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Single component Darcy-Benard surface tension
driven convection of couple stress fluid in a
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Abstract
The onset of surface tension driven convection is analyzed in a composite system comprising, an incompressible
couple stress fluid-saturated porous layer over which lies a layer of the same fluid. The lower surface of the
porous layer and upper surface of fluid layer are free and at the interface of the system normal velocity, tangential
velocity, normal stress and tangential stress are assumed to be continuous. An eigenvalue problem is solved
exactly and an analytical expression for the thermal Marangoni number is obtained for adiabatic-adiabatic and
adiabatic-isothermal thermal boundary conditions. The effect of variation of different dimensionless parameters
such as couple stress parameters, thermal diffusivity ratio, viscosity ratio, porosity and wave number on the onset
of Marangoni convection is investigated, as a function of depth ratio.
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1. Introduction
Investigation on convection driven by buoyancy force in cou-
ple stress fluids has been studied extensively over the decades
because of its different features and its wide range of applica-
tions in engineering techniques and industries like solidifica-
tion of liquid crystals, extraction of crude oil in the petroleum
industry and exotic lubrication, etc. Bio-Fluids such as human

blood, animal blood, synthetic fluids and rheological fluids
are few examples for couple stress fluids. Convection driven
by surface tension in fluids is called Marangoni Convection.
Surface tension monotonically decreases with a rise in tem-
perature thus the onset of convection is faster. Modelling of
flow problems through the composite layer has great practical
and theoretical significance. Primarily it consists of a fluid
layer (Region -1) and a saturated porous layer (Region- 2) the
combination of both the regions has extensive applications in
engineering, crystal growth industries, medical technology,
flame spreading over a pool of liquid fuel and in petroleum
reservoirs, etc. Flame spread is powered by the convective
flows in the liquid-phase. This flow is mainly governed by
surface tension, viscous forces and partially by gravity. In
Petroleum reservoir, oil is recovered from underground from
the porous oil-bearing rocks. Insulation of high temperatures
in porous oil-bearing rocks reduces the surface tension of the
crude oil and thus quickly flows into the drilled well making
the extraction of oil from the well smoother.
Pearson [1958] described about formation of convection cells
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due to surface tension in a fluid layer. Nield [1965, 77, 98]
studied about the effect of buoyancy and surface tension in
the formation of convection cells and on the onset of convec-
tion in a fluid layer overlying a layer of a porous medium.
He has also analyzed the effect of surface tension on the
onset of natural convection in a saturated porous medium.
Straughan [2001] has studied surface tension driven convec-
tion in a fluid overlying a porous layer. Rudraiah et al. [1998]
analyzed on the effect of Brinkman boundary layer on the
onset of Marangoni convection in a fluid saturated porous
layer. The theory of couple stress was first introduced by
Stokes [1966] which explains the classical theory of polar
effect in the presence of couple stress, body couple, and non-
symmetric tensors. The effects of couple stress in a liquid
have no microstructure therefore, the kinematic energy of spin
density and angular momentum are not considered and the
governing equations of couple stress are thereby determined
completely by the velocity field and hence the equation is
similar to the Navier Stokes equation. Sharma and Shivani
[2001] investigated on couple stress fluid heated from below
in a porous medium and found that the couple stress in fluid
delays the onset of convection but the permeability of the
porous medium quickens the onset of convection. Sunil et
al. [2002] have studied the global stability for thermal con-
vection in a couple-stress fluid heated from below and found
couple-stress fluids are thermally more stable than the ordi-
nary viscous fluids. Malashetty [2011] has studied the onset
of convection in couple stress fluid-saturated porous layers by
using a thermal non-equilibrium model. Srinivasacharya et
al. [2011] studied the steady flow of incompressible couple
stress fluid flow between parallel porous plates maintained
at constant but different temperatures with the assumption
that there is a constant suction at upper plate and a constant
injection at the lower plate. Waqar Khan et al. [2014] in-
vestigated exact solutions of the couple stress fluid motion
for different flow situations. Taslim et al. [1989] studied on
thermal stability of horizontally superposed porous and fluid
layers. Cieszko et al. [1999] studied on derivation of match-
ing conditions at the surface between fluid saturated porous
solid and bulk fluid. Shivakumara et al. [2006] studied the
onset of surface-tension-driven convection in a two-layer sys-
tem comprising an incompressible fluid-saturated porous layer
over which lies a layer of the same fluid. At the interface of
the system both Beavers-Joseph and the Jones slip conditions
are considered. Sumithra et al. [2018] have investigated on
single component Marangoni convection in a composite layer
where both the lower and upper boundaries are adiabatic and
isothermal. Sumithra R and Shyamala V [2020] investigated
on Darcy-Benard Marangoni convection in a composite Layer
comprising of couple stress fluid. It is observed that the effect
of couple stress parameter for fluid layer is prominent, for
porous layer dominant composite system.

In this article, the objective is to evaluate the problem
of single component Darcy-Benard surface tension driven

convection in a composite layer consisting of couple stress
fluid, bounded by free – free boundaries. The eigenvalue
of surface tension driven convection is solved by using the
exact method. Thermal Marangoni numbers are obtained
for two types of thermal boundaries, type (a): Adiabatic -
Adiabatic, both the boundaries of the composite layer are
adiabatic, type (b):Adiabatic-Isothermal, the upper boundary
of the fluid layer is adiabatic and the lower boundary of the
porous layer is isothermal. The upper free surface contributes
to the onset of Marangoni convection for both the thermal
boundary conditions.

2. Nomenclature
−→q (u,v,w) - velocity vector
P- Pressure
ρ0 - Reference density
t - Time
T - Temperature
K - Permeability of the porous medium
φ - Porosity of the porous media
σt - Surface tension
Cp - Specific heat
µ- Co-efficient viscosity of fluid
κ & κm - Thermal diffusivity of the fluid and porous layers
respectively
µm- Effective viscosity of the fluid in the porous layer
µ
′

& µ
′
m - Couple stress viscosity of the fluid in fluid and

porous layers respectively
Ah-Ratio of heat capacities

(
(ρ0Cp)m
(ρCp) f

)
a & am - Non-dimensional horizontal wave numbers fluid and
porous layers respectively
n & nm - Frequencies of fluid and porous layers respectively
d & dm - height of the fluid and porous layers respectively
Λ f - Couple stress parameter for fluid layer (µ ′/µd2)
Λm - Couple stress parameter for porous layer (µ ′m/µd2

m)
θ & θm- Dimensionlass temperature
W & Wm -Dimensionless vertical velocity
T̂ - Thermal diffusivity ratio (κm/κ)
µ̂ - Viscosity ratio (µm/µ)
d̂ - Depth ratio (dm/d)
f - refers to fluid layer
m- refers to porous layer
b- refers to basic state

3. Mathematical formulation
Consider an infinite horizontal layer of a couple stress fluid in
a composite layer. A composite layer has two regions: region-
1 consists of clear couple stress fluid and region-2 consists of
couple stress fluid saturated porous layer.

The depth of region-1 is 0≤ z≤ d and region-2 is −dm ≤
zm ≤ 0 and also at the interface z = 0 = zm. A Cartesian co-
ordinate system is taken at the interface of the porous and
fluid layer as X-axis and Z- axis vertically upwards. Let the
temperature gradient ∆T = Tu−Tl where Tu is the temperature
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Figure 1. Physical Configuration

at z = d and Tl is the temperature at zm =−dm.

The governing equations of fluid and porous layers are re-
spectively.

∇.~q = 0 (3.1)

ρ0 [
∂~q
∂ t

+(~q.∇)~q] =−∇P+µ∇
2~q−µ

′
∇

4~q (3.2)

∂T
∂ t

+(~q.∇)T = κ∇
2T (3.3)

∇m.~qm = 0 (3.4)

ρ0 [
1
φ

∂ ~qm

∂ tm
+

1
φ 2 (~qm.∇m)~qm] =−∇mPm−

µ

K
~qm

+
µ
′
m

K
∇

2
m ~qm (3.5)

Ah
∂Tm

∂ tm
+(~qm.∇m)Tm = κm∇

2
mTm (3.6)

The basic state solution of the composite system is ob-
tained for the quiescent flow where temperature and pressure
are functions of z only. To investigate the stability of the
basic solution an infinitesimal disturbances are introduced
to quiescent state. On substituting the basic and infinitesi-
mal disturbances in the governing equations respectively and
also taking curl twice to the resulting equations, the pres-
sure terms are eliminated from the momentum equations of
the fluid and porous layers. The vertical component of the
composite system is retained. The resulting variables are non-
dimensionalized by using the following scales for fluid and
porous layers separately.

(x,y,z) = d(x∗,y∗,z∗), (xm,ym,zm) = dm(x∗m,y
∗
m,z
∗
m)

(u,v,w) =
κ

d
(u∗,v∗,w∗), (um,vm,wm) =

κm

dm
(u∗m,v

∗
m,w

∗
m)

θ = (T0−Tu)θ
∗, θm = (T0−Tu)θ

∗
m ∇ =

∇∗

d
∇m =

∇∗m
dm

t =
d2

κ
t∗, tm =

d2
m

κm
t∗m , P =

µκ

d2 P∗, Pm =
µmκm

d2
m

P∗m

The resulting non-dimensionalized equations are subjected
to normal mode expansion on dependent variables in the fluid
and porous layers respectively as,

[
W
θ

]
=

[
W (z)
θ(z)

]
f (x,y)ent (3.7)

[
Wm
θm

]
=

[
Wm(zm)
θm(zm)

]
fm(xm,ym)enmtm (3.8)

where ∇2
2 f +a2 f = 0 and ∇2

2m fm +a2
m fm = 0. Consider-

ing the dimensional horizontal wave numbers are same for the
fluid and porous layers, we have

a
d
=

am

dm
and hence am = d̂a.

The Ordinary differential equations obtained considering that
the onset of convection only in the form of steady convection
with the frequencies n = nm = 0 are

In 0≤ z≤ 1

(Λ f (D2−a2)−1)(D2−a2)2W = 0 (3.9)

(D2−a2)θ +W = 0 (3.10)

In −1≤ zm ≤ 0

(D2
m−a2

m)(1−Λm(D2
m−a2

m))Wm = 0 (3.11)

(D2
m−a2

m)θm +Wm = 0 (3.12)

4. Boundary Conditions
Boundary conditions are chosen in composite system based
on its physical configuration that is, boundary conditions on
upper fluid layer, lower porous layer and at the interface. The
interface boundary conditions have a great effect on the predic-
tion of convective stability in a composite layer. The interface
effect also determines the flow pattern, temperature distribu-
tions and heat transfer rates. Equations (3.9) and (3.11) are
to be solved subjected to the following appropriate velocity
boundary conditions:

Velocity boundary Conditions:

D2W (1)+Ma2
θ(1) = 0

W (1) = 0, D3W (1)−3a2DW (1) = 0,

T̂W (0) =Wm(0), T̂ d̂DW (0) = µ̂DmWm(0)

T̂ d̂2(D2 +a2)W (0) = µ̂(D2
m +a2

m)Wm(0)

T̂ d̂3β
2(D3W (0)−3a2DW (0)) =−DmWm(0)

+µ̂β
2(D3

mWm(0)−3a2
mDmWm(0))

Wm(−1) = 0, D2
mWm(−1) = 0

D3
mW (−1)−3a2

mDmWm(−1) = 0 (4.1)

Where,

M =
−(T0−Tu)d

µK
∂σ

∂T
is the thermal Marangoni number
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Temperature boundary Conditions:

Type (a) A-A, Adiabatic-Adiabatic temperature bound-
ary conditions:

Dθ(1) = 0; θ(0) = T̂ θm(0);
Dθ(0) = Dmθm(0); Dmθm(−1) = 0 (4.2)

Type (b) A-I, Adiabatic-Isothermal temperature bound-
ary conditions:

Dθ(1) = 0; θ(0) = T̂ θm(0);
Dθ(0) = Dmθm(0); θm(−1) = 0 (4.3)

5. Exact method of solution
From equations (3.9) and (3.11), the vertical velocity distribu-
tions W and Wm are determined as,

W (z) = [a1cosh(az)+a2sinh(az)+a3zcosh(az)+

a4zsinh(az)+a5cosh(δ z)+a6sinh(δ z)]
(5.1)

Wm(zm) = [am1cosh(amzm)+am2sinh(amzm)+

am3cosh(δmzm)+am4sinh(δmzm)] (5.2)

where,
ai (i = 1,2,3,4,5,6) and ami (i = 1,2,3,4) are arbitrary con-

stants and δ =

√
a2 +

1
Λ f

, δm =

√
a2

m +
1

Λm
.

The expressions for W (z) and Wm(zm) are appropriately
written as,

W (z) = a1[cosh(az)+A1sinh(az)+A2zcosh(az)+

A3zsinh(az)+A4cosh(δ z)+A5sinh(δ z)]
(5.3)

Wm(zm) = a1[Am1cosh(amzm)+Am2sinh(amzm)

+Am3cosh(δmzm)+Am4sinh(δmzm)] (5.4)

Where A1,A2,A3,A4,A5,Am1,Am2,Am3,Am4 are constants de-
termined by solving the boundary conditions (4.1) and they
are as follows:

Am4 =
−H5

O9 +O10
, Am3 = tanh(δm)Am4

Am2 = O11Am3 +O12Am4

Am1 =
sinh(am)Am2− cosh(δm)Am3 + sinh(δm)Am4

cosh(am)

A5 = E1Am1 +E2Am2 +E3Am3 +E4Am4 +E5

A4 =
Am1 +Am3

T̂
−1

A3 = B1Am1 +B2Am3 +B3

A2 = F1Am1 +F2Am2 +F3Am3 +F4Am4 +F5

A1 = G1Am1 +G2Am2 +G3Am3 +G4Am4 +G5

where,

B1 =
2µ̂am

2

2aT̂ d̂2
− (a2 +δ 2)

2aT̂

B2 =
µ̂(α2 +am

2)

2aT̂ d̂2
− (a2 +δ 2)

2aT̂
, B3 =

(δ 2−a2)

2a

C1 = 2a3B1 cosh(a)− (δ 3−3a2δ )

T
sinh(δ )

C2 = 2a3B2 cosh(a)− (δ 3−3a2δ )

T
sinh(δ )

C3 =
[
2a3B3cosh(a)+2a3sinh(a)+(δ 3−3a2δ )sinh(δ )

]
D1 =−B1sinh(a)− cosh(δ )

T̂

D2 =−B2sinh(a)− cosh(δ )

T̂

D3 =−B3sinh(a)+ cosh(δ )− cosh(a)

O1 = 2a2cosh(a)−2a3sinh(a)

O2 = 2a2δcosh(a)+(δ 3−3a2δ )cosh(δ )

O3 =
2a2µ̂amcosh(a)

T̂ d̂
O4 =

2a2µ̂δmcosh(a)

T̂ d̂

O5 =
[
(δ 3−3a2δ )sinh(a)cosh(δ )+2a3cosh(a)sinh(δ )

]
O6 =C1sinh(a)+2D1a3cosh(a)

O7 =C2sinh(a)+2D2a3cosh(a)

O8 =C3sinh(a)+2D3a3cosh(a)

O9 = (O11 tanh(δm)+O12)(H1tanh(am)+H2)

O10 = H3 tanh(δm)+H4, O11 =
O21−O22

2am3

O21 = (3am
2δm−δm

3)sinh(δm)cosh(am)

O22 = 2am
3sinh(am)cosh(δm)

O12 =
−O23−O24

2am3

O23 = (3am
2δm−δm

3)cosh(am)cosh(δm)
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O24 = 2am
3sinh(am)sinh(δm)

E1 =
O1O6−2a3C1

O1O5−2a3O2
, E2 =

−2a3O3

O1O5−2a3O2

E3 =
O1O7−2a3C2

O1O5−2a3O2
, E4 =

−2a3O4

O1O5−2a3O2

E5 =
O1O8−2a3C3

O1O5−2a3O2
, F1 =

C1−E1O2

O1

F2 =
O2−E2O2

O1
, F3 =

C2−E3O2

O1

F4 =
O4−E4O2

O1
, F5 =

C3−E5O2

O1

G1 =
−F1−E1δ

a
, G2 =

µ̂am

T̂ d̂a
− (F2 +δE2)

a

G3 =
−F3−E3δ

a
, G4 =

µ̂δm

T̂ d̂a
− (F4 +δE4)

a

G5 =
−F5−E5δ

a

H1 = T̂ d̂3β 2[−2a3G1 +E1(δ
3−3a2δ )]

H2 =
[
T̂ d̂3β 2[−2a3G2 +E2(δ

3−3a2δ )]+2µ̂β 2am
3 +am

]
H3 = T̂ d̂3β 2[−2a3G3 +E3(δ

3−3a2δ )]

H4 = T̂ d̂3β 2[−2a3G4 +E4(δ
3−3a2δ )]−

(δm
3−3am

2δm)]µ̂β 2 +δm

H5 = T̂ d̂3β 2[−2a3G5 +E5(δ
3−3a2δ )]

The temperature distributions are obtained by solving the
equations (3.10) and (3.12) and are as follows

θ(z) = a1[A6cosh(az)+A7sinh(az)−h(z)] (5.5)
θm(zm) = a1[Am5cosh(amzm)+Am6sinh(amzm)

−hm(zm)] (5.6)

Where

h(z) =
zsinh(az)

2a
+A1

zcosh(az)
2a

+
A2

4a

[
z2sinh(az)+

zcosh(az)
a

]
+A4

cosh(δ z)
δ 2−a2

+
A3

4a

[
z2cosh(az)− zsinh(az)

a

]
+A5

sinh(δ z)
δ 2−a2

hm(zm) = Am1
zmsinh(amzm)

2am
+Am2

zmcosh(amzm)

2am

+Am3
cosh(δmzm)

((δm)
2−am2)

+Am4
sinh(δmzm)

((δm)
2−am2)

These temperature distributions are solved with respect to
two types of thermal boundary conditions.

Thermal Marangoni numbers
Thermal Marangoni numbers M1 and M2 respectively for
type(a) and type(b) are obtained by taking the corresponding
temperature distributions and using the boundary condition
involving both the velocity and temperature of (4.1) and are
found to be,

M1 =
−(N1 +N2 +N3 +N4)

a2(N5 +N6 +N7 +N8)
(5.7)

M2 =
−(N1 +N2 +N3 +N4)

a2(N9 +N10 +N7 +N8)
(5.8)

where,
N1 = cosh(a)[a2 +a2A2 +2aA3]

N2 = sinh(a)[a2A1 +2aA2 +a2A3]

N3 = δ 2 cosh(δ )A4, N4 = δ 2 sinh(δ )A5

N5 = cosh(a)
[

A6−
A1

2a
+

A2

4a2 −
A3

4a

]

N6 = sinh(a)
[

A7−
1

2a
− A2

4a
+

A3

4a2

]

N7 =
−cosh(δ )
(δ 2−a2)

A4, N8 =
−sinh(δ )
(δ 2−a2)

A5

N9 = cosh(a)
[

A8−
A1

2a
+

A2

4a2 −
A3

4a

]

N10 = sinh(a)
[

A9−
1

2a
− A2

4a
+

A3

4a2

]

A6 =
I5

I6
, A7 =

I1−asinh(a)A6

acosh(a)

A8 =
I1−acosh(a)A9

asinh(a)
, A9 =

I8

I9

I1 = cosh(a)
[

1
2
+

A1

2a
− (a2−1)

4a2 A2 +
A3

4a

]
+ sinh(a)

[
1

2a
+

A1

2
+

A2

4a
− (a2−1)

4a2 A3

]
+

δ sinh(δ )
(δ 2−a2)

A4 +
δ cosh(δ )
(δ 2−a2)

A5

I2 =
T̂ A4

δ 2−a2 −
Am3

δm
2−am2

I3 =

[
A1

2a
− A2

4a2 +
δA5

(δ 2−a2)
− Am2

2am
− δmAm4

((δm)
2−am2)

]
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I4 = sinham

[
Am2

2
− Am1

2am

]
− cosham

[
Am1

2
− Am2

2am

]
− δm sinh(δm)

((δm)
2−am2)

Am3 +
δm cosh(δm)

((δm)
2−am2)

Am4

I5 = cosh(am)I1 +am sinh(am)cosh(a)I2−
cosh(a)cosh(am)I3− cosh(a)I4

I6 = asinh(a)cosh(am)+ T̂ am cosh(a)sinh(am)

I7 = sinh(am)

[
Am1

2am

]
− cosh(am)

[
Am2

2am

]
+

cosh(δm)

((δm)
2−am2)

Am3−
sinh(δm)

(δm
2−am2)

Am4

I8 = sinh(am)I1 +am cosh(a)cosh(am)I2
− cosh(a)sinh(am)I3 +am cosh(a)I7

I9 = asinh(a)sinh(am)+ T̂ am cosh(a)cosh(am)

6. Results and Discussions
The onset of surface tension driven convection in a two layer
system consisting of a fluid layer overlying a porous layer
saturated by couple stress fluid is investigated theoretically.
The eigenvalue problem is solved by exact method and an
analytical expression for the Marangoni number is obtained
for two types of temperature boundary conditions, viz. (i)
lower free surface of the porous layer and upper free surface
of the fluid layer are adiabatic, and (ii) lower free surface of
the porous layer is isothermal and upper free surface of the
fluid layer is adiabatic. Thermal Marangoni number compares
the rate at which the thermal energy is transported by flow
to the rate at which thermal energy diffuses. The thermal
Marangoni numbers M1 for Type(a) and M2 for Type(b) are
presented and compared in the following figures.
The thermal Marangoni numbers which are obtained as func-
tions of depth ratio for the fixed values of a = 0.5, T̂ = 1.0,
β = 0.01, µ̂ = 1.0, Λ f = 1 and Λm = 1. The depth ratio
which is ratio of porous and fluid layer thickness has a sig-
nificant role on the flow in the composite layer system. The
smaller values of depth ratio mean the system is fluid layer
dominant composite layer and larger values of depth ratio
mean the system is porous layer dominant composite layer,
and here dominance is in terms of thickness of the layers. In
the figure the line curve represents M1 for thermal Marangoni
number for adiabatic-adiabatic thermal boundary condition
and dashed curve represents M2 for thermal Marangoni num-
ber for isothermal-adiabatic thermal boundary condition.

The curves in figure (2) shows the evolution of M1 and
M2 with depth ratios for three values of couple stresses in
fluid layer Λ f = 0.01, 0.03 and 0.05 when a = 0.5, T̂ = 1,

Figure 2. Variation of M1 and M2 with d̂ for different values
of Λ f

β = 0.01, µ̂ = 1 and Λm = 0.1 . It is observed that increase
in d̂ increases the value of thermal Marangoni number M1
and M2. Also starting value of thermal Marangoni number for
lower depth ratio is different for both the cases M1 < M2 and
the curves merge for d̂ > 3 and thereafter M1 = M2 for the
corresponding values of Λ f in each of the cases. Also, with
increase in couple stresses in fluid layer increases Marangoni
number in both cases and this implies the variation in couple
stresses enhances the onset of convection and reinforce the
stability of the system.

Figure 3. Variation of M1 and M2 with d̂ for different values
of Λm

The curves in figure (3) show the evolution of M1 and M2
with depth ratios for three values of couple stress in porous
layer Λm = 0.01, 0.03 and 0.05 when a = 0.5, T̂ = 1, β =

0.01, µ̂ = 1 and Λ f = 0.1. It is observed that increase in d̂
increases the value of thermal Marangoni number M1 and M2.
Also starting value of thermal Marangoni number for lower
depth ratio is different for both the types M1 < M2 and the
curves merge for the depth ratio d̂ < 2.5 with further increase
in d̂ the curves branch out and thereafter M1 = M2 for the
corresponding values of Λm . Also, with increase in couple
stresses in porous layer increases thermal Marangoni number
in both types and that is variation in couple stresses enhances
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the onset of convection, thus the system is stable for both the
types of thermal boundary conditions.

Figure 4. Variation of M1 and M2 with d̂ for different values
of a

The curves in figure (4) show the evolution of M1 and M2
with depth ratio for three values of wave number a = 0.5, 0.7
and 1.0 when Λm = 1, Λ f = 1, T̂ = 1, β = 0.01 and µ̂ = 1.
It is observed that increase in d̂ increases the value of thermal
Marangoni numbers M1 and M2 . It is seen that the curves are
merged for d̂ < 1 in M1, implies that the size of the convection
cells are same in fluid dominated composite layer. And with
d̂ >> 1 the curves are branched out and M1 is highest for
lowest value of a . In the case of adiabatic- isothermal thermal
boundary condition the starting value at lower depth ratio is
with greater variation. Also it is observed the curves merge
at a critical depth ratio for each value of a in both the cases
respectively. Hence M1 = M2 after the critical depth ratio
implies the system is most stable when a is the highest as the
size of convection cells are smaller also a gradual increase in
Marangoni number for both the types. The size of convection
cells reduce with increase in the value of a. Thus the size of
convection cells reduce in porous layer dominated composite
system with increase in a but the size of convection cells in-
crease in fluid dominated composite system for lower values
of a.

The curves in figure (5) show the evolution of M1 and M2
with depth ratios for three values of viscosity ratio µ̂ = 1.0,
1.5 and 2.0 when Λm = 1, Λ f = 1, a = 0.5, T̂ = 1 and β =
0.01. It is observed that Marangoni number increases with
increase in viscosity ratio also the curves are merged in both
the cases for d̂ < 3 . The curves branch out and merge with
the each other as the depth ratio increases when d̂ > 3 for
each values of µ̂ respectively in both the types. The onset of
convection is delayed by increase in viscosity ratio and hence
the system is stabilized.

The curves in figure (6) show the evolution of M1 and
M2 with depth ratios for three values of porous parameter
β = 0.001, 0.003 and 0.005 when Λm = 1, Λ f = 1, a = 0.5,
T̂ = 1.0 and µ̂ = 1.0 . It is seen that the curves are merged
for both the cases up to d̂ < 2.5 and after which the curves

Figure 5. Variation of M1 and M2 with d̂ for different values
of µ

Figure 6. Variation of M1 and M2 with d̂ for different values
of β

branch out. With increase in β increases Marangoni number
for both the cases thus making the system stable. The onset
of convection is faster in a porous medium.

The curves in figure (7) show the evolution of M1 and M2
with depth ratios for three values of thermal diffusivity ratio
T̂ = 0.8, 0.9 and 1.0 when Λm = 1, Λ f = 1, a= 0.5, β = 0.01
and µ̂ = 1.0. It is observed that Marangoni number increases
with increase in thermal diffusivity ratio up to a critical depth
ratio and later decreases for higher value vice-versa. The
starting points of curves for both M1 and M2 is different but
merges for d̂ > 4 implies the Marangoni number is same for
both the types with further increase in depth ratio. The onset
of convection is delays for higher values of diffusivity ratio
and hence stabilizes the system.

From the figures envisaged, it is evident that it is possible
to control the Marangoni convection effectively in a compos-
ite system by appropriately choosing the values of depth ratio,
couple stress parameter, permeability, thermal diffusivity ra-
tio, viscosity ratio and wave number.
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Figure 7. Variation of M1 and M2 with d̂ for different values
of T̂

7. Conclusion
Darcy-Benard surface tension driven convection in a com-
posite system saturated with couple stress fluid is studied
analytically. The following are the results can be drawn from
the above plotted graphs:

1. For all non-dimensional parameters variation the ther-
mal Marangoni numbers M1 > M2 for up to a critical
depth ratio d̂ and as d̂ increases the difference in M1
and M2 decreases.

2. Marangoni number is equal after a critical depth ratio
for both the thermal boundary conditions.

3. Increase in couple stress parameter values in both the
layers increases thermal marangoni number that is the
presence of couple stresses is to reinforce stability on
the composite system.
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