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Abstract. In the paper, we have first defined the area of the Bézier polygonal region which contains the nth order Bézier
Curve and its first, second and third derivatives based on the control points of nth order Bézier curve in E3. Further, the area
of the Bézier polygonal region containing the 5th order Bézier curve and the corresponding derivatives is examined based on
the control points of 5thorder Bézier Curve in E3.
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1. Introduction

French engineer Pierre Bézier, who used Bézier curves to design automobile bodies studied with them in
1962. But the study of these curves was first developed in 1959 by mathematician Paul de Casteljau using de
Casteljau’s algorithm, a numerically stable method to evaluate Bézier curves. A Bézier curve is frequently used
in computer graphics and related fields, in vector graphics, used in animation as a tool to control motion. To
guarantee smoothness, the control point at which two curves meet must be on the line between the two control
points on either side. In animation applications, such as Adobe Flash and Synfig, Bézier curves are used to
outline, for example, movement. Users design the wanted path in Bézier curves, and the application creates the
needed frames for the object to move along the path. For 3D animation Bézier curves are often used to define
3D paths as well as 2D paths for key frame interpolation. We have been motivated by the following studies.
In [2, 6], the use of Bézier curves on object modeling purposes has been given for Computer-Aided Geometric
designs. Moreover, Bézier curves with curvature and torsion continuity has been examined in [8]. In [13], Frenet
apparatus of the cubic Bézier curves have been examined in E3. The matrix representations for a given Bézier
curve and its derivatives have been contented in [7, 10–12, 17].In addition, the use and the generation method
of Bézier curves have other possible applications as given in [1, 3–5, 9]. Recently, the examination of a Bézier
curve by means of curve pairs such as involute, Bertrand or Mannheim partner curves has been given in [14–16].
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2. Preliminaries

A Bézier curve is defined by a set of control points P0 through Pn, where n is called its order. If n = 1 for
linear, if n = 2 for quadratic, if n = 3 for cubic Bézier curve, etc. The first and last control points are always
the end points of the curve; however, the intermediate control points (if any) generally do not lie on the curve.
Generaly Bézier curve can be defined by n+1 control points P0, P1, ..., Pn and has the following form, the points
Pi are called control points for the Bézier curve. The polygon formed by connecting the Bézier points with lines,
starting with P0 and finishing with Pn, is called the Bézier polygon (or control polygon). Bézier curve with n+1

control points P0, P1, ..., Pn has the following equation [2, 6]

B(t) =

n∑
i=0

(
n

i

)
ti (1− t)

n−i
(t) [Pi] , t ∈ [0, 1]

where
(
n
i

)
= n!

i!(n−i)! are the binomial coefficients.

Theorem 2.1. The derivatives of a given Bézier curve B (t) is

B′(t) =

n−1∑
i=0

(
n− 1

i

)
ti (1− t)

n−i−1
Qi

where Qi = n (Pi+1 − Pi) [2, 6].

Given points P0 and P1, a linear Bézier curve is simply a straight line between those two points. Linear
Bézier curve is given by α (t) = (1− t)P0 + tP1 and also the matrix form of a linear Bézier curve is

α (t) =
[
t 1

] [−1 1

1 0

] [
P0

P1

]
.

A quadratic Bézier curve is the path traced by the function α (t), given points P0, P1 and P2 which can be
interpreted as the linear interpolant of corresponding points on the linear Bézier curves from P0 to P1 and from
P1 to P2 respectively.and also a quadratic Bézier curve has the matrix form with control points P0 , P1 and P2

α (t) =

 t2

t

1

T  1 −2 1

−2 2 0

1 0 0

P0

P1

P2

 .

Four points in the plane or in higher-dimensional space define a cubic Bézier curve with the following equation
α (t) = (1− t)

3
P0 + 3t (1− t)

2
P1 + 3t2 (1− t)P2 + t3P3 with the matrix form of a cubic Béziercurve with

control points P0, P1, P2, and P3, is

α (t) =


t3

t2

t

1


T 

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0



P0

P1

P2

P3

 .

We have already examined the cubic Bézier curves and involutes in [13] and [14], respectively.

3. The area of the Bézier polygonal regions

Definition 3.1. The Pi polygon formed by connecting the Bézier control points with lines, starting with P0 and
finishing with Pn, is called the Bézier polygon (or control polygon). The convex hull of the Bézier polygon
contains the Bézier curve.
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Definition 3.2. The area of the Bézier polygonal region containing the nth order Bézier Curve which is given as

α (t) =

n∑
i=0

(
n

i

)
ti (1− t)

n−i
(t) [Pi] , t ∈ [0, 1] .

with control points P0, P1, ..., Pn is defined as the sum of the area of the each area of triangles ∆(P0, P1, P2) ,

∆(P0, P2, P3) ,∆(P0, P3, P4) , ...,∆(P0, Pn−1, Pn) as in the following way

A (P0, P1, ..., Pn) = A (P0, P1, P2) +A (P0, P2, P3) + ...+A (P0, Pn−1, Pn) .

Theorem 3.3. The area of the Bézier polygonal region containing the 5th order BézierCurve and derivatives in
E3 is

A (P0, P1, P2, P3, P4, P5) =
1

2

4∑
i=1

∥P0 ∧ (Pi + Pi+1)∥

Proof. From the definition the area of the Bézier polygonal region containing the 5th order Bézier Curve

α (t) =

5∑
i=0

(
5

i

)
ti (1− t)

5−i
(t) [Pi] , t ∈ [0, 1] .

with control points P0, P1, P2, P3, P4, and P5 is defined as the sum of the area of the each area of triangles
∆(P0, P1, P2) ,∆(P0, P2, P3) ,∆(P0, P3, P4) , and ∆(P0, P4, P5) as in the following way

A (P0, P1, P2, P3, P4, P5) = A (P0, P1, P2) +A (P0, P2, P3) +A (P0, P3, P4) +A (P0, P4, P5) .

The matrix representation of 5th order Bézier curve with control points P0, P1, P2, P3, P4, and P5 is

α (t) =



t5

t4

t3

t2

t

1



T 

−1 5 −10 10 −5 1

5 −20 30 −20 5 0

−10 30 −30 10 0 0

10 −20 10 0 0 0

−5 5 0 0 0 0

1 0 0 0 0 0





P0

P1

P2

P3

P4

P5


The area of the Bézier polygonal region that contains the 5th order BézierCurve with control points P0, P1, P2,

P3, P4, and P5 is defined as the sum of the area of the

A (P0, P1, P2, P3, P4, P5) = A (P0, P1, P2) +A (P0, P2, P3) +A (P0, P3, P4) +A (P0, P4, P5)

=
1

2

(∥P0P1 ∧ P0P2∥+ ∥P0P2 ∧ P0P3∥+ ∥P0P3 ∧ P0P4∥
+ ∥P0P4 ∧ P0P5∥)

=
1

2

4∑
i=1

∥P0 ∧ (Pi + Pi+1)∥ .

■

We can generalize the above theorem to the nth order of a Bézier curve, hence we get the following theorem;

Theorem 3.4. The area of the Bézier polygonal region having the nth order Bézier Curve and derivatives in E3

is

A (P0, P1, P2, P3, ..., Pn) =
1

2

n−1∑
i=1

∥P0 ∧ (Pi + Pi+1)∥ .
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Theorem 3.5. The area of the Bézier polygonal region having the first derivative of 5th order of a Bézier curve
as a 4th order Bézier curve with control pointsP0, P1, P2, P3, P4, and P5 of 5th order BézierCurve

A (Q0, Q1, Q2, Q3, Q4) =
25

2

3∑
i=1

∥(P0 − P1) ∧ (Pi − Pi+2)∥

Proof. The matrix representation of the first derivative of 5th order of a Bézier curve as a 4th order Béziercurve
with control points Q0, Q1, Q2, Q3, Q4

α′ (t) =


t4

t3

t2

t

1


T 

1 −4 6 −4 1

−4 12 −12 4 0

6 −12 6 0 0

−4 4 0 0 0

1 0 0 0 0



Q0

Q1

Q2

Q3

Q4


where the control points, Q0 = 5 (P1 − P0) , Q1 = 5 (P2 − P1) , Q2 = 5 (P3 − P2) , Q3 = 5 (P4 − P3) , and
Q4 = 5 (P5 − P4) respectively. The area of the Bézier polygonal region contains the first derivative of 5th order

of a Bézier curve as a 4th order Bézier curve with control points Q0, Q1, Q2, Q3, Q4 is

A (Q0, Q1, Q2, Q3, Q4) =
1

2

3∑
i=1

∥Q0 ∧ (Qi +Qi+1)∥

= A (Q0, Q1, Q2) +A (Q0, Q2, Q3) +A (Q0, Q3, Q4)

=
1

2
(∥Q0Q1 ∧Q0Q2∥+ ∥Q0Q2 ∧Q0Q3∥+ ∥Q0Q3 ∧Q0Q4∥+ ∥Q0Q4 ∧Q0Q5∥)

=
1

2
(∥(Q1 +Q2) ∧ (−Q0)∥+ ∥(Q2 +Q3) ∧ (−Q0)∥+ ∥(Q3 +Q4) ∧ (−Q0)∥)

=
1

2
(∥Q0 ∧ (Q1 +Q2)∥+ ∥Q0 ∧ (Q2 +Q3)∥+ ∥Q0 ∧ (Q3 +Q4)∥)

=
1

2

3∑
i=1

∥Q0 ∧ (Qi +Qi+1)∥

Also using the control points P0, P1, P2, P3, P4, and P5 of 5th order BézierCurve

2A (Q0, Q1, Q2, Q3, Q4) = ∥Q0 ∧ (Q1 +Q2)∥+ ∥Q0 ∧ (Q2 +Q3)∥+ ∥Q0 ∧ (Q3 +Q4)∥
= ∥5 (P1 − P0) ∧ (5 (P2 − P1) + 5 (P3 − P2))∥
+ ∥5 (P1 − P0) ∧ (5 (P3 − P2) + 5 (P4 − P3))∥
+ ∥5 (P1 − P0) ∧ (5 (P4 − P3) + 5 (P5 − P4))∥

=25 ∥(P1 − P0) ∧ ((P2 − P1) + (P3 − P2))∥
+ 25 ∥(P1 − P0) ∧ ((P3 − P2) + (P4 − P3))∥
+ 25 ∥(P1 − P0) ∧ ((P4 − P3) + (P5 − P4))∥

=25 ∥(P0 − P1) ∧ (P1 − P3)∥
+ 25 ∥(P0 − P1) ∧ (P2 − P4)∥
+ 25 ∥(P0 − P1) ∧ (P3 − P5)∥ .

This complete the proof. ■

If we generalize the above theorem to the nth order of a Bézier curve we get the following theorem;
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Theorem 3.6. The area of the Bézier polygonal region containing the first derivative of nth order of a Bézier
curve as a (n− 1)th order Béziercurve with control points Q0, Q1, Q2, ..., Qn−1 is

A (Q0, Q1, Q2, ..., Qn−1) =
1

2

n−2∑
i=1

∥Q0 ∧ (Qi +Qi+1)∥ .

Also using the control points P0, P1, ..., Pn of nth order BézierCurve

A (Q0, Q1, Q2, ..., Qn−1) =
1

2
n2

n−2∑
i=1

∥(P0 − P1) ∧ (Pi − Pi+2)∥ .

Theorem 3.7. The area of the Bézier polygonal region containing the second derivative of 5th order of a Bézier
curve as a 3rd order Béziercurve with control points P0, P1, P2, P3, P4, and P5 of 5th order BézierCurve is

A (R0, R1, ..., Rn−2) =
202

2

n−3∑
i=1

∥(P0 − 2P1 + P2) ∧ (Pi − Pi+1 − Pi+2 + Pi+3)∥ .

Proof. The matrix representation of the second derivative of 5th order of a Bézier curve with control points R0,

R1, R2, R3 is

α
′′
(t) =


t3

t2

t

1


T 

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0



R0

R1

R2

R3


where R0, R1, R2, R3 are control points. The area of the Bézier polygonal region having the second derivative
of 5th order of a Bézier curve as a 3rd order Béziercurve with control points R0, R1, R2, and R3 is

A (R0, R1, ..., Rn−2) =
1

2

2∑
i=1

∥R0 ∧ (Ri +Ri+1)∥

Also using the control points P0, P1, P2, P3, P4, and P5 of 5th order BézierCurve, and

R0 = 20 (P0 − 2P1 + P2) , R1 = 20 (P1 − 2P2 + P3) ,

R2 = 20 (P2 − 2P3 + P4) , R3 = 20 (P3 − 2P4 + P5)

and
R1 +R2 = 20 (P1 − P2 − P3 + P4) , R2 +R3 = 20 (P2 − P3 − P4 + P5)

we get the proof as in the following way

A (R0, R1, R2, R3) =
1

2
(∥R0 ∧ (R1 +R2)∥+ ∥R0 ∧ (R2 +R3)∥)

=
1

2
(∥20 (P0 − 2P1 + P2) ∧ (R1 +R2)∥+ ∥20 (P0 − 2P1 + P2) ∧ (R2 +R3)∥)

A (R0, R1, R2, R3) =
202

2

2∑
i=1

∥(P0 − 2P1 + P2) ∧ (Pi − Pi+1 − Pi+2 + Pi+3)∥ .

■

If we generalize the above theorem to the nth order of a Bézier curve we get the following theorem;
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Theorem 3.8. The area of the Bézier polygonal region contains the second derivative of nth order of a Bézier
curve as a (n− 2)th order Béziercurve with control points is R0, R1, ..., Rn−2

A (R0, R1, R2, R3) =
1

2

n−3∑
i=1

∥R0 ∧ (Ri +Ri+1)∥ .

Also using the control points P0, P1, ..., Pn of nth order BézierCurve

A (R0, R1, R2, R3) =
1

2
(n(n− 1))

2
2∑

i=1

∥(P0 − 2P1 + P2) ∧ (Pi − Pi+1 − Pi+2 + Pi+3)∥ .

Theorem 3.9. The area of the Bézier polygonal region containing the third derivative of 5th order of a Bézier
curve as a 2nd order Béziercurve with control points S0, S1, S2 is

A (S0, S1, S2) =
1

2
∥S0 ∧ (S1 + S2)∥

Also using the control points P0, P1, P2, P3, P4, and P5 of 5th order BézierCurve

A (S0, S1, S2) = 2.602 ∥(−P0 + 3P1 − 3P2 + P3) ∧ (−2P0 + 5P1 + 2P3 + 5P4 + P5)∥

Proof. The matrix representation of the third derivative of 5th order of a Bézier curve with control points
S0, S1, S2 is

α
′′′
(t) =

 t2

t

1

T  1 −2 1

−2 2 0

1 0 0

S0

S1

S2


where

S0 = 60 (6P1 − 2P0 − 6P2 + 2P3) , S1 = 60 (2P1 − P0 − 2P3 + P4) , and
S2 = 60 (3P1 − P0 − 4P2 + 4P3 − 3P4 + P5)

hence
S1 + S2 = 60 (5P1 − 2P0 + 2P3 + 5P4 + P5)

The area of the Bézier polygonal region for the third derivative of 5th order of a Bézier curve as a 2nd order
Béziercurve with control points S0, S1, S2 is

A (S0, S1, S2) =
1

2
∥S0 ∧ (S1 + S2)∥ .

Hence

A (S0, S1, S2) =
1

2
∥(S1 − S0) ∧ (S2 − S0)∥

=
1

2
∥S0 ∧ (S1 + S2)∥

=
602

2
∥(−2P0 + 6P1 − 6P2 + 2P3) ∧ (5P1 − 2P0 + 2P3 + 5P4 + P5)∥

A (S0, S1, S2) =
602

2
∥(−P0 + 3P1 − 3P2 + P3) ∧ (−2P0 + 5P1 + 2P3 + 5P4 + P5)∥ .

We have the proof. ■

If we generalize the above theorem to the nth order of a Bézier curve we get the following theorem;
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Theorem 3.10. The area of the Bézier polygonal region for the third derivative of nth order of a Bézier curve
as a (n− 3)nd order Béziercurve with control points S0, S1, ..., Sn−3 is

A (S0, S1, ..., Sn−3) =
1

2

2∑
i=1

∥S0 ∧ (Si + Si+1)∥

Also using the control points P0, P1, P2, P3, P4, and P5 of 5th order BézierCurve

A (S0, S1, ..., Sn−3) =
(nP 3)

2

2

2∑
i=1

∥(−P0 + 3P1 − 3P2 + P3) ∧ (−2Pi−1 + 5Pi + 2Pi+2 + 5Pi+3 + Pi+4)∥ ,

where nP 3 = n(n− 1)(n− 2) is permutation.

Theorem 3.11. The length of the T0T1, of the fourth derivative of 5th order of a Bézier curve is a linear
Béziercurve, with control points T0, and T1 is

∥T0T1∥ = 5.4.3.2.1 ∥−P0 + 5P1 − 10P2 + 10P3 − 5P4 + P5∥

Proof. The fourth derivative of 5th order of a Bézier curve has the following representation.

α′v (t) =

[
t

1

]T [
−1 1

1 0

] [
T0

T1

]
where

T0 = 120P0 − 480P1 + 720P2 − 480P3 + 120P4

T1 = 120P1 − 480P2 + 720P3 − 480P4 + 120P5

are the control points of the fourth derivative of 5thorder of a Bézier curve based on the P0, P1, P2, ..., and
P5.

∥T0T1∥ =

∥∥∥∥ (120P1 − 480P2 + 720P3 − 480P4 + 120P5)

− (120P0 − 480P1 + 720P2 − 480P3 + 120P4)

∥∥∥∥
= ∥600P1 − 120P0 − 1200P2 + 1200P3 − 600P4 + 120P5∥
= 5.4.3.2.1 ∥−P0 + 5P1 − 10P2 + 10P3 − 5P4 + P5∥

■

Example 3.12. Let α (t) be a 5th order Bézier curve given by the following parametrization:

α (t) =

(
74t5 − 210t4 + 180t3 − 50t2 + 5t+ 1,

−79t5 + 185t4 − 130t3 + 10t2 + 10t+ 1,

−63t5 + 95t4 − 30t3 − 5t+ 2
)

with control points, P0 = (1, 1, 2) , P1 = (2, 3, 1) , P2 = (−2, 6, 0) , P3 = (7,−3,−4) , P4 = (5, 0, 5),
P5 = (0,−3,−1) .
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The area of the Bézier polygonal region containing the 5th order Bézier curve is

A (P0, P1, P2, P3, P4, P5)

=
1

2

4∑
i=1

∥P0 ∧ (Pi + Pi+1)∥

=
1

2
(∥P0 ∧ (0, 9, 1)∥+ ∥P0 ∧ (5, 3,−4)∥+ ∥P0 ∧ (12,−3, 1)∥+ ∥P0 ∧ (5,−3, 4)∥)

=
1

2

∥∥∥∥∥∥
∣∣∣∣∣∣
i j k

1 1 2

0 9 1

∣∣∣∣∣∣
∥∥∥∥∥∥+

∥∥∥∥∥∥
∣∣∣∣∣∣
i j k

1 1 2

5 3 −4

∣∣∣∣∣∣
∥∥∥∥∥∥+

∥∥∥∥∥∥
∣∣∣∣∣∣
i j k

1 1 2

12 −3 1

∣∣∣∣∣∣
∥∥∥∥∥∥+

∥∥∥∥∥∥
∣∣∣∣∣∣
i j k

1 1 2

5 −3 4

∣∣∣∣∣∣
∥∥∥∥∥∥

= 39. 531 unit square.

The area of the Bézier polygonal region containing the first derivative of 5th order of a Bézier curve is

A (Q0, Q1, Q2, Q3, Q4)

=
1

2
52

3∑
i=1

∥(P0 − P1) ∧ (Pi − Pi+2)∥

=
1

2
52 (∥(P0 − P1) ∧ (P1 − P3)∥+ ∥(P0 − P1) ∧ (P2 − P4)∥+ ∥(P0 − P1) ∧ (P3 − P5)∥)

=
1

2
52

(∥(−1 − 2 1) ∧ (P1 − P3)∥+ ∥(P0 − P1) ∧ (P2 − P4)∥
+ ∥(P0 − P1) ∧ (P3 − P5)∥)

=
1

2
25

∥∥∥∥∥∥
∣∣∣∣∣∣
i j k

−1 −2 1

−5 6 5

∣∣∣∣∣∣
∥∥∥∥∥∥+

∥∥∥∥∥∥
∣∣∣∣∣∣
i j k

−1 −2 1

−7 6 −5

∣∣∣∣∣∣
∥∥∥∥∥∥+

∥∥∥∥∥∥
∣∣∣∣∣∣
i j k

−1 −2 1

7 0 −3

∣∣∣∣∣∣
∥∥∥∥∥∥


=
1551. 0

2

= 775. 5 unit square

The area of the Bézier polygon that contains the second derivative of 5th order of a Bézier curve as a 3rd order
Béziercurve with control points R0, R1, R2, R3 is

A (R0, R1, R2, R3) =
1

2
202

2∑
i=1

∥(P0 − 2P1 + P2) ∧ (Pi − Pi+1 − Pi+2 + Pi+3)∥

=
1

2
202

(∥∥−5 1 0 ∧ (P1 − P2 − P3 + P4)
∥∥+

∥∥−5 1 0 ∧ (P2 − P3 − P4 + P5)
∥∥)

=
1

2
202

(∥∥−5 1 0 ∧
(
2 0 10

)∥∥+
∥∥−5 1 0 ∧

(
−14 6 −2

)∥∥)
=

1

2
202

∥∥∥∥∥∥
∣∣∣∣∣∣
i j k

−5 1 0

2 0 10

∣∣∣∣∣∣
∥∥∥∥∥∥+

∥∥∥∥∥∥
∣∣∣∣∣∣

i j k

−5 1 0

−14 6 −2

∣∣∣∣∣∣
∥∥∥∥∥∥

=
20431

2

= 10.216 unit square.

The area of the Bézier polygonal region containing the third derivative of 5th order of a Bézier curve using the
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The area of the Bézier polygonal region of the BézierCurve and derivatives in E3

control points P0, P1, P2, P3, P4, and P5 of 5th order Bézier Curve is

A (S0, S1, S2) =
1

2
602 ∥(−P0 + 3P1 − 3P2 + P3) ∧ (5P1 − 2P0 + 2P3 + 5P4 + P5)∥

=
1

2
.602

∥∥∥∥∥∥∥∥
(

−
(
1 1 2

)
+ 3

(
2 3 1

)
−3

(
−2 6 0

)
+
(
7 −3 −4

))
∧
(
5
(
2 3 1

)
− 2

(
1 1 2

)
+ 2

(
7 −3 −4

)
+5

(
5 0 5

)
+

(
0 −3 −1

) )
∥∥∥∥∥∥∥∥

=
1

2
602

∥∥( 18 −13 −3
)
∧
(
47 4 17

)∥∥
=

1

2
.602

∥∥∥∥∥∥
∣∣∣∣∣∣
i j k

18 −13 −3

47 4 17

∣∣∣∣∣∣
∥∥∥∥∥∥

= 5696. 0/2

= 2848.0 unit square
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