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1. Introduction

In 1965, Zadeh [13] introduced the notion of a fuzzy subset
of a set, fuzzy sets are a kind of useful mathematical structure
to represent a collection of objects whose boundary is vague.
Since then it has become a vigorous area of research in dif-
ferent domains, there have been a number of generalizations
of this fundamental concept such as intuitionistic fuzzy sets,
interval-valued fuzzy sets, vague sets, soft sets etc. Lee [7]
introduced the notion of bipolar valued fuzzy sets. Bipolar
valued fuzzy sets are an extension of fuzzy sets whose mem-
bership degree range is enlarged from the interval [0, 1] to [-1,
1]. In a bipolar valued fuzzy set, the membership degree O
means that elements are irrelevant to the corresponding prop-
erty, the membership degree (0, 1] indicates that elements
somewhat satisfy the property and the membership degree
[-1, 0) indicates that elements somewhat satisfy the implicit
counter property. Bipolar valued fuzzy sets and intuition-
istic fuzzy sets look similar each other. However, they are
different each other [7, 8]. Fuzzy group was introduced by
Azriel Rosenfeld [4] and fuzzy algebraic structure was ex-

tended by many authors [2, 5, 11]. Anitha.M.S., et al.[1]
defined a bipolar valued fuzzy subgroups of a group. After
that many algebraic structure have been extended by [3, 6,
12]. Shanthi.V.K and G.Shyamala[10] have introduced the
bipolar valued multi fuzzy subgroups of a group. Bipolar val-
ued multi fuzzy subnearring of a nearing has been introduced
by S.Muthukumaran and B.Anandh [9]. In this paper, the
concept translation of bipolar valued multi fuzzy subnearring
of a nearing is introduced and established some results.

2. Preliminaries

Definition 2.1 ([7]). A bipolar valued fuzzy set (BVFS) B in
X is defined as an object of the form

B={<x,B"(u),B (u) > /xeX},

where Bt : X — [0,1] and B~ : X — [—1,0]. The positive
membership degree B (u) denotes the satisfaction degree
of an element x to the property corresponding to a bipolar
valued fuzzy set B and the negative membership degree B~ (u)
denotes the satisfaction degree of an element x to some implicit

counter-property corresponding to a bipolar valued fuzzy set
B.

Example 2.2. B = {< m,04,-0.3 >,< n,0.8,-0.6 >, <
0,0.9,—0.3 >} is a BVFS of X = {m,n,0}

Definition 2.3 ([9]). A bipolar valued multi fuzzy set (BVMFS)
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A in X is defined as an object of the form

B={(x,B{ (u),By+ (u),...
B, (u)) /xeX}

where B : X — [0,1] and B; : X — [—1,0], for all i. The
positive membership degrees B;r (u) denote the satisfaction
degree of an element x to the property corresponding to a
bipolar valued multi fuzzy set B and the negative membership
degrees B; (u) denote the satisfaction degree of an element x
to some implicit counter-property corresponding to a bipolar
valued multi fuzzy set B.

B, (), By (u), By (u),

Example 2.4. B = {< m,0.7,0,5,0.2,—0.2,—0.4,—0.8 >
<n,04,09,0.2,—0.7,—0.5,—0.2 >, <0,0.9,0.4,0.7, —0.4,
—0.6,—0.2 >} is a BVMFS of X = {m,n,o0}

Definition 2.5 ([9]). Let (N,+,—) be a nearring. A BVMFS
B of N is said to be a bipolar valued multi fuzzy subnearring
of N (BVMFSNR) if the following conditions are satisfied, for
all i,

(i) B (u—v) > min{B; (u),B;} (v)}
), B (v)}
),B; (v)}

uv) < max {B; (u),B; (v)},Yu,y €N

(ii) B (uv) > min {B; (u

(

(
(i) By (u—v) < max {B; (u

(

(iv) By
Example 2.6. Ler N = Z3 = {0,1,2} be a nearring with re-
spect to addition modulo 3 and multiplication modulo 3 . Then
B ={<0,0.7,0.9,0.5,-0.8,-0.9,-0.7 >,< 1,0.5,0.7,0.3
-0.6,—0.5,—-0.4>,<2,0.5,0.7,0.3,-0.6,—0.5,-0.4 >} is
a BVMFSNR of N

Definition 2.7 ([9]). LetA = <AT,A2+, AN LATLAS . A;)
and B= (B ,B5,... B} ,B|,B;,...,B, ) be two blpolar val-
ued multi fuzzy subsets with degree n of a set X We define the

following relations and operations:

(i) A C B if and only if for all i, A (u) < B (u) and
A; (u) > B; (u),YueX.

(ii) A= B ifand only iffor all i, A (u)
B (u),Yu € X.

=B; (u) and A; (u) =

(iii) ANB= {<u Imn(Al+
..,min (A} (u), B, (u ))

(w))
max (A
max (A5 (u),B5 (u)),...

,max (A, (u)7

Definition 2.8. Let A = (Al ,Ax",... AT A Ay, .. A))
be a bipolar valued multi fuzzy subset of X. Then the following
translations are defined as

(i) 2AA)=(2AT 2 AL, 2 AT VAT AT, 2 AL ) wh
-ere ? A (x) =min{1/2, A] (x)} and
2A; (x) =max{—1/2, A; (x)},
forall x in X and for all i.
818

(i) 2(A) = (AT 1A T, AT 1AL VAS 1A ), where
'A*( ) =max{1/2, A} (x)} and
A7 (x) =min{—1/2, A; — (x)},
forall xin X
(”l) roﬁ (A) = <th,ﬁ (Al)+ 7Q06,ﬁ (A2)+7"'5Q(X,ﬂ (An)+7
QOHﬁ(Al)_vQO(()v(AZ)_v"-aQa,ﬁ (A"l)_> Where
Qup (A1) " (x) =min{a;, A (x)} and Qg g (Ai) ™ (x) =
max{ﬁ,, - } Sforall x in X and o in [0,1] and B;
in[-1,0] andforalll
(iv) Pog(A) = (Pap(A)", ( ) Pap ()T
Pop (A1), ocB( 2)", B (An)") where Py (A;)*
(x) :max{al, s }and
Po, (A)” (x) = min{ﬁi7 Ai_(x)} ,

forallxin X and oy in [0,1] and B; in [-1,0] and for all
i

(v) GaB( )= < (Al) aB(A2) o Gop (An)+>
aB( 1) Gap(A2)",...,G,p(An)") where Ggp
(A ) (x )zOC,A"'(x) a”dGaﬁ( i) (x)=—Bi A7 (x),

forallxin X and oy in [0,1] and B; in [-1,0] and for all
i

2.1 Properties
Theorem 2.9 ([91). IfB=(B{,B;,...,B} ,B|,B;5,...,B,)
and C = <Cfr,C2+7 ,Cf Cr ,Cz_7 ,Cn_> are two bipolar
valued multi fuzzy subnearrings with degree n of a nearring
R, then their intersection BN C is a bipolar valued multi fuzzy
subnearring of R.

Theorem 2.10. IfA= (A", A>",... Al AT A5 ,... Ay ) is
a bipolar valued multi fuzzy subnearring with degree n of a
nearring R, then 2(A) = (7 (A}),?(AY),....,2(A]),?(A])
? ( A;) yeensy? ( A;)> is a bipolar valued multi fuzzy subnear-
ring of R.

Proof. For every u and v in R, for each i,

?(A) (u—v)=min{1/2, A} (u—v)}

>min{1/2,min {A; (u),A] (v)} }

=min {min{1/2,4;+ (u)},min {1/2,A; (v)} }

=min{?(A;) (u),?(A}) (v)} foralli

Therefore forall i, ? ( A") (u—v) > min{? ( A]") (u),? (A})

(v)} for all u, v in R. Also,

?(Af) (wv) =min{1/2, A (uv)}

> min {1/2,min {A] (u), A (v)} }
=min{min{1/2, Af (u)} ,min{1/2, A} (v)}}
=min{?(A;) (u),? (A7) (v)}.
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Therefore forall i, ? ( A;") (uv) > min {? ( A;
for all u,v in R. And,

(A7) (u—v)=max{—1/2, A; (u—v)}

< max {—1/2,max {A; — (u),A; (v)} }

=max {max {—1/2, A; (u)} ,max{—1/2, A; ()} }
A7) (@),2 (A7) ()

) (u—v) <max {?(A;

) (u),?(Ai*) (v)

:max{?(

Therefore for all i, ? (A-’

for all u,v in R. Also, l

?(A7) (uv) = max {—1/2, A7 (uv)}
< max{—1/2,max {A; (u),A; (v)}}
=max {max {—1/2, A; (u)} ,max{—1/2, A; (v)} }
A7) )2 (A7) (V)
Therefore forall i,? (A;) (uv) <max {? (4; ) (u),? (A;) (v)}

for all u,v in R. Hence ?( A) is a bipolar valued multi fuzzy
subnearring of R. O

=max {?(

Theorem 2.11. IfA= (A", A", .. Af AT A5, .. A, ) is
a bipolar valued multi fuzzy subnearring with degree n of a
nearring R, then '(A) = (1 (A17),!(A27),..., 1 (A7), L (A))

1(A3),...,Y(A,)) is a bipolar valued multi fuzzy subnear-
ring of R.

Proof. For every u and v in R, for each i,

HA]) (u—v) =max {1/2, A} (u—v)}
> max {1/2,min{A; (u),A] (v)} }
=min {max {1/2, A} (u)} ,max {1/2, A (v)} }
= min {1 (A7) (), (A7) (")}
Therefore for each i,! (A") (u—v) > min{! (A;") (u),! (A;")
(v)} for all u,v in R. And

LA (uv) =max {1/2, A (uv)}
>max {1/2,min {A;" (u),A] (v)}}
=min{max {1/2, A (u)} ,max {1/2, A (v)}}
—min {1 (A7) (0,1 (47) ()}
Therefore for each i, ! (A;") (uv) > min {! (A;") (u),! (A) (v) }
for all u, v in R. Also,
YA7) (u—v)=min{—1/2, A; (u—v)}
<min{—1/2,max {A; (u),A; (v)}}
=max {min{—1/2, A; (u)} ,min{—1/2, A; (v)} }
—max {1 (A7) (! (A7) )}
Foreach i, thus ! (A;) (u—v) < max {!(A;
for all u,vin R. And ,

H(A7) (wv) =min{—1/2, A7 (uv)}
<min{—1/2,max {A; (u),A; (v)} }
= max {min {— 1/2 A7 (u)},min{—1/2, A7 (v)} }

=max {1(4;7) (u),! (A7) ()}

819

} Therefore foralli,! (A; ) (uv) <max {! (A

P) W), (A7) )}
for all u,v in R. Hence !(A) is a bipolar valued multi fuzzy
subnearring of R. O

Theorem 2.12. IfA = (A A7 ,... . Ay+,A Ay, .. A, ) is
a bipolar valued multi fuzzy subnearring with degree n of a
nearring R, then

Q(c1,0,-,00), (B1.BarB)) (A)
- <Q((al~,¢12w~,0!n ,

O ((a1,02..00).(Br Basvsfi)) (A2 ) 5+
Q((a1,02.00).(B1 oo 0) (A ) -
Q((al,az ..... o). (BrBors)) (A1)
Q((a1,0.00).(Br Brovfi)) (A2 ) 5+
Q((a1,02,00).(B1 Basv)) (A )

is a bipolar valued multi fuzzy subnearring of R.

Proof. For every uand vin R, o; in [0,1] and B; in [—1,0], for
each i, we have

O((c1,020000,00),(B1rseers /3,,) ( 7) (w—v)=min{oy, A7 (u—v)}
Zmin{oci,mm{Ai+ ,i }}
=min {min{0;, A (u)} ,min{o;, A7 (v)}}
:min{Q((q,(xz.,.”,a,,),(ﬁl,Bg,...,ﬁ,l)) (A7) (w),
O((c1.trrt).(Br v i) (AT ) (V)}
Therefore for each i,
Q((c1,00,-0). By o)) (AT) (=)
2 min{Q<(a1va27"'7an))<ﬁl7ﬁ27"'7ﬁn)) (Al+) (u)’
Q((a1,00..0), (Br o)) (A7) (V) }
for all u,vin R. And
Q((c1,001,). (B B ﬁn)>( )(W) min {a;, A (uv) }
> mln{ai,mm {Al+ }}
= min {min { &, ;”(u)},min{a,-, AF()}}
_mm{Q ((c1,00;5-,0m),(B1:B2;---,Bn)) (Al+) (u),
O((c1,0,00), (Br Brv)) (A7) (V) }-
For each i, thus
Q((c1,0200).(B1 o)) (A7) (V)
me{Q«m ), (Br B i) (AF) (1),
Olfernc ) (A7) )}

Q(er ). (B v ﬁn»( ) (= v) = max (B, A (u=v)}
< max { §;, max {A; (u }}
:max{max{[i,»,A;(u)},max{ﬁ[,A;(v)}}

= max { O (cy.0..c0).(B1 o)) (A7) (1),

o) (Br B ) (A7) ()} -
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Therefore for each i,

O((cr.rn) (Br o)) (A7) (=)
A7) (u),

< max{Q((ay.ay....c0).(B1 oo )

A7) ()}

(10300 (Br )
for all u,vin R. And

O((o1.001iti)(Br BoreB)) (A7) (wv) = max {Bi, A} (uv)}
< max{ﬁi,max {Ai_(u),Al-— (v)}}

u)},max {B;, A; (v)} }

= max {Q((ay.0t....00), (B fo...f)) (A7) (1),

o), (B Bar i) (A7) (V) -

= max {max { §;, A

Therefore for all i,

O(a).tr. ) (Br o)) (A7) (V)
< max {Q((oy.p.....00).(B1 o)) (A7) (1),

Ql(er,t3. ). (1 B B)) (A7) (V) }

for all u,v in R. Hence Q((c, ay.....c0),(B1.fas....n)) (A) 18 @ bipo-
lar valued multi fuzzy subnearrlng of R. O

Theorem 2.13. IfA= (AT A3 ,... AT AT Ay ,...,A, ) isa
bipolar valued multi fuzzy subnearring with degree n of a
nearring R, then

is a bipolar valued multi fuzzy subnearring of R.

Proof. Forevery uand vin R, ¢; in [0,1] and f; in [—1,0], for
eachi

P 0.e0). (B o) (AT) (=) = max{ e, A7 (u—v)}
> max{oc,-,min{AJr + }}
= min {max { o;;, A;" } max{al, O

o) (BB ) (AT) (1),
o), (B1 B2 ) (Ai*)( )}

AF) ()

an),(B1,B2s--Bn)) (Az+) (I/t),

P((al"XZ’ 200),(BB2sBry) ( +) (V)}

2 min {P ((c1,0050-1s

for all u and v in R. And,

P ot (B1 o)) (A ) = max { o, A (uv) }
> max {0y, min{A; + (u),A; + (v )}}

= min {max {o;, A; + (u)} ,max {a;,A

FW}

=min{P(<a.,az,.... (ﬁhﬁz ..... By (A7) @),

For each i, thus

Pay.a.) (B o)) (AT) (9)
2 min {P<<a17a27'“7an)a(ﬁlsﬁZ#"vﬁl’L)) (Al+) (u)’
A7) ()}

Pl(ay.a0). (B o))

for all # and v in R. Also,

P(0,0,00,00),(Br B ) (Af)(u =min{f;, A7 (u—v)}
Smin{ﬁi,maX{A* - }}

:max{min{ﬁ,-7 ; } mm{ﬁ,7 ; (v }}

= max {P((a,...c0), (B1.for ) (A7) (1

o). (Br B ) (A7) ()} -

Therefore for all i,

Pllay,ty,oc0).(y o)) (A7) (=)
< max {P(ay,05,...00), (1 or. o)) (A7) (1),

A7) )}

P((a) ). (1 Brf))

for all # and v in R. And,

Pe1 ). (B o) (A7) () = min { B, A7 (uv) }
< min {B;,max {A; (u),A; (v)} }
=max {min{B;, A; (u)} ,min{B;, A; (v)} }

= max { P(ay.0....00) (1 B pn)) (A7) (1),

P((ay,00,00),(B1 Basfr)) (A7) ()} -
For each i,
P((Ofl7052,4-470%)»(!317B27~-~7Bn)) (A;) (uv)

< max {P(ay.0....00). (51 oo ) (A7) (),

A7) (W)}

bipolar valued mu1t1 fuzzy subnearrmg of R.

Theorem 2.14. IfA = (A AT, ... AT A[ Ay, ... A, )isa
bipolar valued multi fuzzy subnearring with degree n of a

L85,
a,
E Qw; 72
= G

820
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nearring R, then

G ((01,02,.-,00),(By Bar)) (A)
= (G((c1.00,..00), (B o ﬁn)) (A7),

G((al,az,...,anx(ﬁhﬁz ..... g (A1)
G(@1.02.0) (B o)) (A2) 5+
G(1.00.01) (B Brrer)) ()
is a bipolar valued multi fuzzy subnearring of R.
Proof. Forevery uand vin R, ¢; in [0,1] and fB; in [—1,0],
G (o.0300) (B Brv)) (AT) (= V) = 0l Aji (=)
> o; (min {A; (u),A (v)})
(), 05 AT (v) }
= min{G((ey.0....00).(81 o)) (A7) (1),
G(.0310) (B Brvepr)) (A7) (V)

Therefore for each i,

=min{o; A

B ) (AT) (),
G((ay.ctr.an).(Br o) (AT) (V) }
for all ¥ and v in R. And

Gl(1.ay..c0).(B1 B ﬁn»( ;) () = 06 A (w)
> o; (min {A; (u),A (v)})

:min{oc,- F(u), a,A*(v)}

—mm{G (e O ﬁn))( ;) (W),

G((a,ty,.ta) (1 o)) (A7) (= V) = —B; A7 (u—v)
< —B (max {A A;(v)})
—max{ Bi A; —Bi A7 (v )}

). (B1Brr ) ( 7))}

Therefore for all i,

G((ay,00,...,

< max {G«al,az,...,an>,<ﬁ1,ﬁz,...,ﬁm (A7) (w),
G(e1.00.mt) (Br Prrf)) (A7) (V) }

821 X

for all u and v in R. And,

G((a.0,.a )([51132 ..... B (A7) (wv) = —B; A7 (wv)
A;<v>})

—Bi A7 (v)}
=maX{G(<a1,az ..... o), (B Bare i) (A7) (1),
G((a1,00,).(B1 o) (A7) (V) }-

Therefore for all i,

G((o 000 00).(Br P o)) (A7) (V)
< max{G(a,.a....c0).(B1 ... ) (Ai ) (1),
G((oy.0y.s) (B1 o)) (A7) (V) }

for all u and v in R. Hence G((q a,.....0,).(B1 ..
bipolar valued multi fuzzy subnearring of R.

Theorem 2.15. If A = <A1 AT LLATAT LAY LAY
and B=(B,",B,",...,Bf B, , B, ,...,B, ) are bipolar val-
ued multi fuzzy subnearrings wzth degree n of a nearring R,
then \(ANB) =!(A)N!(B) is also a bipolar valued multi fuzzy

subnearring of R.
Proof. The proof follows from the Theorem 2.1 and 2.3. [

Theorem 2.16. IfA = (A] A5 ,... A} A A ... A, ) and
B = <BT,Bz+,...,BI,BI B,,.. 7B;> are blpolar valued
multi fuzzy subnearrings with degree n of a nearring R, then
2ANB) =2A)N?(B) is also a bipolar valued multi fuzzy

subnearring of R.
Proof. The proof follows from the theorem 2.1 and 2.2. [

Theorem 2.17. IfA = (A11,AS,... A} AT Ay ,..., A, ) is

a bipolar valued multi fuzzy subnearring with degree n of a

nearring R, then !(2(A)) =2(1(A)) =(1/2,1/2,...,1/2,-1/2,
—1/2,..., —=1/2) is also a bipolar valued multi fuzzy subn-
earring of R.

Proof. The proof follows from the theorem 2.2 and 2.3. And
forevery xin Rand forall ii. ? A (x) =min {1/2, A] (x)
1/2 and A/ (x) = max {1/2, Af (x } >1/2,50!(? (A+)§
2(1(Af)) =1/2.

And ?A; (x) = max {—1/2,A; (x)} > —1/2 and !A; (x) =
min{—1/2,A; (x)} <—=1/2,50!1(?(A;)) =2 (1 (4;)) =—1/2.
Hence !(2(A)) =2(1(A)) = (1/2,1/2,...,1/2,—1/2,-1/2,
—1/2) is a bipolar valued multi fuzzy subnearring of R. [J

Theorem 2.18. IfA=(A] AS,... . AT ,A],A;,... A, ) and
B= <Bfr,Bz+7 B By By,...,B, > are bipolar valued multi
fuzzy subnearrings with degree n of a nearring R, then
Pl(as,t..0), 81,5 ,ﬁn»(AﬂB) = Pl(o .0, (B o)) (A) D
P00, ee).(B1 B P ))( is also a bipolar valued multi

fuzzy subnearring of R.

Proof. The proof follows from the theorem 2.1 and 2.5. [
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Theorem 2.19. IfA= (A ,AS,... . Al AT, A;,... A, ) and
B= <BI+,B§F, ...,BI B B;,... ,B;> are bipolar valued multi

fuzzy subnearrings with degree n of a nearring R, then

fuzzy subnearring of R.

Proof. The proof follows from the theorem 2.1 and 2.4. [

Theorem 2.20. IfA = (A ,A],... . Aj A, Ay—,... A, ) is
a bipolar valued multi fuzzy subnearring with degree n of a
nearring R, then

={ay,0,...,0, B1,B2,-..,Bn) is also a bipolar valued multi
fuzzy subnearring of R.

Proof. The proof follows from the theorem 2.4 and 2.5. [

Theorem 2.21. IfA=(A] A", ... Al AT ,A5,... A, ) and
B=(B{.,B,*,...,B},B] B;,...,By,) are bipolar valued

multi fuzzy subnearrings with degree n of a nearring R, then

fuzzy subnearring of R.

Proof. The proof follows from the theorem 2.1 and 2.6. [
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