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1. Introduction

In 1969, Takahashi [1] initiated the study of almost contact
manifolds associated with an indefinite metrics. These in-
definite almost contact metric manifolds are also called as
(g)-almost contact metric manifolds. The study of indefi-
nite metric manifolds is of interest from the standpoint of
physics and relativity. Indefinite metric manifolds have been
studied by several authors. In 1993, Bejancu and Duggal
[2] introduced the concept of (€)-Sasakian manifolds. Some
interesting properties of these manifolds was studied in the
papers [3], [4], [5], [6] and the references therein. In 2009,
De and Sarkar [7] introduced the concept of (€)-Kenmotsu
manifolds and showed that the existence of new structure on
an indefinite metrics influences the curvatures.

Tripathi and his co-authors [8] initiated the study of (€)-
almost para-contact metric manifolds, which is not necessarily
Lorentzian. In particular, they studied (€)-para-Sasakian man-
ifolds, with the structure vector field & is spacelike or timelike

Sasakian manifolds in dimension 3.

In 2012, Mantica and Molinari [10] defined a generalized
(0, 2) symmetric 2 tensor given by

Z(X,Y)=8SX,Y)+wg(X,Y), 1.1

where V is an arbitrary scalar function. Properties of 2 tensor
were pointed out in the papers [11] and [12]. This tensor is a
general notion of the Einstein gravitational tensor in General
Relativity. Recently, Mallick and De [13] studied various
properties of 2 tensor on N(k)-quasi-Einstein manifolds.

The present paper is organized as follows: After pre-
liminaries, in Section 3, we study 2 -semisymmetric, 2 -
pseudosymmetric and projectively 2-semisymmetric (€)-
para-Sasakian 3-manifolds. Here, we prove that, for an (€)-
para-Sasakian 3-manifold, the conditions of being
Z -semisymmetric; Ricci-symmetric; Ricci-semi symmetric;
or Einstein manifold are all equivalent. Also show that, if
an (g)-para-Sasakian 3-manifold M is % -pseudosymmetric
then it is either Ricci-semisymmetric or pseudosymmetric
function L4 = —¢€ holds on M. Further, we prove that a pro-
jectively Z’-semisymmetric (€)-para-Sasakian 3-manifold is
an Einstein manifold.



2. Preliminaries

A manifold M is to admit an almost para-contact structure if
it admit a tensor field ¢ of type (1,1), a vector field £ and a
1-form n satisfying

Let g be a semi-Riemannian metric with index(g) = v such
that

@2.1)

8(9X,0Y) =g(X,Y)—en(X)n(Y). X,Y € TM, (2.2)

where, € = £1. Then M is called an (€)-almost para-contact
metric manifold equipped with an (€)-almost para-contact
metric structure (¢,&,1,g,€). In particular, if index of g is
equal to one, then an (€)-almost para-contact metric manifold
is said to be a Lorentzian almost para-contact manifold. In
particular, if the metric g is positive definite, then (€)-almost
para-contact metric manifold is the usual almost para-contact
metric manifold [14].

The equation (2.2) implies that

g(X,0Y) =g(¢X,Y) and g(X,§) =en(X). (2.3)
From (2.1) and (2.3) it follows that
g(&,8) =¢. (2.4)

An (€)-almost para-contact metric structure is called an (€)-
para-Sasakian structure if

(Vx9)Y = —g(¢X,0Y)E —en(Y)$>X. X.Y € TM, (2.5)

where V is the Levi-Civita connection with respect to g. A
manifold endowed with (€)-para-Sasakian structure is called
an (&)-para-Sasakian manifold [8].

For € = 1 and g Riemannian, M is the usual para-Sasakian
manifold [15], [16]. For € = —1, g Lorentzian and & replace
by —&, M becomes a Lorentzian para-Sasakian manifold [17].

For an (€)-para-Sasakian manifold, it is easy to prove that

RX,Y)§ = nX)Y —n(¥)X, (2.6)
R, X)Y = n(Y)X —eg(X,Y)E, 2.7
RS, X)E = X-nX)§E, (2.8)
Sx,8) = —(n—=1nX), (2.9)

Vx& = e¢X. (2.10)

For detail study of (&)-para-Sasakian manifold, see [8].

It is known that in a 3-dimensional (€)-para-Sasakian man-
ifold (or, an (€)-para-Sasakian 3-manifold), the Riemannian
curvature tensor and the Ricci tensor has the following form

[9]:

RIX,Y)Z = (§+2s){g(y,z)X—g(x,Z)Y}
— (5+3¢) {er2n(X)E —g(X. 2 (V)&
+ en(¥)n(2)X —en(X)n(2)Y},  (2.11)
S(X,Y) = (ngs)g(X,Y)fs(g+38)n(X)n(Y).
(2.12)

771

Z-symmetries of (¢)-para-Sasakian 3-manifolds — 771/774

The projective curvature tensor & in a (€)-para-Sasakian
3-manifold M is defined by

P(X,Y)U=R(X,Y)U — %[S(Y, U)X —S(X,U)Y]. (2.13)

In an (€)-para-Sasakian 3-manifold M, the 2 tensor takes the
form

F(X,Y)= (%+£+w) g(X.,Y)—¢ (% +3s) nxX)n(y).

(2.14)
and scalar £ takes the form
r r
¥ = (§+e+ v)3- (5+3s) = r43y.
Also,
F(X,E) = (ew—2)n(X). 2.15)

3. Z-symmetries of (¢)-para-Sasakian
3-manifolds

In this section, we characterize, 2 -symmetric;
Z -semisymmetric; 2 -pseudosymmetric; and projectively
% -semisymmetric conditions on an (€)-para-Sasakian
3-manifolds. We begin with the following:

Definition 3.1. A semi-Riemannian manifold M is called lo-
cally symmetric if its curvature tensor R is para-llel, that
is, VR =0, where V denotes the Levi-Civita connection. As
a proper generalization of locally symmetric manifolds, the
notion of semisymmetric manifolds was defined by

R(X,Y)-R=0,

forany XY € TM. A complete intrinsic classification of these
spaces was given by Szabo [18].

Definition 3.2. A semi-Riemannian manifold M is said to be
Z-symmetric if VZ =0, and it is called % -semisymmetric
if

R(X,)Y) - & =0, 3.1
forany XY € TM, where R(X,Y) acts as a derivation on % .

Let M be a Z°-semisymmetric (€)-para-Sasakian 3-manifold.
Then from (3.1), we have

ZRX,Y)U,V)+ Z(U,R(X,Y)V)=0.
In particular,
ZR(E YU, V)+Z(U,R(E,Y)V)=0. (3.2)

From (2.7), we obtain

Z(R(E,Y)U,V) =—eg(Y,V)Z(U,§)+Z(U,Y)n(V)



(3.3)

and

Z(U,REY)V)=—eg(Y,U)Z(V,E)+Z(V,Y)n(U).

(.4)
The equations (3.2), (3.3) and (3.4) together give
—e{g(V, U)Z(V.8)+g(Y,V)Z(U,S)}
FEVYNU) - ZUY)MV)=0. (3.5
Setting V = € in (3.5) and using (2.15), we have
Z(U,Y) = (v —2e)g(Y,U). (3.6)
By making use of (2.14) in (3.6), we obtain
(% +3¢) [3(r,U) —en(¥)n(V)] =o0. 3.7)

Since g(Y,U) —en(¥)n(U) = g(¢Y,9U) # 0, in general,
therefore we obtain from (3.7) that % +3€ =0, that is,

r= —6¢. (3.8)
Next, using (3.8) in (2.12) we get
S(X,Y) =—2eg(X,Y). 3.9

That is, M is an Einstein manifold.

Conversely, suppose that the manifold M be an Einstein. Then,
from (1.1) and (3.9) we have (3.6). Next, consider

R(X,Y) - Z(U,V)

= ZRX,Y)U,V)+Z(U,R(X,Y)V). (3.10)
By using (3.6) in (3.10) we obtain

RX,)Y)-Z(U,V) =
(v —2e){g(RX,Y)U,V)

+g(U,R(X,Y)V)}. (3.11)

It is known that, in an (€)-para-Sasakian manifold, the follow-
ing relation holds:

From (3.11) and (3.12), it follows that
RX,)Y) - Z(U,vV)=0.

That is, M is Z’-semisymmetric. Hence, we are able to state
the following result:

Theorem 3.3. An (&)-para-Sasakian manifold is
Z -semisymmetric if and only if it is an Einstein manifold.
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Further, the manifold M is an Einstein, implies trivially
that M is Ricci-symmetric.

Conversely, if M is Ricci-symmetric, that is, V.S = 0.
In particular,

(VxS)(Y,&) =€S(¢X,Y)+2g(¢X,Y) =0.

Replacing X by ¢X in the above equation, shows that the
manifold is an Einstein manifold. Therefore, by taking into
account of theorem 3.3, we state the following:

Theorem 3.4. An (€)-para-Sasakian 3-manifold is
Z -semisymmetric if and only if it is Ricci-symmetric.

Moreover, suppose that M be Ricci-semisymmetric, that
is,

In particular,
(R(&,Y)-8)(U,§) =0,

this implies that
S(R(E,Y)U,&)+S(U,R(E,Y)E) =0,

which in view of (2.7) and (2.12) gives (3.9).

Conversely, if M is an Einstein manifold, then obviously,
it is Ricci-semisymmetric. Thus, the manifold M is Ricci-
semisymmetric if and only if it is an Einstein manifold. Hence,
by taking into account of theorem 3.3, we have the following:

Theorem 3.5. An (€)-para-Sasakian 3-manifold is
% -semisymmetric if and only if it is Ricci-semisymmetric.

Corollary 3.6. In an (€)-para-Sasakian 3-manifold, the fol-
lowing statements are equivalent:

1. M is an Einstein manifold.
2. M is Ricci-symmetric.
3. M is Ricci-semisymmetric.

4. M is Z-semisymmetric.

Itisclearthat, VZ =0=R- % =0 = VS = 0. There-
fore, from corollary 3.6, we get:

Corollary 3.7. Every % -symmetric (€)-para-Sasakian 3-
manifold is Ricci-symmetric.

For a (0, k)-tensor field T on M, k > 1, and a symmetric
(0,2)-tensor field A on M, we define the (0, k+2)-tensor fields
R-T and Q(A,T) by

(R-T)(X1,.... X1 X,Y)
=  —TRX,Y)X1, Xz, Xp) = oo = T (X1, o, Xe1, R(X, Y) X))

and
QA T)(X, ... Xi: X,Y)
= 7T((X NA Y)X] , X0, ...,Xk) — .= T(X] , ~~~7Xk717(X AA Y)Xk)
respectively, where X A4 Y is the endomorphism given by

(XAY)Z=A(Y,Z)X —A(X,Z)Y.



Definition 3.8. A semi-Riemannian M is said to be pseu-
dosymmetric (in the sense of R. Deszcz [19]) if

R-R=LgQ(g,R)

holdson Ugp ={x e M : R # 07y G @t x}, where G is the

(0,4)-tensor defined by G(X1,X2,X3,Xs) = g((X1 AX2)X3,X4)
and Lg is some function on Ug.

Definition 3.9. A semi-Riemannian manifold M is said to be
% -pseudosymmetric if

(RX,)Y) - Z£)U,V)=L#0Q(g,Z)(U,V;X,Y) (3.14)

holds on the set Uy = {xeM : % #0 at x}, and Ly is
some function on Ugy.

Let M be a % -pseudosymmetric (€)-para-Sasakian 3-
manifold. Then from (3.13) and (3.14), we have

(R(E,Y)-Z)(U,6) =L [((§AY)-Z)(U,6)]. (3.15)

In an (€)-para-Sasakian 3-manifold, from (2.7) and (3.13) we
get

R(E,X)Y = (—€)(EAX)Y. (3.16)

In view of (3.15) in (3.16), it is easy to see that
Ly = —¢.

Hence, by taking into account of previous calculations and
discussions, we conclude the following:

Definition 3.10. Let M be an (€)-para-Sasakian 3-manifold.
If M is & -pseusosymmetric, then either M is an Einstein
manifold or Ls = —& holds on M.

If Ly # —¢, then immediately, we obtain the following:

Corollary 3.11. Every % -pseudosymmetric (€)-para-Sasakian
3-manifold with L # —& is an Einstein manifold.

But L need not be zero, in general and hence there exists
Z -pseudosymmetric manifolds which are not Z°-semisymmetri
Thus the class of 2’ -pseudosymmetric manifolds is a natural
extension of the class of Z-semisymmetric manifolds. Thus,
if Ly # 0 then it is easy to see that R- 2 = (—€)0(g, Z),
which implies that the pseudosymmetric function Ly = —¢€.
Therefore, we able to state the following result:

Corollary 3.12. Every (&)-para-Sasakian 3-manifold is % -
pseudosymmetric of the form R- % = (—€)0(g, ).

Definition 3.13. A semi-Riemannian manifold M is said to
be projectively Z -semisymmetric if
PX)Y)- Z=0, 3.17)

forany XY € TM, where &7 is the projective curvature ten-
sor.
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Let M be a projectively Z°-semisymmetric (€)-para-Sasakian

3-manifold. Then from (3.17), we have
Z( 22X, Y)UV)+ZU,ZX,Y)V)=0.
This implies
F(PEYVUV)+ZU,2(E,Y)V)=0. (3.18)

In an (€)-para-Sasakian 3-manifold, from (2.13) we have

1

P(EX)Y = —3S(X,Y)E —eg(X,Y)E. (3.19)

Using (2.7) and (3.19), we obtain

Z(PENUY) = |-350.0) - er.0)| 2(1.)
(3.20)

and

P, PEYV) [—;S(Y,V) —8g(Y,V)] 2, 8).

(3.21)

The equations (3.18), (3.20) and (3.21) together give

1
2
I
2
Setting V = £ in (3.22) and then using (2.12) and (2.15), we
have

ﬂnw+%Wﬂﬂfma

S(Y,V)+ eg(Y,V)] ZU,E)=0. (3.22)

(v —2¢)[S(U,Y) +2eg(Y,U)] = 0. (3.23)

This implies either y = 2¢ or S(U,Y) = —2¢g(Y,U). If
v = 2¢, then from (2.15) we obtain (3.7). It shows that
M is an Einstein manifold. Therefore, in both of the cases,
manifold M reduces to an Einstein manifold. Hence, we state
the following:

C.

Theorem 3.14. Every projectively % -semisymmetric (€)-
para-Sasakian 3-manifold is an Einstein manifold.
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