen, (1950).
- $[20]$ S. Xu, J. Chen, and J. Benítez. EP elements in rings with involution. *Bull. Malays. Math. Sci. Soc.*, 42(6), (2019), 3409–3426.

 $**********$ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

