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Abstract

In this disquisition, the concepts of .%-fuzzy-minimal-open, .#-fuzzy-minimal-closed, .#-fuzzy-maximal-open,
&#-fuzzy-maximal-closed semirings are instigated. Moreover, the ideas of .#-fuzzy-semiring-minimal-regular,.#-
fuzzy-semiring-minimal-o-regular, .#-fuzzy-semiring-minimal-normal spaces and .#-fuzzy-semiring-minimal-c-

normal spaces are introduced and examined.
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1. Introduction

Numerous articles on minimal and maximal open and closed
sets in classical topology is found in literature due to F. Nakoaka
and N. Oda in [5], [6] and [7]. Later B.M. Ittanagi and R.S.
Wali [3] extended such sets to fuzzy topological spaces. There-
after, S. S. Benchalli, B. M. Ittanagi and R. S. Wali [2] pro-
pounded the notions of minimal 7j, minimal c-regular and
minimal completely regular spaces. The perception of min-
imal c-normal spaces was pioneered in [1]. In this paper,
some of the applications of .¥’-fuzzy minimal open semirings
like .-fuzzy-semiring-minimal-regular, .¥’-fuzzy-semiring-
minimal-o-regular .”-fuzzy-semiring-minimal normal and
7 -fuzzy-semiring-minimal-c-normal spaces are initiated and
their properties are analysed.

2. Preliminaries

Definition 2.1. [4] Let S be a .’-semiring. A family . of .7~
fuzzy semirings on S is termed Smarandache fuzzy semiring
structure (briefly .7.% . -structure) on § if it satisfies the
following conditions:

@) 0s, 15 € .7,
(i) IfA, A €. ¥ thenA A A €7,
(iii) If A; € ¥ foreachi € J, then VA; € ..

And the ordered pair (S, .7) is termed ..% . -structure space.
Every member of .7 is termed .-fuzzy-open-semiring and
the complement of a .’-fuzzy-open-semiring is called an anti-
. -fuzzy-open-semiring (or a .’-fuzzy-closed-semiring).

The collections of all .%’-fuzzy-open-semirings and .-
fuzzy-closed-semirings in (S, .%’) are symbolised by ./ % 0.
(S) and ¥ F € .7 (S) respectively.

Definition 2.2. [4] Let (S, .¥) be a . % .7 -structure space.
Let A € IS. Then the ..% .7 -interior of A is defined and sym-
bolised as &/ F S -int(A) =V{p: u<Aandu € S 70
(8)}-

Definition 2.3. [4] Let (S, .¥) be a .%¥.% . -structure space.
Let A € IS. Then the .%.% .7 ~closure of A is defined and sym-
bolised as S F .S -cl(A)=N{p: u>Aand p € S FE€

(S)}-
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Definition 2.4. [4] Let S be a .-semiring. If a .¥-fuzzy
semiring on S is a fuzzy point x,, then x; is termed .-fuzzy
semiring point on S.

The collection of all .”’-fuzzy semiring points on S is
denoted by SFSP(S).

Definition 2.5. [9] If A and B are any two fuzzy subsets of a
set X, then “A is said to be included in B” or “A is contained
in B” or “A is less then or equal to B” iff A(x) < B(x) for
all x in X and is denoted by A < B. Equivalently, A < B iff
ta(x) < up(X) for all x in X.

Definition 2.6. [3] A nonzero fuzzy open set A (# 1) of a
fuzzy topological space (X, T) is said to be a fuzzy minimal
open (briefly f-minimal open) set if any fuzzy open set which
is contained in A is either O or A.

Definition 2.7. [3] A nonzero fuzzy closed set B (# 1) of a
fuzzy topological space (X, T) is said to be a fuzzy minimal
closed (briefly f-minimal closed) set if any fuzzy closed set
which is contained in B is either O or B.

Definition 2.8. [3] A nonzero fuzzy open set A (# 1) of a
fuzzy topological space (X, T) is said to be a fuzzy maximal
open (briefly f-maximal open) set if any fuzzy open set which
contains A is either 1 or A.

Definition 2.9. [3] A nonzero fuzzy closed set B (% 1) of a
fuzzy topological space (X, T) is said to be a fuzzy maximal
closed (briefly f-maximal closed) set if any fuzzy closed set
which contains B is either 1 or B.

3. #-Fuzzy-Semiring-Minimal-o-Regular
Spaces

In this section, the perception of ..%.%-min-o-
r spaces is pioneered and some attributes concerning this
concept is explored.

Definition 3.1. Let (S}, 1) and (S3, .%%) be any two ./ F .-
structure spaces. A function f : (S1, ¥1) — (52, ¥2) is said
to be ..F . -structure continuous (simply .¥-continuous) if
foreach A € S FO.7(S,) (resp. S FE€.S(5,)), f1(A) €
S FOSL(S)) (resp. .S FE.S(S1)).

Definition 3.2. Let (S, ) and (S3, .¥%) be any two .. F .-
structure spaces. A function f : (S, 1) — (S2, 2) is termed
S F . -structure-open (resp. . F .7 -structure-closed) if
fA) € SFOF(S,) (resp. S FEL(S,) ) for every A €
S FOS(S)) (tesp. S FE€S(S1)) .

Definition 3.3. A proper .-fuzzy-open-semiring A of a
S F . -structure space (S, ) is termed .-fuzzy-minimal-
open (briefly .”.% -minimal-open)-semiring if any .’-fuzzy-
open-semiring which is contained in A is either Og or A.

Definition 3.4. A proper ./-fuzzy-closed-semiring u of a
S F . -structure space (S, %) is termed .¥-fuzzy-minimal-
closed (briefly .. % -minimal-closed)-semiring if any . -fuzzy-
closed-semiring which is contained in u is either Og or u.
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The family of all .’-fuzzy-minimal-open (resp. .7-fuzzy-
minimal-closed) semirings in (§,.%) is denoted by SFM;O(S)
(resp. SFM;C(S)).

Definition 3.5. A proper .#-fuzzy-open-semiring A of a
S F S -structure space (S,.7) is termed .”-fuzzy-maximal-
open (briefly . % -maximal-open)-semiring if any .7-fuzzy-
open-semiring which contains A is either 15 or A.

Definition 3.6. A proper .-fuzzy-closed-semiring p of a
S F S -structure space (S,.7) is termed .7-fuzzy-maximal-
closed (briefly .#.%-maximal-closed)-semiring if any .7-
fuzzy-closed-semiring which contains y is either 15 or .

The family of all .’-fuzzy-maximal-open (resp. .¥-fuzzy-
maximal-closed) semirings in (S,.7) is denoted by SFM,O(S)
(resp. SFM,C(S)).

Definition 3.7. A .7.%.7-structure space (S,.7) is termed
. -fuzzy-semiring-minimal-regular (in short .. % . -min-r)
if for every x), € SFSP(S) and p € SFM;C(S) such that x; ¢
U, there exist y,0 € SFM;O(S) such that x; <7y, u < and

Yqo.

Definition 3.8. A .. #.7-structure space (S,.7) is termed
. -fuzzy-semiring-minimal-o-regular (in short . .% .% -min-
o-r) if for every x; € SFSP(S) and p € ./ F%€.7(S) such
that x, ¢ U, there exist 7,8 € SFM;O(S) such that x; <7,
u<dandyqs.

Proposition 3.1. If a ... -structure space (S,.7) is a
S F .S -min-o-r space, then (S,.7) is a S F . -min-r space.

Proof. Let x; € SFSP(S) and p € SEM;C(S) such that x;
g 1. Since every .. %-minimal-closed-semiring is a .¥-
fuzzy-closed-semiring, u € .. %% .7 (S) such thatx; g'it. As
(S,.7)is a.” F S -min-o-r space, there exist ¥, 0 € SFM;O0(S)
such thatx; <7y, u <8 andy¢ 6. Hence (S,.)isa ./ F.7-
min-r space. O

Proposition 3.2. If a . %.%-structure space (S,.”) is a
S F .S -min-o-r space, then for every x; € SFSP(S) and it €
S FO0S(S) such that x; < u, there exists y € SEM;O0(S)
such that x; <y< SF.S-cl(y) < u.

Proof. Let x; € SFSP(S) and p € % €. (S) such that
x) <u.Then(ls—pu) e S FE€S(S)suchthatx; o (1s—1).
Since (S,.7) is a .. .#-min-o-r space, there exist y,6 €
SFM;O(S) suchthatxy <7, (lg—pu) <dand yqS. Now y¢
6 implies ¥ < (15— 0). This implies .7 .-cl(y) < S F S -
cl(1s—06) = 15— 8 since (15— 98) € .S FE€.(S). Hence
S FS-cl(y) < (lg— ). Also we have (15— ) < 8. This
implies (15— 0) < p. Thus S F.7-cl(y) < (lg—906) < u.
Therefore x; <y < S F.S-cl(y) < U. O

Definition 3.9. Let (S, %) and (S5, .%%) be any two ./ F .-
structure spaces. A function f: (S1, %) — (S2, #2) is termed
.#-fuzzy-semiring-minimal-closed (in short .. % .%-min-c)
if f(A) € SFE€S(S,), S) forevery A € SFM;C(S).
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Definition 3.10. Let (S, .7}) and (S5, .%3) be any two . .% .-
structure spaces. A function f: (S1,71) — (S2,.%2) is termed
& -fuzzy-semiring-minimal-irresolute (in short .#.% .%-min-
ir) if f=Y(A) € SEM;O(S)) (resp. SFM;C(S))) for every
A € SFM;O(S,) (resp. SEMiC(S)).

Proposition 3.3. Let (51, .77) and (S5, .-%%) be any two .¥.% . -
structure spaces. Let f : (S1, %) — (52, -%2) be a bijective,
S F S -min-c and .¥.F .S -min-ir function. If (Sy, %) is
a . F ./ -min-o-r space, then (S|, .7}) is a .¥.F .S -min-r
space.

Proof. Letx; € SFSP(S}) and let u € SEM;C(S}) such that
x), ¢ u. Since f is bijective, there exists y, € SFSP(S,)
such that f(x;) = yn, which implies x; = f~!(yy). As f
is S F .S -min-c, f(u) € S FE€7(S2) and x;, ¢ 1 implies
f(xa) g f(u). Hence yy  f(u). Since (S2, 2) isa S F -
min-o-r space, there exist y,6 € SFM;O(S) such that y, <7,
f(u)<dandyqgs.

Asflsyyf -min- zrf Yy, 718 )eSFMO(Sl) Now
yn < yimplies f~!(yn) < £~ !(y). Hence x3 < f~!( ) Also
Flu) < & implies o < /- ( ) and y ¢ & implies £~1(7) ¢
f~1(8). Thus for every x; € SFSP(S;) and u € SFM;C(S1)
such that x; ¢ p, there exist £~1(y),f~1(8) € SEM;0(S))
such that x, < £ (), it < £1(8) and £ (1) o £ (5).
Hence (S, .71) is a . .F ./ -min-r space. O

Definition 3.11. Let (S, .7}) and (S3, .%3) be any two . .F .-
structure spaces. A function f : (S, ¥1) — (Sz, 2) is termed
#-fuzzy-semiring-strongly-minimal-open (in short .¥.% .-
s-min-o) if f(A) € SFM;0(S>) for every A € SEM;O(S)).

Proposition 3.4. Let (S1, .77) and (S, .-%%) be any two .¥.% . -
structure spaces. Let f : (S1, 1) — (52, -%2) be a bijective,
S F .S -structure continuous and . .% . -s-min-o function.
If (81, A1) is a /% .S -min-o-r space, then (S,, .%3) is a
S F S -min-o-r space.

Proof. Let yp € SFSP(S;) and let u € 7€ .7 (S,) such
that y, ¢ . Since f is bijective, there exists x; € SFSP(S1)
such that f(x; ) = yn, which implies x; = f~!(yn). As f is
S F S -structure continuous, f~! (1) € S FE€.7(S1). Also
yn o pimplies ' (yn) ¢ f 7" (1t). Hence x; ¢ £~ (1)
Since (S1, A1) is a S F.%-min-o-r space, there exist
7,8 € SFM;O(S)) suchthatx; <7, f~'(u)<5andyq3. As
fis S F .S -s-min-o, f(y),f(6) € SFM;O(S,). Now x; <y
implies f(x;) < f(y). Hence yn < f(y). Also f~'(u) <8
implies u < f(0) and y ¢ 6 implies f(y) ¢ f(5). Thus for
every yn € SFSP(S;) and p € ¥ F €. (S2) such that y, ¢
W, there exist f(y), f(8) € SEM;O(S>) such that y, < f(y),
w<f(8)and f(y) ¢ f(5). Hence (S>, ) is a ./ F ./ -min-

o-r space. O

Proposition 3.5. Let (S1, .77) and (S, .%%) be any two ./ % .-
structure spaces. Let f : (S1, /1) — (S2, %) be a bijective,
S.F .S -structure-closed and . % . -min-ir function. If (S,
) is a S F .S -min-o-r space, then (S, .7}) is a /.F .-
min-o-r space.
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Proof. Let x; € SFSP(S) and let u € .. %%.7(S1) such
that x; ¢ p. Since f is bijective, there exists y, € SFSP(S>)
such that f(x;) = yn, which implies x; = f~!(yn). As f
is ./ F.-structure closed, f(u) € .S F€.7(S2) and x),
o u implies f(x;) ¢ f(1). Hence yy  f(). Since (Sa,
) is a S F S -min-o-r space, there exist ¥, 6 € SEM;O0(S»)
such that y, <, f(u) <8 and y g 6. As fis S F.7-
min-ir, f~1(y),f~1(8) € SFM;0(S;). Now y, <y implies
£ () < (1), Hence x; < £ (). Also f(u) < & im-
plies u < f~1(8) and y ¢ § implies £~ (y) ¢ £~1(8). Thus
for every x; € SFSP(S)) and u € . F%€.7(S)) such that
x5 o W, there exist f~1(y), f~1(8) € SEFM;O(S;) such that
X <), u < f1(8) and £ (y) ¢ f1(8). Hence (S),
) is a S F S -min-o-r space. O

Definition 3.12. Let (S1, .71) and (S3, .#) be any two .¥.% .-
structure spaces. A function f : (S1, %) — (S2, #2) is termed
. -fuzzy-semiring-minimal-continuous (in short . % .%-min-
continuous) if f~' (1) € .S F 0.7 (S)) (tesp. L FE€.7(S1)
for every A € SFM;0(S,) (resp. SEM;C(S3)).

Proposition 3.6. Let (S|, .}) and (S5, .73) be any two .7 % .-
structure spaces. Let f: (S1, %) — (S2, -%5) be a bijective,
S F . -min-continuous and .&.% .-s-min-o function. If (S},
A) is a S F .S -min-o-r space, then (Sp, ./3) is a S F .-
min-r space.

Proof. Let y, € SFSP(S>) and let u € SFM;C(S>) such that
yn Au. Since f is bijective, there exists x; € SFSP(S;)
such that f(x;) = yn, which implies x; = f‘l(yn). As f
is .77 . -min-continuous, f~'(u) € S F€.7(S1). Also
v At implies £~ (vq) o £~ (). Hence x; ¢ £~ (1)-
Since (S1, .#1) is a ./.F . -min-o-r space, there exist
7,8 € SFM;0(Sy) suchthatx) <7, f~'(u)<dand yq3. As
fis S F .S -s-min-o, f(y),f(6) € SEFM;O(S,). Now x; <y
implies f(x3) < f(y). Hence yn < f(y). Also f~'(u) <8
implies 1 < f(0) and y ¢ 6 implies f(y) ¢ f(6). Thus for
every yn € SFSP(S>) and u € SFM;C(S) such that y, ¢
1, there exist £(7), f(8) € SEM;O(S,) such that y, < £(7),
U< f(6)and f(y) ¢ f(8). Hence (S, -S2) is a ./.F . -min-r
space. O

4. .7-Fuzzy-Semiring-Minimal-c-Normal
Spaces

In this section, the ideas of ..%.¥ -min-n and
S F.-min-c-n spaces are instigated and some of their capti-
vating properties are examined. Furthermore, an interesting
characterisation involving . .% .-min-c-n space is obtained.

Definition 4.1. A .. %.7-structure space (S,.7) is termed
' -fuzzy-semiring-minimal-normal (in short .. % . -min-n)
if for every A, u € SFM;C(S) such that A ¢ u, there exist
Y,0 € SEM;O(S) suchthat A <7y, u <6 and y ¢ $.

Proposition 4.1. If a .. %.%-structure space (S,.7) is a
S F . -min-n space, then for every A € SFM;C(S) and u €
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SFM,O0(S) such that A < p, there exists ¥ € SFM;0(S) such
that A <y < S FS-cl(y) < u.

Proof. Let A € SFM;C(S) and u € SFM,O(S) such that A <
p. Then (1g—p) € SFM;C(S). Hence A ¢ (15— ). Since
(8,.7) is a /.F ./ -min-n space, there exist ¥,0 € SFM;0(S)
suchthat A <7y, (1s— ) < 8 and y ¢ 6. Now ¥ ¢ & implies
y< (15— 8). This implies .. F.-cl(y) < .¥F ./ ~cl(1s —
6) = 15— 8 since (1s—06) € S FE.7(S). Hence ./ F.7-
cl(y) < (1s— ). Also we have (1g— ) < §. This implies
(1s—0) < . Thus S F.7-cl(y) < (15— 6) < u. Therefore
ALy S TFS-cl(y) <. O

Definition 4.2. A ¥ % .7 -structure space (S,.7) is termed
& -fuzzy-semiring-minimal-c-normal (in short .#.% .%-min-
c-n) if for every A, u € SEFM;C(S) such that A ¢ u, there exist
Y,6 € SZ0S(S)suchthat A <y, u < dandyq3d.

Proposition 4.2. Let (S,.”) be a ./ % . -structure space.
Then the following statements are equivalent :

i) (8,)is a.”.F.%-min-c-n space.

(ii) Forevery A € SFM;C(S) and u € SFM,O(S) such that
A < u, there exists y € S F 0.7 (S) such that L <y <
S FS-cl(y) < u.

(iii) Forevery A,u € SFM;C(S) such that A ¢ 1, there exist
Y,0 € S FOF(S)with y¢ S suchthat A <7y, S F.7-
cdy)quand u <98, SFS-cl(6) 1.

(iv) Forevery A,u € SFM;C(S) such that A ¢ i, there exist
Y,0 € S FOF(S) withyq dsuchthat A <7y, u <9
and ./ F .S -cl(y) S F S -cl(5).

Proof. (i) = (ii) Let A € SFM;C(S) and y € SFM,0O(S) such
that A < u. Then (15— 1) € SFM;C(S). Hence A ¢ (15— ).
Since (S,.7) is a /% .-min-c-n space, there exist ¥,6 €
S FO0S(S)suchthat A <7, (1s—p) < dand y¢ . Now
Y ¢ 6 implies ¥ < (1s— 8). This implies .. % . -cl(y) <
S FS-cl(lg—06) =15—0. Since (15— 98) € S FE.7(S).
Hence .. 7 .-cl(y) < (15— 8). Also we have (15— ) < 6.
This implies (1 — &) < u. Thus ./ Z.7-(y) < (1s—9) < u.
Therefore A <y < ./.Z.%-cl(y) < u.

(i) = (i) Let A, € SFM;C(S) with A ¢ w. This implies
A < (1g—u), where (1 — ) € SFM,O0(S). By (ii), there
exists y € S FOL(S) such that A < y < S F.S-cl(y) <
(Is— ). Now S F.-cl(y) < (1g— 1) implies .7 F.7-
cd(y)qu. Letd =1g— S F.S-cl(y). Then u <6 < (lg—
7)< (lg—A). Since (ls—7y) € SFECL(S), u < S F.S-
cl(6)<(1s—7) < (lg—A). Now S F.S-cl(6) < (ls—A)
implies . % .-cl(8) ¢ A and it is apparent that y ¢ §.

(iii) = (iv) Let A, u € SFM;C(S) with A ¢ p. By (iii), there
existy, 8 € S F 0.7 (S) withy ¢ § suchthat L <17, u <9,
U<(ls—SZFS-cl(y)) and S F S-cl(8) < (1s—A). Itis
apparent that .. % .7 -cl(8) ./ F .S -cl().

(iv) = (i) The proof is apparent. O
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Proposition 4.3. Let (S1, .77) and (S, -%2) be any two .¥.% . -
structure spaces. Let f: (S|, 1) — (S2, %) be a bijective,
S F S -min-ir and . F S -structure-open function. If (S,
) is a S .F .S -min-c-n space, then (S, .7) is a ./.F .-
min-c-n space.

Proof. Let A, € SFM;C(S,) such that A ¢ p. As f is
S F S -min-ir, f~H(A), £~ () € SFM;C(Sy). Also f~1(A)
q f~'(u). Since (S1, ) is a .7.Z.7-min-c-n space, there
exist 7,6 € S F 0.7 (Sy) suchthat f~1(A) <y, f(n) <8
and y ¢ 8. As f is S/ F .S -structure-open, f(y), f(0) €
S FOS(S,). Now f~1(1) < yimplies A < f(y), £~ (n) <
o implies u < f(8) since f is bijective and also ¥ ¢ § im-
plies f(y) ¢ f(8). Thus for every A,u € SFM;C(S2) such
that A ¢ u, there exist f(7), f(8) € ./ F 0.7(S,) such that
A < F(1), 1 < £(5) and £(7) o F(5). Hence (S5, 75) is a
S F . -min-c-n space. O

Definition 4.3. Let (S, %) and (S5, .%%) be any two ./ F .-
structure spaces. A function f: (S1, .%1) — (S2, %2) is termed
#-fuzzy-semiring-strongly-minimal-closed (in short . % .7 -
s-min-c) if f(A) € SEM;C(S,) for every A € SFM;C(S).

Proposition 4.4. Let (S|, .}) and (S5, .73) be any two .7 .% .-
structure spaces. Let f : (S1, -71) — (52, -%2) be a bijective,
S F S -structure-continuous and .&.% . -s-min-c function.
If (Sy, &%) is a S F .S -min-c-n space, then (S1, .77) is a
S F S -min-c-n space.

Proof. Let A,u € SFM;C(S;) such that A g u. As f is
S F S -s-min-c, f(L), f(1U) € SFMC(S,). Also f(A) ¢ f(u).
Since (S, %) is a #.%.%-min-c-n space, there exist
Y,0 € S FOFS(Sy) such that f(A) <7, f(u) <dand ygq
3. As f is S F . -structure-continuous, £~ (y), f~1(§) €
S FOS(S1). Now f(A) < yimplies A < f~1(y), f(u) <8
implies p < f~1(8) since f is bijective and also ¥ ¢ § implies
YY) g f1(5). Thus forevery A, u € SEM;C(S;) such that
A g i, there exist f~1(y), f~1(8) € S F 0.7 (S;) such that
A< y), p< £1(8) and £ (7) ¢ £1(8). Hence (51,
) is a S F S -min-c-n space. O

Definition 4.4. Let (S, ) and (S5, .%3) be any two .. F .-
structure spaces. A function f: (S1, .%1) — (S2, #) is termed
& -fuzzy-semiring-minimal-open (in short . % . -min-o) if
fA) e S FO0F7(S,) for every A € SFM;0(S1)

Proposition 4.5. Let (S|, .77) and (S3, -%%) be any two .¥.% . -
structure spaces. Let f : (S1, .%1) — (82, -#2) be a bijective,
S F.S-min-o and .F . -min-ir function. If (Sy, #) is
a ./ F . -min-n space, then (S, .93) is a .. F.-min-c-n
space.

Proof. Let A, € SFM;C(S,) such that A q p. As f is
S F S -min-ir, f~H(A), £ (u) € SFM;C(Sy). Also f~1(A)
qf ' (u). Since (S1, ) is a.7.% .7 -min-n space, there exist
7,8 € SEM;O(S1) such that f~1(1) <, f'(u) < Sand y¢
0. As fis S F.S-min-o, f(y), f(8) € S FOF(S2). Since
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f is bijective f~1(1) < yimplies A < £(y), f~1(u) < § im-
plies u < f(8) and also y ¢ & implies f(y) ¢ f(8). Thus for
every A, € SFM;C(S,) such that A ¢ U, there exist f(7),
f(8) e S FO0.7(S,) suchthat A < f(y), u < f(6) and f(y)
q f(8). Hence (Sz, .%%) is a . F ./ -min-c-n space. O

Proposition 4.6. Let (S|, .7}) and (S5, .#5) be any two .¥#.% .-
structure spaces. Let f : (S1, .%1) — (S2, -%%) be a bijective,
S F S -s-min-o and .¥.F ¥ -min-ir function. If (S1, .#]) is a
S F . -min-n space, then (S, .%%) is a .. F . -min-n space.

Proof. The proof is similar to that of Proposition 4.5. O

Proposition4.7. Let (S|, .7}) and (S5, .#5) be any two .¥¥.% .-
structure spaces. Let f : (S1, .%1) — (S2, -%%) be a bijective,
. . -min-continuous and .&.% . -s-min-c function. If (S,
S)is a S F .S -min-n space, then (S1, S7) is a S F S -min-

c-n space.

Proof. Let A, € SFM;C(S1) such that A ¢ u. As f is
S FS -s-min-c, f(A), f(1L) € SEM;C(S,). Also f(A) g f(1).
Since (S,, .75) is a .¥.F . -min-n space, there exist 7,0 €
SFM;0(S>) such that f(A) <7, f(u) < Sand y¢d. As f
is .7 .. -min-continuous, f~(y), f~1(8) € S F O (5)).
Since f is bijective, f(1) < yimplies A < f~'(y), f(1u) <8
implies u < f~1(8) and also y ¢ & implies £~ (7) ¢ f~1(5).
Thus for every A, € SFM;C(S)) such that A ¢ u, there ex-
ist f~1(y), f71(8) € SFO.7(S) such that A < f~1(y),
W< £1(8) and 1(y) ¢ £7(5). Hence (51, ) is a
S F . -min-c-n space. O

Proposition 4.8. Let (S|, .7}) and (S3, .#3) be any two .¥¥.% .-
structure spaces. Let f : (S1, .71) — (S2, -%3) be a bijective,
S F S -min-ir and . .F . -s-min-c function. If (S5, .%5) is a
S F . -min-n space, then (S, ./) is a . .F . -min-n space.

Proof. The proof is similar to that of Proposition 4.7. O
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