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Abstract
In this paper, the authors have studied about availability estimation of nuclear power generation plants. If any
of the subsystems stops working, then the whole system gets fail. Pre-emptive resume policy has been used
for repair purposes, for failures follow exponential time distribution, whereas all repairs follow general time
distribution. The system under consideration is non- Markovian the supplementary variable technique has been
used for the mathematical formulation of the model. Laplace transforms are being utilized to solve mathematical
equations. Some particulate cases and asymptotic behavior of the system have also been derived to improve
the model’s practical importance. The expression for the availability function has been computed. A numerical
problem, together with its graphical representation, has been appended in the end to highlight actual results.
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1. Introduction
More than 16% of the world’s electricity is generated by
nuclear energy, over from all sources worldwide in 1960.

A nuclear reactor produces and controls energy release
from splitting the atoms of uranium and plutonium elements.
In a reactor of atomic energy, the energy produced by heat is
used to produce steam from atoms’ continuous fission in the
fuel. The steam is used to supply electricity to turbines (as in
most fossil fuel plants). Most types of reactors have several
components:
Fuel: Uranium oxide (UO2) pellets are generally arranged to
form fuel rods in tubes. In fuel units, the rods are positioned
in the core reactor.
Moderator: This material slows down the released neutrons
from fission to cause more split. It is often water, but perhaps
heavy water or graphite.
Control rods: These are made of cadmium, hafnium, or
boron neutron-adsorbing material that is inserted or removed
from the core to control or to stop the reaction rate. (The use
of other neutron absorbers for secondary shutdown systems,
usually in the primary refrigeration system).
Coolant: The heat from the core will be delivered through
a liquid or gas. The moderator also operates as a coolant in
light-water reactors.
Pressure vessel or pressure tubes: Usually a full steel vessel
that contains the reactor core and the coolant/coolant, but it
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can also be several tubes that hold the fuel and transport the
coolant via the moderator.
Steam generator: Part of the cooling system used to produce
steam for the turbine with heat from the reactor.
The nuclear reactor system configuration has been shown in
fig-1(a), (b), respectively. The entire plant was divided into
four subsystems: A, B, C, and D.

Fig-1(a): Nuclear Reactor

Subsystem A is a reactor vessel that generates heat energy
by splitting atoms. This energy is transmitted via coolant to
the B subsystem. This B subsystem is a heat exchanger that
transforms the heat into vapor. Now this steam is moving
to the C subsystem, a turbine. This subsystem C, connected
to the generator (subsystem D), generates electrical energy
for turning the turbine. Lastly, the generator can store elec-
trical energy for further use. In this model, the authors have
taken one redundant standby generator. So, subsystem D has
two standby redundant units and. If any of its subsystems
stop working, the entire system will fail. For repair purposes,
pre-emptive resume policies were adopted. All failures are ex-
ponential, while all repairs follow the overall time distribution.
State- transition diagram has been shown in fig-1(c).

2. Preliminaries

2.1 List of notations
αi : The ith subsystem’s failure rate,

where i = A,B,C, and D.
(1−β ) : The failure rate of switching device S.
δ : Repair rate of switching device S.
µi( j)∆ : The first order probability that ith subsystem can be repaired in

the time interval ( j, j+∆) conditioned that it was not repaired
j, when i = A,B,C, and D; j = x,y,z, and m

P0(t) : Pr{ at time t, the system is all operable }
PD1(n, t)∆ : Pr{ at time t, the system is operable with standby

D -unit while online D -unit has failed already }. Elapsed
repair time lies in the interval (n,n+∆).

Pi( j, t)∆ : Pr{ at time t, the system has failed due to failure
of i th subsystem }. Elapsed repair time lies in the
interval ( j, j+∆), where i = A, B,C,D
and j = x,y,z,m, respectively.

PD1i( j, t)∆ : Pr{ at time t, the system has failed due to failure
of i th subsystem while one-D-unit has
failed already }. Elapsed repair time for ith

subsystem lies in the interval ( j, j+∆), where i = A,B,C, and
j = x,y,z, respectively.

PDii( j,m, t)∆ : Pr{ at time t, the system has failed due to failure
of 1th subsystem while one-D-unit has failed already }.
Elapsed repair time for ith subsystem lies in the interval ( j, j+∆),
and for the D−1 unit, it lies between (m,m+∆), where i = A,B,C
and j = x,y,z respectively.

PD1S(t) : Pr{ at time t, the system has failed due to failure
of switching device S while one D-unit has failed already}

F̄(s) : Laplace transform (L.T.) of function F(t)
Si(t) : µi( j)exp ·−

∫
µi( j)d j}∀i and j.
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2.2 Assumptions
According to this model, the following are some assumptions:

(i) At time t = 0, all the system is new and operable with
full efficiency.

(ii) The switching device used for the online standby gener-
ator is imperfect.

(iii) All the failures follow exponential time distribution,
and nothing can fail from a failed state.

(iv) All repairs follow the general distribution of time and
are perfect.

(v) Pre-emptive resumption policy has been implemented
for repair purposes.

(vi) Repair to subsystem D can be given only when both the
generators become fail. Otherwise, repair facilities are
always available.

Fig-1(b): System Configuration

Fig-1(c): Transition-state diagram

3. Formulation of mathematical model
By using probability consideration and limiting procedure, we
obtain the following set of difference-differential equations,
which is continuous in time, discrete in space, and governing
the behavior of the considered system:

[
d
dt

+αA +αB +αC +βαD

]
P0(t)

=
∫

∞

0
PA(x, t)µA(x)dx+

∫
∞

0
PB(y, t)µB(y)dy

+
∫

∞

0
PC(z, t)µC(z)dz+

∫
∞

0
PD(m, t)µD1(m)dm

+
∫

∞

0
PD2(n, t)µD2(n)dn (3.1)

[
∂

∂ j
+

∂

∂ t
+µi( j)

]
Pi( j, t) = 0, (3.2)

∀, i = A,B,C and j = x,y,z respectively[
∂

∂m
+

∂

∂ t
+ αA +αB +αC +αD +(1−β )

+µQ(m)]PD1(m, t)

=
∫

∞

0
PDiA(x,m, t)µA(x)dx

+
∫

∞

0
PD1B(y,m, t)µB(y)dy

+
∫

∞

0
PDLC(z,m, t)µC(z)dz (3.3)

[
∂

∂ j
+

∂

∂ t
+µi( j)

]
PDii( j,m, t) = 0 (3.4)

For i = A,B,C and j = x,y,z respectively[
d
dt

+δ

]
PS(t) =(1−β )PD1(t) (3.5)[

∂

∂n
+

∂

∂ t
+µD2(n)

]
PD2(n, t) =0 (3.6)

Boundary conditions are:

Pi(0, t) =αiP0(t) ,∀i = A,B,C (3.7)
PD1(0, t) =δPS(t)+βαDP0(t) (3.8)

PD1(0,m, t) =αiPD1(m, t), ∀i = A,B,C (3.9)
PD2(0, t) =αDPD1(t) (3.10)

Initial conditions are:

P0(0) = 1, otherwise zero (3.11)

3.1 Solution of the model
Taking Laplace transforms of equations (3.1) through (3.10)
subjected to initial conditions (3.11), we obtain

[s+αA +αB +αC +βαD] P̄0(s)

= 1+
∫

∞

0
P̄A(x,s)µA(x)dx+

∫
∞

0
P̄B(y,s)µB(y)dy

+
∫

∞

0
P̄C(z,s)µC(z)dz+

∫
∞

0
P̄D1(m,s)µD1(m)dm

+
∫

∞

0
P̄D2(n,s)µD2(n)dn (3.12)
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[
∂

∂ j
+ s+µi( j)

]
P̄i( j,s) = 0, (3.13)

∀i = A,B,C and j = x,y,z respectively.

[
∂

∂m
+ s+αA +αB +αC +αD +(1−β )+µD1(m)] P̄D1(m,s)

=
∫

∞

0
P̄DiA(x,m,s)µA(x)dx

+
∫

∞

0
P̄D1B(y,m,s)µB(y)dy+

∫
∞

0
P̄D1C(z,m,s)µC(z)dz

(3.14)

[
∂

∂ j
+ s+µi( j)

]
P̄Dii( j,m,s) = 0 (3.15)

For i = A,B,C and j = x,y,z respectively

[s+δ ]P̄s(s) =(1−β )P̄D1(s)[
∂

∂n
+ s+µD2(n)

]
P̄D2(n,s) =0

P̄i(0,s) =αiP̄0(s) , ∀i = A,B,C

P̄D1(0,s) =δ P̄s(s)+βαDP̄0(s)

P̄Dii(0,m,s) =αiP̄D1(m,s), ∀i = A,B and C

P̄D2(0,s) =αDP̄D1(s)

Now integrating equation (3.13) with the help of boundary
conditions (3.18), we get

P̄i( j,s) = αiP̄0(s)exp
{
−s j−

∫
µi( j)d j

}
integrating this again w.r.t. j from 0 to ∞, we obtain

P̄i(s) = αiP̄0(s)
1− S̄i(s)

s
or,

P̄i(s) = αiP̄0(s)Di( s), where i = A,B and C (3.16)

Simplifying (3.16), we get

P̄s(s) =
(1−β )P̄Dl (s)

(s+δ )
(3.17)

Integrating equation (3.17) subjected to (3.21), we get

P̄D2(n,s) =αDP̄D1(s)exp
{
−sn−

∫
µD2(n)dn

}
(3.18)

⇒ P̄D2(s) =αDP̄D1(s)DD2( s) (3.19)

Now solving (3.15) with the help of (3.20), we obtain

P̄Dii( j,m,s) =αiP̄D1(m,s)exp
{
−s j−

∫
µi( j)d j

}
⇒ P̄Dii(m,s) =αiP̄D1(m,s)Di( s)

⇒ P̄Dii(s) = αiP̄D1(s)Di( s), (3.20)

where i = A,B and C. Simplifying equation (3.14) with the
help of relevant expressions, we get[

∂

∂m
+ s+αA +αB +αC +αD +(1−β )+µD1(m)

]
P̄D1(m,s)

=
[
αAS̄A(s)+αBS̄B(s)+αCS̄C(s)

]
P̄D1(m,s)

⇒
[

∂

∂m
+ s+ sαADA(s)+ sαBDB(s)+ sαCDC(s)+αD

+(1−β )+µD1(m)] P̄D1(m,s) = 0

Integrating this subject to boundary condition (3.19), we ob-
tain

P̄D1(m,s) =P̄D1(0,s)exp
{
−Am−

∫
µD1(m)dm

}
⇒ P̄D1(s) =P̄D1(0,s)DD1(A)

⇒ P̄D1(s) =
∣∣βαDP̄0(s)+δPs(s)

∣∣DD1(A)

=

[
βαDP̄0(s)+δ

(1−β )P̄D1(s)
(s+δ )

]
DD1(A)

or, P̄D1(s) =
βαDP̄0(s)DD1(A)(s+δ )

(s+βδ )

where

A = s [1+αADA(s)+αBDB(s)+αCDC(s)]+αD +(1−β )

or, P̄D1(s) = B(s)P̄0(s) (3.21)

In last, simplifying equation (3.12) with the help of relevant
expressions, one may obtain:

P̄0(s) =
1

E(s)

Thus, finally, we obtained the following L.T. of various transition-
state probabilities of fig-1(c), in terms of E(s)

P̄0(s) =
1

E(s)
(3.22)

P̄i(s) =
αiDi(s)

E(s)
, i = A,B, and C (3.23)

P̄Di(s) =
B(s)
E(s)

(3.24)

P̄Dii(s) =
αiB(s)Di(s)

E(s)
, i = A,B and C (3.25)

P̄S(s) =
(1−β )B(s)
(s+δ )E(s)

(3.26)

and P̄D2(s) =
αDB(s)DD2(s)

E(s)
(3.27)

where,B(s) =
βαDDD1(A)(s+δ )

(s+βδ )
(3.28)

A =s [1+αADA(s)+αBDB(s)+αCDC(s)]

+αD +(1−β ) (3.29)
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E(s) =A− (1−β )(1+αD)−αDS̄D2(s)B(s)

−
[

βαD +
δ (1−β )B(s)

s+δ

]
S̄D1(A)

It is interesting to note here that

Sum of equations (3.27) through (3.32) =
1
s

(3.30)

3.2 Long-run behaviour of the system

Using Abel’s lemma, viz; limt→∞ P(t) = lims→∞ sP̄(s) = P
(say), provided the limit on left exists, in equations (3.27)
through (3.32), we obtain the following long-run behavior of
the considered system:

P0 =
1

E ′(0)
(3.31)

Pi =
αiMi

E ′(0)
, ∀i = A,B, and C (3.32)

PDi =
B(0)
E ′(0)

(3.33)

PD,i =
αiB(0)Mi

E ′(0)
, ∀i = A,B and C (3.34)

PS =
(1−β )B(0)

δE ′(0)
(3.35)

and PD2 =
αDB(0)MD2

E ′(0)
(3.36)

where,

B(0) =αDDD1 (A0)

A0 =αD +(1−β )

E ′(0) =
[

d
ds

E(s)
]

s−0

Mi =− S̄′i(0) = Mean time to repair ith failure.

3.3 Particular cases

Case (i) When all repairs follow exponential time distri-
bution
Setting S̄i( j) = µi

( j+µi)
∀i and j, in equations (3.27) through

(3.32), we obtain the following L.T of probabilities of states

of fig-1(c) in this case:

P̄0(s) =
1

E1(s)

P̄i(s) =
αi

E1(s)(s+µi)
, ∀i = A,B, and C

P̄D1(s) =
B1(s)
E1(s)

P̄Dii(s) =
αiB1(s)

E1(s)(s+µi)
∀i = A,B, and C

P̄s(s) =
(1−β )B1(s)
(s+δ )E1(s)

and P̄D2(s) =
αDB1(s)

E1(s)(s+µD2)

where, B1(s) =
βαD(s+δ )

(s+βδ )(A1 +µD1)

A1 =s
[

1+
αA

s+µA
+

αB

s+µB
+

αC

s+µC

]
+αD +(1−β )

E1(s) =A1− (1−β )(1+αD)−
αDB1(s)µD2

(s+µD2)

−
[

βαD +
δ (1−β )B1(s)

(s+δ )

]
µD1

A1 +µD1

Case (ii): When switching device S is perfect.
In this case, PS(0) = 0 and put β = 1 in equations (3.27)
through (3.32), we can obtain the required results.

3.4 Reliability and M.T.T.F. of the system
We have from equation (3.27)

R̄(s) =
1

s+αA +αB +αC +βαD

Taking inverse L. T., we obtain

R(t) = exp{−(αA +αB +αC +βαD) t} (3.37)

Also,

M ·T ·T ·F = lim
s→0

R(s)

=
1

αA +αB +αC +βαD
(3.38)

3.5 Availability of considered system
We have from equations (3.27) and (3.29)

P̄up(s) =
1

s+αA +αB +αC +βαD[
1+

βαD

s+αA +αB +αC +αD +(1−β )

]
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Inverting this, we obtain

Pup(t) =
[

1+
βαD

(1+αD)(1−β )

]
e−(αA+αs+αc+βαD)t

(3.39)

− βαD

(1+αD)(1−β )
e−(αd+αs+αc+αD+1−β )t

(3.40)

Also,

Pdown (t) = 1−Pup (t) (3.41)

4. Numerical Illustration
For a numerical example, let us consider the values: αA =
0.02,αB = 0.03,αC = 0.06,αD = 0.08,β = 0.6 and t = 0,1,2,
. . . ,10 Using these values in equations (53),(54), and (55),
we compute the table- 1,2, and 3 , respectively. The corre-
sponding graphs have been shown in fig-2, 3, and 4 respec-
tively.

5. Results and discussion
Table-1 gives the values of reliability function for different
values of time t. Its graph has been drawn in fig-2. Analysis
of table-1 and fig-2 reveals that the considered system’s relia-
bility decreases slowly as we make an increase in the value of
time t. Table- 2 gives the values of M.T.T.F. w.r.t. switching
rate β . Its graph has been shown in fig-3. Examination of
table-2 and fig-3 yields that M.T.T.F. decreases approximately
in a consistent manner as we increase the value of β t.
Table- 3 computes the values of the considered system’s avail-
ability function w.r.t. time t, and its graph has been shown
in fig-4. This fig-4 indicates that the system’s availability
decreases catastrophically initially, and afterthat, it decreases
smoothly. It is also noted that there are no sudden jumps in
R(t),M.T.T.F., and Pup(t) values.

Table-1
Time t Reliability R(t)

0 1
1 0.85385
2 0.729059
3 0.622507
4 0.531528
5 0.453845
6 0.387515
7 0.33088
8 0.282522
9 0.241231

10 0.205975

Fig 2.

Table-2
Switching Rate M.T.T.F.

0 9.090909
0.1 8.474576
0.2 7.936508
0.3 7.462687
0.4 7.042254
0.5 6.666667
0.6 6.329114
0.7 6.024096
0.8 5.747126
0.9 5.494505
1 5.263158

Fig 3.

Table-3
Time t Availability Pup (t)

0 1
1 0.887127
2 0.775919
3 0.672744
4 0.58009
5 0.498452
6 0.427345
7 0.365854
8 0.312919
9 0.267483

10 0.228555
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Fig 4.
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