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Abstract
Mathematical chemistry has widened the scope of research by giving potential applications in almost every field.
The topological index is a part of mathematical chemistry, where the chemical structure is modelled as a graph
and a numerical invariant can be determined. This numeric quantity explains the chemical and bio-activities of
the chemical structure for further research analysis. In this work, the general neighborhood redefined Zagreb
index is defined and computed for boron triangular nanotubes and boron-α nanotubes. Nine degree-based
indices viz., first Zagreb, second Zagreb, hyper Zagreb, first NDe, second NDe, third NDe, fourth NDe, redefined
first Zagreb and redefined second Zagreb indices are derived from the general neighborhood redefined Zagreb
index obtained for the said chemical structure.
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1. Introduction

Chemical graph theory is a study of chemical compounds
with simple graph, multiple edges and finite graphs. The
graph G consist of vertices and edges such that vertices rep-
resents the atoms and the edges represents the link connect-
ing the vertices. The expansion of research in mathematical
chemistry has resulted because of its potential applications in
chemistry, pharmacy as drug design is dependent on the nu-
merical invariant, called the topological index. The chemical
graph theory provides the study of characteristics of chemi-
cal compounds[8, 19, 20, 23]. The mathematical chemistry
provides several topological indices used in QSAR/QSPR
studies [4, 5, 15, 17]. There are various kinds of topological
indices that are used to determine the characteristics of chem-
ical compounds. The numerical invariant that is determined
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in the study of mathematical chemistry is used to check the
toxicity of the chemical compound. This study is referred as
QSTR(Quantitative Structure Toxicity Relationship).

Consider a graph G = (V (G),E(G)), where V (G) repre-
sents vertices and E(G) represents edges of G. The dG(b)
is the degree of a vertex, is the combined sum of vertices
and edges depending on the sum of neighborhood degree.
The group of all vertices close to b are often called as open
neighborhood of b (NG(b)). The closed neighborhood of
b is the set NG[b] = NG(a)∪{b}. The set NG[b] is the set
of closed neighborhood vertices of b. Let DG(b) = dG(b)+
∑a∈NG(b) dG(b) be the degree sum of closed neighborhood
vertices of b [12, 22].

Adnan Aslam et al., in [1], H. Ali et al., in [3] and S. Ak-
ther et al., in [2] discussed some topological indices for chem-
ical structures such as boron triangular nanotubes and ben-
zenoid structures. Recently Jia-Bao Liu et al., in [11] obtained
the expressions for topological aspects of Boron Nanotubes.
Motivated by the work on nanostructures, we define a novel
general neighborhood redefined Zagreb index(NReZ(β ,γ)) and
compute the values of neighborhood viz., first Zagreb, second
Zagreb, hyper Zagreb, first NDe, second NDe, third NDe,
fourth NDe, redefined first Zagreb and redefined second Za-
greb indices using NReZ(β ,γ) for nanostructures such as boron
triangular and boron-α nanotubes.

Definition 1.1. Sourav Mondal et al., [13] introduced neigh-
borhood version of first Zagreb index, second Zagreb index,
first NDe index, second NDe index, third NDe index, fourth
NDe index, harmonic index, hyper Zagreb index and third
NDe index and are defined as

NM1(G) = ∑
a∈V (G)

SG(a)2 = ∑
ab∈E(G)

SG(a)+SG(b)

NM2(G) = ∑
ab∈E(G)

SG(a)×SG(b)

ND1(G) = ∑
ab∈E(G)

√
SG(a)×SG(b)

ND2(G) = ∑
ab∈E(G)

1√
SG(a)+SG(b)

ND3(G) = ∑
ab∈E(G)

[SG(a)×SG(b)][SG(a)+SG(b)]

ND4(G) = ∑
ab∈E(G)

1√
SG(a)×SG(b)

HMN(G) = ∑
ab∈E(G)

[SG(a)+SG(b)]
2

Definition 1.2. Shanmukha et al., [18] introduced neighbor-
hood version of the redefined first and second Zagreb indices
and are defined as

NReZ1(G) = ∑
ab∈E(G)

[SG(a)+SG(b)]
[SG(a)×SG(b)]

NReZ2(G) = ∑
ab∈E(G)

[SG(a)×SG(b)]
[SG(a)+SG(b)]

Motivated by the work in the paper entitled ”Beyond the
Zagreb indices” [9] and [7, 10, 14] on Zagreb indices, defined
a degree based general neighborhood redefined Zagreb index
NReZ(β ,γ). It is stated as,

NReZ(β ,γ)(G)= ∑
ab∈E(G)

(SG(a)×SG(b))β × (SG(a)+SG(b))γ

where β ,γ ∈ R.
The below Table 1 depicts the relationships of NReZ(β ,γ)-
index with other topological indices defined.

Table 1. Relationships between NReZ(β ,γ)-index and other
topological indices.

Topological index NReZ(β ,γ)− index
Neighborhood f irst Zagreb index NReZ(0,1)(G)

Neighborhood second Zagreb index NReZ(1,0)(G)

Neighborhood Hyper Zagreb index NReZ(0,2)(G)

First NDe index NReZ( 1
2 ,0)

(G)

Second NDe index NReZ(0, 1
2 )
(G)

T hird NDe index NReZ(1,1)(G)

Fourth NDe index NReZ(− 1
2 ,0)

(G)

Neighborhood rede f ined f irst Zagreb index NReZ(−1,1)(G)

Neighborhood rede f ined second Zagreb index NReZ(1,−1)(G)

2. Materials and Methods
Our results consist of degree based topological indices of
two nanostructures. First, the general neighborhood redefined
Zagreb index is defined, then by substituting some specific
values to the parameters β and γ , neighborhood degree based
topological indices are calculated. To calculate the results
combinatorial computing, vertex and edge partition, degree
counting methods and also graph tools are used.

3. Boron Nanotubes
Boron nanotubes were discovered experimentally in the mid-
’90s. Boron nanotubes are similar to that of carbon nanotubes
structurally, except for carbon atoms that are alternately re-
placed by nitrogen and boron atoms. The properties of both

837



A general neighborhood redefined Zagreb index on Boron Nanotubes — 838/843

differ, boron is an electrical insulator whereas the carbon nan-
otube may be metallic or semiconductor. The layered boron is
thermally and chemically stable than that of carbon nanotubes.
Because of its unique physical and chemical properties, boron
has a very wide range of commercial and scientific applica-
tions. Boron nanotubes have wide applications in polymers,
metals, ceramics because of its properties like stiffness and
chemical stability. Also it is used in treatment of cancer.
A 2D− sheet of boron triangular nanotube is obtained by
placing an atom in the middle of the hexagon and joining all
the vertices of the hexagon with the newly added vertex. It
looks like an array of triangles that are placed linearly row
and column-wise which is illustrated in Figure 1(a). Boron-α
nanotube is a mixture of hexagons and triangles as illustrated
in Figure 1(b).

(a)

(b)
Figure 1. 2D sheet of (a) boron triangular nanotube BT [a,b]
(b) boron-α nanotube BA[a,b].

4. Main Results
The molecular graphs of boron triangular and boron-α nan-
otubes are denoted by BT [a,b] and BA[a,b] respectively as
shown in Figure 1. Here a represents the cardinality of rows

where as b represents the cardinality of columns in a 2D sheet
of BT [a,b] and BA[a,b]. We categorize the Boron-α nan-
otubes into two classes with respect to a. These classes are
denoted by BA(X)[a,b] and BA(Y )[a,b] for a≡ 2 mod 3 and
a ≡ 0 mod 3, respectively. The order and size of BT [a,b],
BA[a,b] are given in Table 2.

Table 2. The vertex and edge partitions of boron nanotubes.
Molecular graph Order Size

BT [a,b] 3ab
2

3b(3a−2)
2

BA(X)[a,b] b(4a+1)
3

b(7a−2)
2

BA(Y )[a,b] 4ab
3

b(7a−4)
2

4.1 Boron Triangular Nanotube BT [a,b]

Figure 2. The Boron triangular nanotube BT[7,4].

From the Figure 2, the Boron triangular nanotube BT[a,b]
has five different types of edges, whose edge partitions with
respect to degree sum of neighbor vertices are depicted in
Table 3.

Table 3. The edge partitions of BT [7,4] with respect to
degree sum of neighbor vertices.

(SG(a), SG(b)), ab ∈ E(G) No. o f Edges
E1(20,20) 3b
E2(20,32) 6b
E3(32,32) 3b
E4(32,36) 6b
E5(36,36) 3b(3a−14)

2

Theorem 4.1. The NReZ(β ,γ)-index of Boron triangular nan-
otube BT [a,b] for a > 3 and b is even then

NReZ(β ,γ)(BT [a,b]) = 3b[(400)β × (40)γ ]

+6b[(640)β × (52)γ ]+3b[(1024)β × (64)γ ]

+6b[(1152)β × (68)γ ]+
3b(3a−14)

2
[(1296)β × (72)γ ]
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Proof. The Table 3 gives the tabulated data of the number and
types of edges for the structure BT [a,b]. Considering all the
types of edges and its count in the definition of the general
neighborhood redefined Zagreb index, the result is proved.

NReZ(β ,γ)(G) =

∑
ab∈E(G)

(SG(a)×SG(b))β × (SG(a)+SG(b))γ

= ∑
ab∈E1(BT [a,b])

(20×20)β × (20+20)γ

+ ∑
ab∈E2(BT [a,b])

(20×32)β × (20+32)γ

+ ∑
ab∈E3(BT [a,b])

(32×32)β × (32+32)γ

+ ∑
ab∈E4(BT [a,b])

(32×36)β × (32+36)γ

+ ∑
ab∈E5(BT [a,b])

(36×36)β × (36+36)γ

NReZ(β ,γ)(BT [a,b]) = 3b[(400)β × (40)γ ]

+6b[(640)β × (52)γ ]+3b[(1024)β × (64)γ ]

+6b[(1152)β × (68)γ ]+
3b(3a−14)

2
[(1296)β × (72)γ ].

Using the general neighborhood redefined Zagreb index,
the other topological indices are calculated as shown below.
For β and γ of general neighborhood redefined Zagreb index,
values are given as per the Table 1. For the set of each values
of β and γ , different topological indices are calculated using
the result of theorem 4.1.

Corollary 4.1.1. Let G ∼= BT [a,b] be the boron triangular
nanotube, for a > 3 and b is even, then

a. NM1(G) = 324ab−480b,

b. NM2(G) = 5832ab−12192b,

c. HMN(G) = 23328ab−47808b,

d. ND1(G) = 162ab− 61141
250

b,

e. ND2(G) =
4773
125

ab− 42473
1000

b,

f. ND3(G) = 419904ab−1045248b,

g. ND4(G) =
1
8

ab+
37

500
b,

h. NReZ1(G) =
1
4

ab+
325
2000

b,

i. NReZ2(G) = 81ab− 124507
1000

b.

Figure 3. The Boron-α nantube BA(X)[8,6].

4.2 Boron-α Nanotube BA(X)[a,b]

From the Figure 3, the Boron-α nanotube BA(X)[a,b] has
eleven different types of edges, whose edge partitions with
respect to degree sum of neighbor vertices are depicted in
Table 4.

Table 4. The edge partitions of BA(X)[8,6] with respect to
degree sum of neighbor vertices.

(SG(a), SG(b)), ab ∈ E(G) No. o f Edges
E1(18,19) 2b
E2(18,24) 2b
E3(19,19) b
E4(19,24) 2b
E5(19,28) 2b
E6(24,24) b
E7(24,27) 2b
E8(24,28) 2b

E9(27,27) b(3a−14)
2

E10(27,28) 2b
E11(27,30) 2b(a−5)

Theorem 4.2. The NReZ(β ,γ)-index of Boron-α nanotube
BA(X)[a,b] for a > 3 and b is even then

NReZ(β ,γ)(BA(X)[a,b]) = 2b[(342)β × (37)γ ]

+2b[(432)β × (42)γ ]+b[(361)β × (38)γ ]

+2b[(456)β × (43)γ ]+2b[(532)β × (47)γ ]

+b[(576)β × (48)γ ]+2b[(648)β × (51)γ ]

+2b[(672)β × (52)γ ]+
b(3a−14)

2
[(729)β × (54)γ ]

+2b[(756)β × (55)γ ]+2b(a−5)[(810)β × (57)γ ].

Proof. The Table 4 gives the tabulated data of the number and
types of edges for the structure BA(X)[a,b]. Considering all
the types of edges and its count in the definition of the general
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neighborhood redefined Zagreb index, the result is proved.

NReZ(β ,γ)(G) =

∑
ab∈E(G)

(SG(a)×SG(b))β × (SG(a)+SG(b))γ

= ∑
ab∈E1(BA(X)[a,b])

(18×19)β × (18+19)γ

+ ∑
ab∈E2(BA(X)[a,b])

(18×24)β × (18+24)γ

+ ∑
ab∈E3(BA(X)[a,b])

(19×19)β × (19+19)γ

+ ∑
ab∈E4(BA(X)[a,b])

(19×24)β × (19+24)γ

+ ∑
ab∈E5(BA(X)[a,b])

(19×28)β × (19+28)γ

+ ∑
ab∈E6(BA(X)[a,b])

(24×24)β × (24+24)γ

+ ∑
ab∈E7(BA(X)[a,b])

(24×27)β × (24+27)γ

+ ∑
ab∈E8(BA(X)[a,b])

(24×28)β × (24+28)γ

+ ∑
ab∈E9(BA(X)[a,b])

(27×27)β × (27+27)γ

+ ∑
ab∈E10(BA(X)[a,b])

(27×28)β × (27+28)γ

+ ∑
ab∈E11(BA(X)[a,b])

(27×30)β × (27+30)γ

NReZ(β ,γ)(BA(X)[a,b]) = 2b[(342)β × (37)γ ]

+2b[(432)β × (42)γ ]+b[(361)β × (38)γ ]

+2b[(456)β × (43)γ ]+2b[(532)β × (47)γ ]

+b[(576)β × (48)γ ]+2b[(648)β × (51)γ ]

+2b[(672)β × (52)γ ]+
b(3a−14)

2
[(729)β × (54)γ ]

+2b[(756)β × (55)γ ]+2b(a−5)[(810)β × (57)γ ].

Using the general neighborhood redefined Zagreb index,
the other topological indices are calculated as shown below.
For β and γ of general neighborhood redefined Zagreb index,
values are given as per the Table 1. For the set of each values
of β and γ , different topological indices are calculated using
the result of theorem 4.2.

Corollary 4.2.1. Let G ∼= BA(X)[a,b] be the boron-α nan-
otube, for a > 3 and b is even, then

a. NM1(G) = 195ab−208b,

b. NM2(G) =
5427ab

2
ab−4590b,

c. HMN(G) = 10872ab−18112b,

d. ND1(G) =
97421
1000

ab− 5273
50

b,

e. ND2(G) =
278

5
ab−126b,

f. ND3(G) = 151389ab−325932b,

g. ND4(G) =
629

5000
ab− 97

1000
b,

h. NReZ1(G) =
63

250
ab+

1
5

b,

i. NReZ2(G) =
48671
1000

ab− 53451
1000

b.

4.3 Boron-α Nanotube BA(Y )[a,b]

Figure 4. The Boron-α nantube BA(Y)[9,6].

From the Figure 4, the Boron-α nanotube BA(Y )[a,b] has
nineteen different types of edges, whose edge partitions with
respect to degree sum of neighbor vertices are depicted in
Table 5.

Theorem 4.3. The NReZ(β ,γ)-index of Boron-α nanotube
BA(Y )[a,b] for a > 3 and b is even then

NReZ(β ,γ)(BA(Y )[a,b]) =
b
2
[(196)β × (28)γ ]

+b[(350)β × (39)γ ]+b[(364)β × (40)γ ]

+b[(342)β × (37)γ ]+b[(432)β × (42)γ ]
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+
b
2
[(361)β × (38)γ ]+b[(456)β × (43)γ ]

+b[(532)β × (47)γ ]+
b
2
[(576)β × (48)γ ]

+b[(648)β × (51)γ ]+b[(672)β × (52)γ ]

+
b
2
[(625)β × (50)γ ]+b[(650)β × (51)γ ]

+b[(675)β × (52)γ ]+b[(750)β × (55)γ ]

+b[(702)β × (53)γ ]+
b(3a−14)

2
[(729)β × (54)γ ]

+b[(756)β × (55)γ ]+2b(a−5)[(810)β × (57)γ ].

Table 5. The edge partitions of BA(Y)[9,6] with respect to
degree sum of neighbor vertices.

(SG(a), SG(b)), ab ∈ E(G) No. o f Edges
E1(14,14) b

2
E2(14,25) b
E3(14,26) b
E4(18,19) b
E5(18,24) b
E6(19,19) b

2
E7(19,24) b
E8(19,28) b
E9(24,24) b

2
E10(24,27) b
E11(24,28) b
E12(25,25) b

2
E13(25,26) b
E14(25,27) b
E15(25,30) b
E16(26,27) b

E17(27,27) b(3a−14)
2

E18(27,28) b
E19(27,30) 2b(a−5)

Proof. The Table 5 gives the tabulated data of the number and
types of edges for the structure BA(Y )[a,b]. Considering all
the types of edges and its count in the definition of the general
neighborhood redefined Zagreb index, the result is proved.

NReZ(β ,γ)(G) =

∑
ab∈E(G)

(SG(a)×SG(b))β × (SG(a)+SG(b))γ

= ∑
ab∈E1(BA(Y )[a,b])

(14×14)β × (14+14)γ

+ ∑
ab∈E2(BA(Y )[a,b])

(14×25)β × (14+25)γ

+ ∑
ab∈E3(BA(Y )[a,b])

(14×26)β × (14+26)γ

+ ∑
ab∈E4(BA(Y )[a,b])

(18×19)β × (18+19)γ

+ ∑
ab∈E5(BA(Y )[a,b])

(18×24)β × (18+24)γ

+ ∑
ab∈E6(BA(Y )[a,b])

(19×19)β × (19+19)γ

+ ∑
ab∈E7(BA(Y )[a,b])

(19×24)β × (19+24)γ

+ ∑
ab∈E8(BA(Y )[a,b])

(19×28)β × (19+28)γ

+ ∑
ab∈E9(BA(Y )[a,b])

(24×24)β × (24+24)γ

+ ∑
ab∈E10(BA(Y )[a,b])

(24×27)β × (24+27)γ

+ ∑
ab∈E11(BA(Y )[a,b])

(24×28)β × (24+28)γ

+ ∑
ab∈E12(BA(Y )[a,b])

(25×25)β × (25+25)γ

+ ∑
ab∈E13(BA(Y )[a,b])

(25×26)β × (25+26)γ

+ ∑
ab∈E14(BA(Y )[a,b])

(25×27)β × (25+27)γ

+ ∑
ab∈E15(BA(Y )[a,b])

(25×30)β × (25+30)γ

+ ∑
ab∈E16(BA(Y )[a,b])

(26×27)β × (26+27)γ

+ ∑
ab∈E17(BA(Y )[a,b])

(27×27)β × (27+27)γ

+ ∑
ab∈E18(BA(Y )[a,b])

(27×28)β × (27+28)γ

+ ∑
ab∈E19(BA(Y )[a,b])

(27×30)β × (27+30)γ

NReZ(β ,γ)(BA(Y )[a,b]) =
b
2
[(196)β × (28)γ ]

+b[(350)β × (39)γ ]+b[(364)β × (40)γ ]

+b[(342)β × (37)γ ]+b[(432)β × (42)γ ]

+
b
2
[(361)β × (38)γ ]+b[(456)β × (43)γ ]

+b[(532)β × (47)γ ]+
b
2
[(576)β × (48)γ ]

+b[(648)β × (51)γ ]+b[(672)β × (52)γ ]

+
b
2
[(625)β × (50)γ ]+b[(650)β × (51)γ ]

+b[(675)β × (52)γ ]+b[(750)β × (55)γ ]

+b[(702)β × (53)γ ]+
b(3a−14)

2
[(729)β × (54)γ ]

+b[(756)β × (55)γ ]+2b(a−5)[(810)β × (57)γ ].
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Using the general neighborhood redefined Zagreb index,
the other topological indices are calculated as shown below.
For β and γ of general neighborhood redefined Zagreb index,
values are given as per the Table 1. For the set of each values
of β and γ , different topological indices are calculated using
the result of theorem 4.3.

Corollary 4.3.1. Let G ∼= BA(Y )[a,b] be the boron-α nan-
otube, for a > 3 and b is even, then

a. NM1(G) = 195ab−178b,

b. NM2(G) =
5427

2
ab−4995b,

c. HMN(G) = 10872ab−16244b,

d. ND1(G) =
97421
1000

ab− 12689
100

b,

e. ND2(G) =
278

5
ab− 26827

200
b,

f. ND3(G) = 151389ab−338312b,

g. ND4(G) =
629

5000
ab− 283

5000
b,

h. NReZ1(G) =
63
250

ab+
63

500
b,

i. NReZ2(G) =
48671
1000

ab− 16149
250

b.

5. Conclusion
This work is concentrated on two important chemical struc-
tures viz., boron nanotubes and boron-α nanotubes for which
the nine indices viz., first Zagreb, second Zagreb, hyper Za-
greb, first NDe, second NDe, third NDe, fourth NDe, rede-
fined first Zagreb, and redefined second Zagreb indices are
derived from the general neighborhood redefined Zagreb in-
dex. These results can be used for further studies in chemistry
for studying the chemical and biological properties of the
compounds.
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