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Abstract
In this article, we study the existence of solutions for nonlinear conformable fractional differential equations with
nonlinear functional boundary conditions. We obtain the exact expression of the fractional Green’s function
related to the linear problem. Moreover, the method of upper and lower solutions together with Schauder’s fixed
point theorem is developed for the nonlinear conformable fractional problems with nonlinear functional boundary
conditions.
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1. Introduction
It is very well known that fractional differential equa-

tions plays an important role in describing many phenomena
and processes in various fields of science such as physics,
chemistry, control systems, aerodynamics or electrodynamics.
For examples and details the reader can see the references
[7, 8, 11–14, 17, 24–28, 33, 34]. Recently, a new fractional
derivative, called the conformable fractional derivative, was
introduced by Khalil et al. in [23]. For recent results on
conformable fractional derivatives we refer the reader to [1–
3, 5, 6, 15, 16, 19, 21–23]. Furthermore, in [3, 5, 6], the

authors proved the existence and uniqueness of solutions of
initial value problems and boundary value problems for con-
formable fractional differential equations. In [16], the authors
proved existence and uniqueness theorems for sequential lin-
ear conformable fractional differential equations. In [22], the
authors proved the existence of solutions of boundary value
problem involving conformable derivative by the method of
upper and lower solutions.

This paper is concerned with the study of the existence of
solutions for the nonlinear conformable fractional differential
equations with nonlinear functional boundary conditions:

x(α)(t) = f (t,x(t)), for a.e. t ∈ I = [0,b], b > 0, (1.1)

where 0 < α ≤ 1, f : I×R→ R is a L1
α -Carathéodory func-

tion, and x(α)(t) denotes the conformable fractional derivative
of x at t of order α . We consider, depending on the circum-
stances, nonlinear functional boundary conditions of the type

L1(x,x(b)) = 0 or L2(x(0),x) = 0,

with Li (i = 1,2) a continuous function that satisfies suit-
able monotonicity assumptions. For this purpose, we use the
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method of upper and lower solutions together with Schauder’s
fixed point theorem.

We point out that the method of lower and upper solutions
has been applied by several authors to obtain the existence
of solutions of initial value problems and boundary value
problems for fractional differential equations, see [20, 29, 30,
32, 35].

Motivated by the previously mentioned papers, this is
the first paper concerns the existence of solutions for the
conformable fractional differential equations with linear and
nonlinear functional boundary conditions. Existence results
for these problems are obtained with new comparison results
and new definitions of upper and lower solutions. For first
order ordinary differential equations with nonlinear boundary
conditions, we refer the reader to the papers [9, 18].

This paper is organized as follows. In Section 2, we
introduce the definition of conformable fractional calculus
and their important properties. In Section 3, we solve the
general linear problem with conformable fractional derivative.
We obtain the related Green’s function and prove a comparison
result. In Section 4, we prove the existence of solutions to
nonlinear conformable fractional differential equation (1.1)
coupled to nonlinear functional boundary conditions, some
examples are shown to illustrate the obtained results.

2. Preliminaries
In this section, we introduce the definition of conformable

fractional calculus and their important properties. The results
can be seen in [23] and references therein.

Definition 2.1. [23] Given a function f : [0,∞)→ R and a
real constant α ∈ (0,1]. The conformable fractional deriva-
tive of f of order α is defined by,

f (α)(t) := lim
ε→0

f (t + εt1−α)− f (t)
ε

(2.1)

for all t > 0.
If f (α)(t) exists and is finite, we say that f is α-differentiable

at t.
If f is α-differentiable in some interval (0,a), a > 0, and

limt→0+ f (α)(t) exists, then the conformable fractional deriva-
tive of f of order α at t = 0 is defined as

f (α)(0) = lim
t→0+

f (α)(t).

Theorem 2.2. [23] Let α ∈ (0,1] and f : [0,∞)→ R a α-
differentiable function at t0 > 0, then f is continuous at t0.

Theorem 2.3. [23] Let α ∈ (0,1] and assume f ,g to be α-
differentiable at a point t > 0. Then,

(i) (a f +bg)(α) = a f (α)+bg(α), for all a,b ∈ R;

(ii) ( f g)(α) = f g(α)+g f (α);

(iii) ( f/g)(α) =
g f (α)− f g(α)

g2 .

(iv) If, in addition, f is differentiable at a point t > 0, then

f (α)(t) = t1−α f ′(t).

Additionaly, conformable fractional derivatives of certain
functions as follow:

1. (t p)(α) = pt p−α , for all p ∈ R.

2. (λ )(α) = 0, for all λ ∈ R.

3. (ect)(α) = ct1−α ect , for all c ∈ R.

4. (e
p
α

tα

)(α) = pe
p
α

tα

, for all p ∈ R.

Remark 2.4. It is not difficult to verify the following asser-
tions:

(i) The function x : t 7→ e
p
α

tα

, p ∈R, is the unique solution
to the conformable fractional differential equation

x(α)(t) = px(t), t ∈ [0,∞), x(0) = 1.

(ii) If f is differentiable at t, then f is α-differentiable at t.

We introduce the following spaces:

C0(I) = { f : I→ R, is continuous on I with compact support in I }.

Cα (I) = { f : I→ R, is α-differentiable on I and f (α) ∈C(I)}.
Cα

0 (I) = { f ∈Cα (I) : f (0) = f (b) = 0}.
Cα

0,b(I) = { f ∈Cα (I) : f (0) = f (b)}.

Definition 2.5. [23] Let α ∈ (0,1] and f : [0,∞)→ R. The
conformable fractional integral of f of order α from 0 to t,
denoted by Iα( f )(t), is defined by

Iα( f )(t) := I1(tα−1 f )(t) =
∫ t

0
f (s)dα s :=

∫ t

0
f (s)sα−1ds.

The considered integral is the usual improper Riemann one.

Theorem 2.6. [23] If f is a continuous function in the domain
of Iα then, for all t ≥ 0 we have

(Iα( f ))(α) (t) = f (t).

Lemma 2.7. [1, 23] Let f : (0,b)→ R be differentiable and
0 < α ≤ 1. Then, for all t > 0 we have

Iα( f (α))(t) = f (t)− f (0). (2.2)

Next, we develop the fractional Sobolev’s spaces via con-
formable fractional calculus and their important properties.
The basic definitions and relations based on [31](If T is a real
interval [0,∞)) are given:

Definition 2.8. Let B⊂ I. B is called null set if the measure
of B is zero. Say that a property P holds almost everywhere
(a.e.) on B if there is a null set E0 ⊂ B such that P holds for
all t ∈ B\E0.
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Definition 2.9. Let A a Lebesgue measurable subset of I. We
say that function f : I→ R, is a function α-integrable on A if
and only if tα−1 f (t) is Lebesgue integrable on A. In such a
case, we denote∫

A
f (t)dα t =

∫
A

tα−1 f (t)dt.

Definition 2.10. Let E ⊂ I be a Lebesgue measurable set and
let p ∈ R be such that p≥ 1 and let ϕ : E→ R be a measur-
able function. We say that ϕ belongs to Lp

α (E) provided that
either ∫

E
|ϕ(s)|p dα s =

∫
E
|ϕ(s)|p sα−1ds <+∞ i f p ∈ R,

or there exists a constant C ∈ R such that

|ϕ(s)|<C a.e. on E i f p =+∞.

Theorem 2.11. [31] Let p ∈ R be such that p≥ 1. Then the
set Lp

α (I) is a Banach space together with the norm defined
for ϕ ∈ Lp

α (I) as

‖ϕ‖Lp
α (I)

:=

(
∫

I |ϕ(t)|pdα t)
1
p , p ∈ R,

inf{C ∈ R : |ϕ(s)|<C a.e. on I}, p =+∞.

Remark 2.12. It is not difficult to verify the following asser-
tions for all α ∈ (0,1]:

(i) L1
α(I)⊂ L1(I).

(ii) For t ∈ I, t > 0 and ϕ : I→R, it is satisfied that ϕ(α) ∈
L1

α(I) if and only if ϕ ′ ∈ L1(I).

Theorem 2.13. [31] Let α ∈ (0,1] and f : I → R an abso-
lutely continuous function on I, then f is conformable frac-
tional differentiable of order α a.e. on I, and the following
equality holds:

f (t) = f (0)+
∫
[a,t]

f (α)(s)dα s f or all t ∈ I.

Definition 2.14. Let α ∈ (0,1], p ∈R be such that p≥ 1 and
u : I→R. One says that u ∈W α,p

0,b (I) if and only if u ∈ Lp
α (I),

there exists g : I→ R such that g ∈ Lp
α (I) and

∫
I
u(t)φ (α)(t)dα t =−

∫
I
g(t)φ(t)dα t, for all φ ∈Cα

0,b(I).

(2.3)

Theorem 2.15. [31] Assume that u ∈W α,p
0,b (I) for some p ∈

R, with p ≥ 1, and that equality (2.3) holds for some g ∈
Lp

α (I). Then, there exists a unique function x ∈V α,p
0,b (I) such

that
x = u, x(α) = g a.e. on [0,b].

For p ∈ R, p≥ 1, we denote

V α,p
0,b (I) = {u ∈ AC(I) : u(α) ∈ Lp

α (I) ,u(0) = u(b)}.

It is clear that for all α ∈ (0,1] and p ∈R, p≥ 1, we have
that V α,p

0,b (I)⊂W α,p
0,b (I) .

Theorem 2.16. [31] Let p ∈ R be such that p≥ 1. Then the
set W α,p

0,b (I) is a Banach space together with the norm defined
as

‖ϕ‖W α,p
0,b (I) :=

(∫
I
|ϕ(t)|pdα t +

∫
I
|ϕ(α)(t)|pdα t

) 1
p
,

for every ϕ ∈W α,p
0,b (I) .

We now define a notion of L1
α -Carathéodory function.

Definition 2.17. A function f : I×R→ R is called a L1
α -

Carathéodory function if the three following conditions hold:

(i) for every x ∈ R, the function t 7→ f (t,x) is Lebesgue
measurable;

(ii) the function x 7→ f (t,x) is continuous almost every t ∈ I;

(iii) for every r > 0, there exists a function hr ∈ L1
α(I) such

that | f (t,x)| ≤ hr(t) for almost every t ∈ I and all x∈R
such that |x| ≤ r.

3. Green’s Functions and Comparison
Results

In this section, we study the expression of the solutions of
a linear conformable fractional differential equation of order
α ∈ (0,1] coupled to two-point linear conditions. This study
is mainly devoted to obtain the expression of the fractional
Green’s function related to the considered problem. Once we
have such expression, we derive comparison results for the
considered problems.

To be concise, we look for x ∈W α,1
0,b (I), the solution of

the following linear problem:

x(α)(t)+ p(t)x(t)= g(t), a.e. t ∈ I, a0 x(0)−b0 x(b)= λ0,

(3.1)

with p, g ∈ L1
α(I), and a0,b0,λ0 ∈ R.

Theorem 3.1. If a0 6= b0 e−
∫ b

0 p(r)dα r, then problem (3.1) has
a unique solution x ∈W α,1

0,b (I), and it is given by the following
expression:

x(t) :=
∫ b

0
G(t,s)g(s)dα s+

λ0 e−
∫ t

0 p(r)dα r

a0−b0 e−
∫ b

0 p(r)dα r
, (3.2)

where

G(t,s)=
e−

∫ t
s p(r)dα r

a0−b0 e−
∫ b

0 p(r)dα r

a0, 0≤ s≤ t ≤ b,

b0 e−
∫ b

0 p(r)dα r,0≤ t < s≤ b.

(3.3)
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Proof. Let x be a solution of problem (3.1). Since x∈W α,1
0,b (I),

from Remark 2.12, we have that x is differentiable a.e. on I.
Thus, Theorem 2.3 (iv), ensures that, it is a solution of the
following singular differential equation:

t1−α x′(t)+ p(t)x(t)= g(t), a.e. t ∈ I, a0 x(0)−b0 x(b)= λ0,

or, which is the same,

x′(t)+tα−1 p(t)x(t)= tα−1 g(t),a.e. t ∈ I, a0 x(0)−b0 x(b)= λ0.

(3.4)

Now, by using that p, g ∈ L1
α(I), we have that, for a.e.

t ∈ I,

d
dt

(
x(t)e

∫ t
0 p(r)dα r

)
= e

∫ t
0 p(r)dα r (x′(t)+ tα−1 p(t)x(t)

)
= e

∫ t
0 p(r)dα rtα−1 g(t).

Thus, by direct integration, we have that

x(t)= e−
∫ t

0 p(r)dα rx(0)+
∫ t

0
e−

∫ t
s p(r)dα rg(s)dα s for all t ∈ I.

(3.5)

If follows from (3.5) and the boundary condition in (3.1)
that

x(0) =
b0

a0−b0 e−
∫ b

0 p(r)dα r

∫ b

0
e−

∫ b
s p(r)dα rg(s)dα s (3.6)

+
λ0

a0−b0 e−
∫ b

0 p(r)dα r
.

Now, by substituting (3.6) into (3.5), we arrive to

x(t) =
b0 e−

∫ t
0 p(r)dα r

a0−b0 e−
∫ b

0 p(r)dα r

∫ t

0
e−

∫ b
s p(r)dα rg(s)dα s

+
∫ t

0
e−

∫ t
s p(r)dα rg(s)dα s

+
b0 e−

∫ t
0 p(r)dα r

a0−b0 e−
∫ b

0 p(r)dα r

∫ b

t
e−

∫ b
s p(r)dα rg(s)dα s

+
λ0 e−

∫ t
0 p(r)dα r

a0−b0 e−
∫ b

0 p(r)dα r

=
e−

∫ t
s p(r)dα r

a0−b0 e−
∫ b

0 p(r)dα r

(
a0

∫ t

0
g(s)dα s

+b0

∫ b

t
e−

∫ b
0 p(r)dα r g(s)dα s

)
+

λ0 e−
∫ t

0 p(r)dα r

a0−b0 e−
∫ b

0 p(r)dα r
=
∫ b

0
G(t,s)g(s)dα s

+
λ0 e−

∫ t
0 p(r)dα r

a0−b0 e−
∫ b

0 p(r)dα r
.

As a direct consequence, we deduce the following result:

Lemma 3.2. The fractional Green’s function G, related to
the linear problem (3.1), and given by the expression (3.3),
satisfies the following properties for every p ∈ L1

α(I):

(i) G > 0 on I× I if and only if

a0

a0−b0 e−
∫ b

0 p(r)dα r
> 0 and

b0

a0−b0 e−
∫ b

0 p(r)dα r
> 0.

(3.7)

(ii) G < 0 on I× I if and only if

a0

a0−b0 e−
∫ b

0 p(r)dα r
< 0 and

b0

a0−b0 e−
∫ b

0 p(r)dα r
< 0.

(3.8)

As a direct consequence of previous result, we deduce the
following expressions for the particular cases of the initial,
terminal and periodic problems.

Corollary 3.3. The initial problemx(α)(t)+ p(t)x(t) = g(t), f or a.e. t ∈ I,

x(0) = x0,
(3.9)

with p, g ∈ L1
α(I), has a unique solution x ∈W α,1

0,b (I), and it
is given by the following expression

x(t) :=
∫ b

0
GI(t,s)g(s)dα s+ x0 e−

∫ t
0 p(r)dα r, (3.10)

where

GI(t,s) = e−
∫ t

s p(r)dα r

1, 0≤ s≤ t ≤ b,

0, 0≤ t < s≤ b.
(3.11)

Corollary 3.4. The terminal problemx(α)(t)+ p(t)x(t) = g(t), f or a.e. t ∈ I,

x(b) = x0,
(3.12)

with p, g ∈ L1
α(I), has a unique solution x ∈W α,1

0,b (I), and it
is given by the following expression

x(t) :=
∫ b

0
GT (t,s)g(s)dα s+ x0 e−

∫ b
t p(r)dα r, (3.13)

where

GT (t,s) =−e−
∫ t

s p(r)dα r

0, 0≤ s≤ t ≤ b,

1, 0≤ t < s≤ b.
(3.14)
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From expressions (3.10) and (3.13), it is obvious that
GI ≥ 0 and GT ≤ 0 on I× I. Thus, as a direct consequence
of expressions (3.11) and (3.14), we deduce the following
comparison result:

Lemma 3.5. Let x ∈W α,1
0,b (I), then the following comparison

principles hold for every p ∈ L1
α(I):

(i) If x(α)(t)+ p(t)x(t) ≥ 0 a.e. t ∈ I and x(0) ≥ 0 then
x≥ 0 on I.

(ii) If x(α)(t)+ p(t)x(t) ≥ 0 a.e. t ∈ I and x(b) ≤ 0 then
x≤ 0 on I.

Concerning the non homogeneous periodic problem, which
follows directly by the choice of a0 = b0 = 1, as a corollary
of Theorem 3.1, we deduce the following result.

Corollary 3.6. The non homogeneous periodic problemx(α)(t)+ p(t)x(t) = g(t), for a.e. t ∈ I,

x(0)− x(b) = λ0,
(3.15)

with p, g ∈ L1
α(I), has a unique solution x ∈W α,1

0,b (I), and it
is given by the following expression

x(t) :=
∫ b

0
GP(t,s)g(s)dα s+λ0

e−
∫ t

0 p(r)dα r

1− e−
∫ b

0 p(r)dα r
, (3.16)

where

GP(t,s)=
e−

∫ t
s p(r)dα r

1− e−
∫ b

0 p(r)dα r

1, 0≤ s≤ t ≤ b,

e−
∫ b

0 p(r)dα r, 0≤ t < s≤ b.

(3.17)

As a consequence, it is immediate to verify, from expres-
sion (3.17), that the periodic problem has a unique solution if
and only if∫ b

0
p(r)dα r 6= 0.

Moreover the fractional Green’s function GP has the same
sign of the previous integral, i.e.,

Corollary 3.7. Let p ∈ L1
α(I), then the following properties

hold:

(i) GP > 0 on I× I if and only if
∫ b

0 p(r)dα r > 0.

(ii) GP < 0 on I× I if and only if
∫ b

0 p(r)dα r < 0.

As a direct consequence of previous result and equality
(3.16), denoting y� 0 on I as y≥ 0 and y 6≡ 0 on I, we deduce
the following comparison result.

Corollary 3.8. Let x ∈W α,1
0,b (I) be such that

x(α)(t)+ p(t)x(t)� 0 on I; and x(0)≥ x(b).

Then the following comparison principles are fulfilled:

(i) If
∫ b

0 p(r)dα r > 0 then x > 0 on I.

(ii) If
∫ b

0 p(r)dα r < 0 then x < 0 on I.

4. Nonlinear Functional Boundary
Conditions

In this section, we prove the existence of solutions of the
nonlinear conformable fractional differential equation (1.1)
coupled to nonlinear functional boundary conditions. In par-
ticular, we will consider the two following kind of functional
boundary conditions:

L1(x,x(b)) = 0 (4.1)

and

L2(x(0),x) = 0. (4.2)

Here L1 : C(I)×R→R and L2 : R×C(I)→R are contin-
uous functions that satisfy suitable monotonicity assumptions.

The used tool will be the well known method of upper
and lower solutions. A solution of these problems will be
a function x ∈W α,1

0,b (I) that satisfies equation (1.1) a.e. on
I coupled to the corresponding boundary conditions (either
(4.1) or (4.2) in each case).

First, we consider the problem (1.1), (4.1). To this end, we
introduce the following definition of lower and upper solution
related to such problem.

Definition 4.1. Let γ ∈W α,1
0,b (I). We say that γ is a lower

solution of the boundary value problem (1.1), (4.1) if

(i) γ(α)(t)≥ f (t,γ(t)), a.e. t ∈ I;

(ii) L1(γ,γ(b))≥ 0.

Let δ ∈W α,1
0,b (I). We say that δ is an upper solution of the

boundary value problem (1.1), (4.1) if

(i) δ (α)(t)≤ f (t,δ (t)), a.e. t ∈ I;

(ii) L1(δ ,δ (b))≤ 0.

In order to obtain existence and location results for the
considered nonlinear problems, we define the sector

[γ,δ ] = {x ∈C(I) : γ(t)≤ x(t)≤ δ (t), for all t ∈ I}.

Now we give the main result on the existence of solutions
for the nonlinear problem (1.1), (4.1). The proof is on the
basis on the one given in [9, Theorem 3.1] for two-point
nonlinear boundary conditions.
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Theorem 4.2. If there exist γ and δ in W α,1
0,b (I), γ ≤ δ in I, a

pair of well ordered lower and upper solutions respectively
for problem (1.1), (4.1), with L1 a continuous function in
[γ,δ ]× [γ(b),δ (b)] and nondecreasing in the first variable
on [γ,δ ], then problem (1.1), (4.1) has at least one solution
x ∈ [γ,δ ].

Proof. We consider the following modified problem:x(α)(t) = f (t,τ(t,x(t))), f or a.e. t ∈ I,

x(b) = τ(b,x(b)+L1(τ(·,x(·)),τ(b,x(b)))),
(4.3)

where τ is the truncated function, defined for any x ∈C(I), as
follows:

τ(t,x(t)) = max
{

γ(t), min{x(t),δ (t)}
}
, for all t ∈ I.

By the definition of function τ , it is obvious that γ(b)≤ x(b)≤
δ (b).

Suppose now that x(0) < γ(0). From the continuity of
both functions we know that there exists t0 ∈ (0,b] such that
γ(t0) = x(t0) with γ > x on [0, t0). In this case, due to the
linearity of the conformable α-derivative and the definition of
the truncated function τ , we have that

(γ− x)(α)(t)≥ 0, a.e. t ∈ [0, t0], (γ− x)(t0) = 0.

So, Lemma 3.5 (ii) implies that x ≥ γ on [0, t0], and we
arrive to a contradiction.

Analogously, we can prove that x(0)≤ δ (0).
If there exists c ∈ (0,b) with x(c)< γ(c), then there exists

a subinterval (t1, t2) ⊂ (0,b), such that (γ − x)(t1) = (γ −
x)(t2) = 0, with γ > x on (t1, t2).

But, arguing as before, we deduce that

(γ− x)(α)(t)≥ 0, a.e. t ∈ [t1, t2].

Now, using Lemma 3.5, (ii) again, we deduce that γ ≤ x
on [t1, t2] and we attain a contradiction.

A similar argument is valid to show that x≤ δ on I.
Therefore, every solution x of problem (4.3) belongs to

the sector [γ,δ ]. Let’s see now that it satisfies the functional
boundary condition (4.1).

Clearly, if x(b)+L1(τ(·,x(·)),τ(b,x(b)))< γ(b), we ob-
tain that x(b) = γ(b) and, in consequence, γ(b) > x(b) +
L1(τ(·,x(·)),γ(b)).

The nondecreasing character of L1 with respect to the first
variable on the sector [γ,δ ], and the definition of function τ ,
allow us to arrive at the following contradiction

γ(b)> x(b)+L1(γ,γ(b))≥ x(b) = γ(b).

Analogously, we can verify that

x(b)+L1(τ(·,x(·)),τ(b,x(b)))≤ δ (b),

and, as consequence, every solution x of the truncated prob-
lem (4.3) is a solution of (1.1), (4.1).

Now, to finalize the proof, we must ensure that the trun-
cated problem (4.3) has a solution.

To this end, let us define the operator F : C(I)→C(I) as
follows:

(F x)(t) =−
∫ b

t

(
f (s,τ(s,x(s)))

)
dα s

+ τ(b,x(b)+L1(τ(·,x(·)),τ(b,x(b)))).

First, notice that the solutions of problem (4.3) coincide
with the fixed points of the operator F . This property holds
from equation (3.13) and the expression of the fractional
Green’s function GT , related to the terminal problem (3.12),
with p≡ 0, which is given in (3.14).

In order to ensure that operator F has a fixed point, we
will prove that it is compact.
We first observe that, from Definition 2.17 of a L1

α -Carathéodory
function and the definition of τ , function f (·,τ(·,x(·))) is
Lebesgue measurable on I for any continuous function x [4,
Theorem 1.1], and there exists h ∈ L1

α(I) such that

| f (t,τ(t,x(t)))| ≤ h(t), for a.e. t ∈ I and all x ∈C(I).

The continuity of operator F follows from the continuous
dependence with respect to x of function f , the definition of τ

and the Lebesgue’s Dominated convergence Theorem.
To see that F (C(I)) is a relatively compact set on C(I),

consider x ∈C(I). Therefore

|F (x)(t)| ≤ ‖h‖L1
α (I)

+max{|γ(b)|, |δ (b)|}, for all t ∈ I,

and, as a consequence, F (C(I)) is uniformly bounded on
C(I).

This set is also equicontinuous since for every t1 < t2 ∈ I,

|F (x)(t2)−F (x)(t1)| ≤
∫ t2

t1
|h(s)|dα s.

By Arzelà-Ascoli Theorem, we conclude that the set
F (C(I)) is relatively compact in C(I). Hence, F is com-
pact.

As a consequence, the Schauder fixed-point Theorem en-
sures that operator F has a fixed point.

From previous arguments, we conclude that such fixed
point is a solution of problem (1.1), (4.1), and lies on [γ,δ ].

Concerning the problem (1.1), (4.2), we introduce the
following definition of lower and upper solution related to
such problem.

Definition 4.3. Let γ ∈W α,1
0,b (I). We say that γ is a lower

solution of the boundary value problem (1.1), (4.2) if

(i) γ(α)(t)≥ f (t,γ(t)), a.e. t ∈ I;

(ii) L2(γ(0),γ)≥ 0.

Let δ ∈W α,1
0,b (I). We say that δ is an upper solution of the

boundary value problem (1.1), (4.2) if
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(i) δ (α)(t)≤ f (t,δ (t)), a.e. t ∈ I;

(ii) L2(δ (0),δ )≤ 0.

Analogously to Theorem 4.2, one can prove the following
result.

Theorem 4.4. If there exist γ and δ in W α,1
0,b (I), a pair of

reversed ordered lower and upper solutions respectively for
problem (1.1), (4.2), such that γ ≥ δ on I, and L2 is a con-
tinuous function in [δ (0),γ(0)]× [δ ,γ], nonincreasing in the
second variable on [δ ,γ], then problem (1.1), (4.2), has at
least one solution x ∈ [δ ,γ].

Proof. The proof follows the same steps as Theorem 4.2. In
this case, we consider the following modified problemx(α)(t) = f (t,τ(t,x(t))), f or a.e. t ∈ I,

x(0) = τ(0,x(0)−L2(τ(0,x(0)),τ(·,x(·)))),
(4.4)

where, for any x ∈C(I), the function τ is defined as

τ(t,x(t)) = max
{

δ (t), min{x(t),γ(t)}
}
.

In the particular case in which the boundary conditions
are defined only at the extremes of the interval, we can deduce
as a direct corollary, the following result.

Corollary 4.5. Assume that there exist γ and δ ∈W α,1
0,b (I), a

pair of well ordered lower and upper solutions (either γ ≥ δ

or γ ≤ δ ) for problem

x(α)(t) = f (t,x(t)), for a.e. t ∈ I, L(x(0),x(b)) = 0,

with L a continuous function nondecreasing in the first vari-
able and nonincreasing in the second one on its domain of defi-
nition. Then this problem has at least one solution x∈W α,1

0,b (I)
lying between γ and δ .

We note that previous result can be automatically applied
to the linear boundary conditions L(x,y) = a0x− b0y− λ0,
with a0, b0 and λ0 ∈ R, a0,b0 ≥ 0 and a0 + b0 > 0, which
includes the periodic case (a0 = b0 = 1,λ0 = 0) and the initial
and terminal problems.

5. Examples
In this section, we present three examples where we apply

Theorems 4.2 and 4.4 to some particular cases.

Example 5.1. Consider the linear boundary value problem:

x(
1
3 )(t)=

x2(t)
2
−t(1−t), a.e. t ∈ [0,1], x(1)=

√
|x(1/2)|.

(5.1)

This problem is a particular case of (1.1), (4.1), with α = 1
3 ,

f (t,x) = x2/2− t (1− t) and

L1(x,y) =
√
|x(1/2)|− y.

Obviously, function f is a L1
1/3-Carathéodory function,

and δ (t) = 2, γ(t) = 0 are upper and lower solutions of the
boundary-value problem (5.1), respectively with γ(t)≤ δ (t)
for t ∈ [0,1]. To see this, it is enough to verify the following
inequalities

δ
( 1

3 )(t)= 0≤ f (t,δ (t))= 2−t(1−t),
√
|δ (1/2)|−δ (1)≤ 0,

and

γ
( 1

3 )(t) = 0≥ f (t,γ(t)) =−t(1−t),
√
|γ(1/2)|−γ(1) = 0.

By Theorem 4.2, problem (5.1) has a least one solution

x ∈W
1
3 ,1

0,1 ([0,1]), such that 0≤ x(t)≤ 2, for all t ∈ [0,1].

Example 5.2. Consider the nonlinear boundary value prob-
lem with functional boundary conditions:x(

1
2 )(t) = t et sin2(x(t)) a.e. t ∈ [0,2],

x(0)− sin2(x(0)) = 1
3 maxt∈[0,1] {x(t)}.

(5.2)

This problem is a particular case of (1.1), (4.2), with α = 1
2 ,

f (t,x) = t et sin2(x) and

L2(x,y) = x− sin2(x)− 1
3

max
t∈[0,1]

{y(t)}.

It is clear that f is a L1
1/2-Carathéodory function, L2 is a

continuous function in (x,y) ∈ [δ (0),γ(0)]× [δ ,γ], and non-
increasing in y ∈ [δ ,γ], with δ (t) = 0≤ γ(t) = et+1 f or t ∈
[0,2].

The fact that δ and γ are upper and lower solutions of
problem (5.2) follows from the fact that

δ
( 1

2 )(t) = 0≤ f (t,δ (t)) = t, t ∈ [0,2],

δ (0)− sin2(δ (0))− 1
3

max
t∈[0,1]

{δ (t)}= 0

and

γ
( 1

2 )(t) =
√

tet+1 ≥ f (t,γ(t)) = t et sin2(et+1), t ∈ [0,2],

γ(0)− sin2(γ(0))− 1
3

max
t∈[0,1]

{γ(t)} ≥ 0.

Theorem 4.4, implies that problem (5.2) has a least one so-

lution x ∈ W
1
2 ,1

0,1 ([0,2]), such that 0 ≤ x(t) ≤ et+1, for all
t ∈ [0,2].
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Example 5.3. Consider the nonlinear boundary value prob-
lem with functional boundary conditions:

x′(t) =
x3(t)+1−2t√

t
a.e. t ∈ [0,1],

x(1)− cos(π

2 x(1)) =
∫ 1

1
2

x(s)ds.

(5.3)

This problem is a particular case of (1.1), (4.1), with α = 1,

f (t,x) =
x3 +1−2t√

t
and

L1(x,y) =
∫ 1

1
2

x(s)ds− y+ cos(
π

2
y).

It is clear that f is a L1-Carathéodory function, L1 is a
continuous function in (x,y)∈ [γ,δ ]× [γ(1),δ (1)], and nonde-
creasing in x∈ [γ,δ ], with γ(t) =−1≤ δ (t) = 1 f or t ∈ [0,1].

The fact that γ and δ are lower and upper solutions of
problem (5.3) follows from the fact that

γ
′(t) = 0≥ f (t,γ(t)) =−2

√
t, t ∈ [0,1],∫ 1

1
2

γ(s)ds− γ(1)+ cos(
π

2
γ(1))≥ 0

and

δ
′(t) = 0≤ f (t,δ (t)) =

2(1− t)√
t

, t ∈ [0,1],

∫ 1

1
2

δ (s)ds−δ (1)+ cos(
π

2
δ (1))≤ 0.

Theorem 4.2, implies that problem (5.3) has a least one solu-
tion x∈W 1,1

0,1 ([0,1]), such that−1≤ x(t)≤ 1, for all t ∈ [0,1].

Acknowledgements
Second author partially supported by XUNTA De Galicia

(Spain), project EM2014/032 and AIE Spain and FEDER,
GRANT MTM2016-75140-P.

References
[1] T. Abdeljawad, On conformable fractional calculus, J.

Comput. Appl. Math. 279 (2015), 57–66.
[2] T. Abdeljawad, M. AlHorani and R. Khalil, Conformable

fractional semigroups of operators, J. Semig. Theory.
Appl. 2015 (2015), 9 pages.

[3] D.R. Anderson and R.I. Avery, Fractional-order bound-
ary value problem with Sturm-Liouville boundary con-
ditions, Electr. J. Differ. Equ. 2015 (2015), no. 29, 10
pages.

[4] J. Appell, P. P. Zabrejko, Nonlinear superposition opera-
tors. Cambridge Tracts in Mathematics, 95. Cambridge
University Press, Cambridge, 1990. viii+311 pp.

[5] H. Batarfi, J. Losada, J.J. Nieto and W. Shammakh, Three-
Point Boundary Value Problems for Conformable Frac-
tional Differential Equations, J. Funct. Spaces. 2015
(2015), 6 pages.

[6] B. Bayour and D.F.M. Torres, Existence of solution to a
local fractional nonlinear differential equation, J. Com-
put. Appl. Math. 312(2016), 127-133.

[7] M.Benchohra, A. Cabada and D. Seba, An existence result
for nonlinear fractional differential equations on Banach
spaces, Bound. Value. Probl. 2009, 11 pages.

[8] P. L. Butzer and U. Westphal, An access to fractional
differentiation via fractional difference quotients, in Frac-
tional calculus and its applications (Proc. Internat. Conf.,
Univ. New Haven, West Haven, Conn., 1974), 116–145.
Lecture Notes in Math., 457, Springer, Berlin, 1975.

[9] A. Cabada, The monotone method for first-order problems
with linear and nonlinear boundary conditions, Appl.
Math. Comput. 63 (1994), 163–188.

[10] A. Cabada, Green’s Functions in the Theory of Ordinary
Differential Equations, Springer Briefs Math., Springer,
New York, 2014.

[11] A. Cabada and Z. Hamdi, Nonlinear fractional differen-
tial equations with integral boundary value conditions,
Appl. Math. Comput. 228 (2014), 251-257.

[12] A. Cabada and Z. Hamdi, Multiplicity results for integral
boundary value problems of fractional order with para-
metric dependence, Fract. Calc. Appl. Anal. 18 (2015),
no. 1, 223–237.

[13] A. Cabada and Z. Hamdi, Existence results for nonlinear
fractional Dirichlet problems on the right side of the first
eigenvalue, Georgian Math. J. 24(2017), Issue 1, 41-53.

[14] A. Cabada and G. Wang, Positive solutions of nonlinear
fractional differential equations with integral boundary
value conditions, J. Math. Anal. Appl. 389(2012), Issue
1, 403-411.

[15] W. S. Chung, Fractional Newton mechanics with con-
formable fractional derivative, J. Comput. Appl. Math.
290 (2015), 150–158.
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