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2-Edge dominating sets and 2-Edge domination

polynomials of paths
K. Lal Gipson' and Arun Williams. S2*

Abstract

Let P, be the path with n vertices and (n— 1) edges. Let D, (G,i) be the family of 2- edge dominating sets in

G with cardinality i. The polynomial D,.(G,i) = Elif?(‘(;)dze(G,i)xi is called the 2-edge domination polynomial of

G. In this paper, we obtain a recursive formula for d, (P, 7). Using this recursive formula we construct 2- edge
domination polynomial, Dy, (P,;,x) = Z?;rlg]dZe(P,,,i)x’ where d,,(P,,i) is the number of 2- edge dominating sets of
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1. Introduction

Let G = (V,E) be a simple graph of order n. For any vertex,
v € V, the open neighbourhood of V is the set N(v) = {u €
V/uv € E} and the Closed neighbourhood of V is the set
N[v] = N(v)U{v}. For aset S C V the open nighbourhood of
Sis N(S) = N[S] = N(S)US. A dominating set for a graph G
is a subset D of V such that every vertex not in D is adjacent
to atleast one member of D. The domination number y(G) is
the number of vertices in a smallest dominating set of G.

An edge dominating set for a graph G is a set of D C E such
that every edge not in D is adjacent to atleast one edge in D.
An edge dominating set is also known as a line dominating set.
The edge domination number of a graph G is the minimum
size of an edge dominating set in G and is denoted by 7,(G).
A simple path is a path in which all its internal vertices have

degree two and the end vertices have degree one is denoted
by P,. We use the notation [x] for the smallest integer greater
than or equal to x and | x| for the largest integer less than or
equal to x. Also we denote the set the {1, 2, 3,..n} by [1]
throughout this paper.

2. 2-Edge Dominating Sets of Paths

In this section, we state the 2-edge domination number of path
and some of its properties.

Definition 2.1. Le G be a simple graph of order n and size
m. A set D C E is a 2- edge dominating set of the graph G, if
every edge e € E-D is adjacent to atleast 2-edges in D. The
2-edge domination number Y, (G) is the minimum cardinality
among the 2-edge dominating sets of G.

Example for 2-Edge Dominating Sets of Paths.

Let us consider Ps as an example.
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Figure 2.1

Here E = {e,e2,e3,e4}, we take D = {ey,e2,e4}, E—D

is {e3}, {e3} is adjacent to {e, } and {e4}. Therefore, the set
{e1,e2,e4} is a 2-edge dominating set.

Lemma 2.2. Let P,, n > 4 be the path with n vertices and
n— 1 edges. Then its 2-edge domination number is 5, (G) =

(21

Lemma 2.3. Let P,, n > 4 be the path with |V (P,)| = n and
|E(Py)| =n—1. Then dye(Py,i) =0 ifi < [5] ori>n—1
and dpo(P,,i) >0 if [5] <i<n—1.

Proof. 1f i < [5] ori>n— 1, then there is no 2-edge domi-
nating set of cardinality i. Therefore, da(B,,i) = 0if i <[]
ori>n—1. By lemma 2.2, the cardinality of the minimum

2 edge dominating set is [5]. Therefore da.(Fy,i) > 0 if
> [5]and i <n—1. Hence we have dy,(B,,i) = 0if i < [5]

0rz>n71anddze( ) >0if [F]<i<n—1. O

Lemma 2.4. Let P, , n > 4 be the path with |V (P,)| = n and

|E(B,)| =n—1. Then,

(). If Dao(Py—1,i—1) = ¢ and Dy, (P,—3,i— 1) = ¢ then,

Dae(Py2,i—1)=¢.

(ii). IfDZe( n—151 )7&¢andD2c( h—3,1 )#‘Pthen;

DZe( n— 2,1_1)7&¢

(@ii). If Dyo(Py—1,i—1) = ¢ and Dro(P,—,i— 1) = ¢ then,

D2e(Pn; ):¢

(iv). If Dyo(Py—1,i— 1) # ¢ and Dye(Py—p,i — 1) # ¢ then,

DZe( )#‘P

Proof. (i). Since, Dy, (Py—1,i—1) = ¢ and Dy (P,—3,i—1) =

¢,

by Lemma 2.3 we have

i—1>n—2ori—1<[%!]and
B2l
Therefore, i —1 >n—2ori—1< [%5=].
Therefore, i—1>n—3o0ri—1< (TW holds.

Hence, Dy, (P,—2,i— 1) = ¢.
(ii). Suppose Dy (P,—2,i— 1) = ¢, by Lemma 2.3, we have
i—1>n—3o0ri—1<[%52].
Ifi—1>n—3,theni—1 > 4. Therefore, Dy, (Py—3,i—1) = ¢,
which is a contradiction
Ifi—1 < [%52], theni—1 < [%51]. Therefore, Dye(Py—1,i—

1) =9, Wthh is a contradiction.

Hence, Dy (P,—2,i— 1) # ¢.
(iii). Since Dyo(Py—1,i— 1) = ¢ and Dy (Py—2,i—1) =
Lemma 2.3,

i—1>n—4dori—1<

0, by
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i—1>n—2o0ri—1<[%!]and
i—1>n—3o0ri—1<[%52].

Therefore,i— 1 >n—2ori—1< [%]

Therefore, i >n—1ori < [5] holds.

Therefore, Dy, (P,,i) = ¢.

(iv). By hyphothesis [%5~ 11<i—1<n—2and [%] <
i—1<n-—3.

Therefore, f”Ez} <i—1<n-2.

Therefore, [5] <i <n—1, holds.

Therefore, Dy, (P,,i) # ¢. O

Lemma 2.5. Let P, , n > 4 be the path with |V (P,

|[E(B)|=n—1. Suppose that Dyo(P,,i) # ¢, then
(l) IfDZe( n—1,1 ) ¢ DZe( 2,1 )7’é q) and

Dae(Py 3.1 )#Mandonlyufn—zkz—k

(") IfDZE( n—2,1 ) (P D2e( n— 351_1)

)#d)zfandanlylfzfn—l

(l”) IfD2e( n—1,1

1)= ¢lfand0nlylfl—n 2.

(iv). IfDZe( n—1,1 )#(b DZe( n— 271_1)7é¢andD26( 3,1

);é(i)zfand(mlysz" 1 <i<n-3.

)| =n and

Proof. (i). Since Dy (Py—1,i—1) =

i—1>n—2o0ri—1<[25].

Ifi—1>n—2,theni>n—1. Then by Lemma 2.3,

D (P,,i) = ¢, which is a contradiction.

Soi < [%517+1 and since Dy (P,,i) # ¢, together [2] <i <

(%] + 1, which gives n = 2k and i = k for some k € N.
Conversely, if n = 2k,i = k for some k € N. Then by

Lemma 2.3,

¢, by Lemma 2.3, we get

DZe(Pn—lai ) ¢ DZE( n— z,l—l) 7é¢ andD2e( n— 3;

1) #¢.

(ii). Assume that Do (Py—2,i—1) =0, Dy(By-3,i—1)=¢
andDze( n— ], );é(P

Since Dze(Pn,z,l —1)=¢ and

Dy, (P,—3,i—1) = ¢, by Lemma 2.3, we have i — 1 >n—3 or

i—1<[%2]andi—1>n—4ori—1<[%2].

Therefore,i—1 >n—3ori—1< [%3].

Since Dy (P,—1,i— 1) # ¢, we have

Al <i—-1<n-2.

Ifi—1<[%3], theni—1 < [%].

Therefore by Lemma 2.3, Dy, (P,—1,i —

contradiction.

So we have i — 1 > n—2. Therefore i >n—1........ @))

Also, since Dy, (P,—1,i— 1) # ¢, wehave i— 1 <n—2.
Therefore i <n—1............ 2)

Combining (1) and (2), we geti =n— 1.

Conversely, ifi=n—1.

DZE(PH*ZJ._ 1) :DZe(Pthvn_z) =90.

Dyo(Py—3,i—1) = Dy (Py—3,n—2) = ¢.

DZe(Pnflaifl):DZe( n—1,1— 2)7&¢

(iii). Assume that Doe(Py—1,i—1) # ¢, Do (P2 i— 1) # ¢

and Do (Py-3,i—1) = ¢.

Since Dze(Pn_3,l— 1) =

1) # ¢, which is a

V

¢, by Lemma 2.3, we have i —

(])andng( n— ],l—

—1)# ¢, Doe(By2,i—1) # ¢ and Dao(P,3,i—
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n—4ori—1<[%52]......(l)

Since Dy, (P,—1,i— 1) # ¢, we have

(M) <i—1<n—2..(2)

Suppose i — 1 < [*5> 31, then (2) does not hold.

Therefore our assumptlon is wrong.
Therefore i — 1 > n—4.

Also since Dy (Py—2,i—1) # ¢

We have [%52] <i—1<n—3.....03)

Buti—1>n—4.

Therefore,i—1>n—3........ “4)

Combining (3) and (4), we geti— 1 =n—3.
Therefore i = n —2. Conversely, if i =n—2.
Then Dy, (Py—1,i— 1) = Dae(Py—1,n—3) # ¢.
DZe(Pthvi_ 1) :D2e( n— 2,11—3) 7& ¢
DZe(Pnf%i_l):DZe(Pn 3,n 3):¢
(iv). Assume that De(Py—1,i—1)# ¢, Do (Py—2,i— 1) # @
andDZe( n— 3, )7&(]5
Then by Lemma 2.3, [%51] <i—1<n—2,[%52] <i—1<
n—3and [%53] <171<n 4.
Combining all these [251] <i—1 <n—4 and hence [21] +
1<i<n-3.

Conversely, suppose (”;211 +1<i<n-3.
Therefore, [71] <i—1<n—4.
Then [*F1] <i—1<n—2,["
i—1<n—4holds.

J<i—1<n=3,[23]<

From these we obtain Do (Py—1,i—1) # ¢, Dao(Py—2,i—1) #
(P andDze( n— 3,1— 1) 7& (P

Hence the theorem. O
Theorem 2.6. (i) Dze(Pzn, )={1,3, 5 7,9,....2n—1}
(ii). IfDZe( n—2,1 ) ¢ DZe( 3,1 ):(])and
Dse(Py—1,i—1) 7é @, then Dy, (P,,i) = Dze(Pn,n— 1) =
[n—1].
(@ii). If Dyo(Py—1,i—1) # ¢, Dpo(Py—2,i— 1) # ¢ and
Dze(Pn_3, ) ¢, then
D3o(Pyyi) = Dpo(Pyyn—2) ={[n—1]—{x}/x € [n—1] and
x#1ln—1}
(lV) IfDZe( n— 1;1*1) ¢ D2e( n— 2; )7&¢ then
Dy (Py,i) = {XU{n—l}/XGDZe(Pn 2,1—1)}
v). IfDZe( n—1,1 )7é¢ DZe( n—2,1 ) ‘P then
D2e( sl ) {YU{n—l}/Y€D29<Pn 1,1—1)}

(Vl) Isze( n— ],1—1)75(1) Dze( n— 2,1—1)75¢ then
Dyo(Py,i) ={XU{n—1}UYU{n—1}} where
X EDze(P”,I,lfl) andY € Dyo(Py—n,i—1).

Proof. (i). For every n > 6, D (Ps,,n) has only one 2-edge
dominating sets as Dy, (P»,,n) = {1,3,5,7,9,...,2n—1}.
(ii). Since Dao(Py—2,i—1) = ¢, DZe( w—3,i— 1) = ¢ and

Dy (P,—1,i—1) # ¢, by Lemma 2.5(ii), i = n — 1. Therefore,
D2o(Py,i) = Dye(Py,n—1) = [n—1].

(iii). Since Dy, (Py—1,i— 1) # @, Dpe(Py—2,i— 1) # ¢ and
D7e(Py—3,i—1) = ¢, by Lemma 2.5(iii), i =n—2..
Therefore, Dy, (Py,i) = Dao(Pyyn—2) = {[n—1]—{x}/x €

[p—1]andx# 1,n—1}.

(iv). Let X be 2-edge dominating set of P,_, with cardinality

i — 1. All the elements of Dy, (P,—2,i— 1) end with n — 3.
Therefore n — 3 € X, adjoin n — 1 with X. Hence every

X of Dy (P,—»,i— 1) belongs to Dy, (P,,i) by adjoining n — 1

only.
Conversely suppose Z € D;.(P,,i). Here all the elements
of Dy, (P,,i) end with n— 1 only. Suppose, n— 1 € Z then

Z=XU{n— 1} where X ends with n—3.

(v) Let Y be a 2-edge dominating set of P,_1 with cardinality
i— 1. All the elements of D;,(P,—1,i — 1) end with n —2.
Therefore n —2 € Y adjoin n — 1 with Y. Hence every Y of
Dy, (P,—1,i— 1) belongs to D;.(P,,i) by adjoining n — 1 only.
Conversely suppose Z € D;,.(P,,i). Here all the elements
of Dy, (P,,i) ends with n— 1 only. Suppose, n— 1 € Z then
Z=YU{n—1} where Y ends withn— 1.

(vi). Construction of Dy, (P,,i) from Dy.(P,—1,i — 1) and
D3e(Py—2,i—1). Let X be a 2-edge dominating set of Pn 1
with cardinality i — 1. All the elements of Dy, (P,—1,i — 1)
ends with n — 2. Therefore n — 2 € X adjoin n— 1 with X.

Hence every X of Dy, (P,—1,i— 1) belongs to Dy, (P,,i) by
adjoining n— 1 only. Let Y be a 2-edge dominating set of B,_»
with cardirality i — 1. All the elements of Dy, (P,—2,i— 1) ends
with n — 3. Therefore n—3 €Y adjoin n— 1 with Y. Hence
every Y of Dy, (P,_»,i— 1) belongs to Dy.(P,,i) by adjoining
n—1 only.

Conversely suppose Z € Dy, (P,,i). Here all the elements
of Dy, (Py,i), ends with n— 1 only. Suppose n— 1 € Z, then
Z=XU{n—1}UYU{n—1} where X ends withn—2,X €
Dy (P,—1,i—1) and Y ends with n —3,Y € Dy, (P,—2,i — 1).
Hence the proof. O

Theorem 2.7. If Dy, (P,,i) be the family of the 2-edge domi-
natirg sets of B, with cardinality i, where i > [ 5] then
d2e( ny ) d2e( n— 1al_l)+d26( n—2,1 1)

Proof. Using Theorem 2.6, we consider all the four cases
given below, where i > [5].

@). Inge( n— 171—]) ¢ and DZe( n— 2,1—1):¢, then
Dy (Py,i) = ¢.

(ii). If Dy (Py—1,i— 1) = ¢, Dy (Py—2,i— 1) # ¢, then
Dy (P,,i) = {XU{nfl}/XGDze(Pn 2, -1}

(iii). Isze( n—1,1 )75(]5 Dze( n—2,1 ) (P then
Dze( s ) {YU{n—l}/YEDze(Pn 171—1)}

(). If Doe(Py—1,i— 1) # ¢, Doe(Py—2,i— 1) # ¢, then
Dy (Py,i) = {XU{n—l}UYU{n—l}}Where

X e€Dy(P—1,i—1)and Y € Dy (Py—2,i—1).

From the above construction in each case, we obtain

d2e( ns ) d2e( n— 17 )"’dZe( n— 27 1)
O

3. 2-Edge Domination Polynominals of
Paths

Definition 3.1. Let Dy, (P,,i) be the family of 2-edge dominat-
ing sets of P, with cardinality i and let dp,(P,,i) = | D2, (P,,, i)l

“M,,

‘,'

‘u
40

846
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Then the 2- edge dominanon polynomial Dy (Py,x) of By is
defined as Dae(Py,x) = X! elP >d28( 0, 0)x, where Yoo (Py) is
the 2-edge domination number of P,.

Theorem 3.2. For everyn > 5,
Do (P, x) = X[D2e (Py—1,X) + D2 (P2, X)]
with initial values
Dy (Ps,x) =x°
Dy (Py,x) = P +x.
Proof. We have
doe(Pnyi) =

Therefore,

d2e( n— 17 )+d2€( n— 2, 1)

doo(Py,i)x = doo(Py_1,i— )X +doo(Py_p,i— 1)x'
Yoo (P, i)x' = Zdye(Pyyyi— 1)x' + Xdoe (Py—ayi— 1)’
Yoo (P, i)x' = xEdoe(Py—i,i— 1)x" " +xZde (Pyp,i—1)x!
Do (Py,x) = xD2e(By—1,%) +xD2e (P2, %)

Therefore
Do (P, x) = X[D2e (Py—1,X) + D2 (P2, X)]
With the initial values
Doo(P3,x) = x°
Dao(Py,x) = x> +x°.
O

dpe(P,, i) the number of 2-edge dominating sets of P, witil
cardinality i for 3 <n < 14 and 2 <i < 13 as shown in Table
1.

Table 1
’n 203|456 |7 |8 |9 |10]11]12]13
3 1
7 T 1
5 021
6 01|31
7 00341
3 0(0[1]6]5 |1
9 0[0 0] 4]10[6 |1
10 00 o110 157 |1
1 0[0]0] 0|5 [20] 218 |1
2 0l0 0[]0 1 [15]3 [28]9 |1
13 000 0[]0 [6 |35 5636101
14 0[0 0] 0[]0 [T |21 |70]8 |45 111

Theorem 3.3.
cients of Dye(Py,x)

(@). dre(Poy,n) =1, for every n > 2.

(ii). dre(Poy—1,n) =n—1, for everyn > 2.
(iii). dpe(Py,n—1) =1, for every n > 3.
(iv). dyo(Py,n—2) =n—73, for everyn > 3.

The following properties hold for the coeffi-

847

). doe(By,n—3) = 2[11 —9n—|—20] for every n > 6.

¥i). dre(Py,n—4) = t[n® — 180> 4+ 107n — 210}, for every
n>8.

(vii). dro(Py,n—5) = 54 [n —30n® +335n2 — 1650n + 3024],
for everyn > 10.

Proof. (i). Since Dy, (P>, n)
dZe(P2mn) =1
(ii). To prove dae(Pop—1,n) = n— 1, for every n > 2, we apply
induction on n.
When n =2, LHS: dy.(P3,2) = 1,[From table].
RHS:n—1=2-1=1.
Therefore, LHS= RHS.

={2,4,6,8,...2n}, we have

Now suppose that the result is true for all numbers less
than n+ 1 and we prove it for n.
By Theorem 3.2, we have

dre(Pon—1,n) = doe(Prn—2,n— 1)+ dre(Poy_3,n—1)
=1+n-2
=n—1

Hence dp,(Pan—1,n) =n—1, for every n > 2.
(iii). Since Dy, (P,,n— 1) = {[n— 1]}, we have the result.

(iv). We have Dy, (P,,n—2) ={[n—2]| —
x# 1,n}.

Therefore dy, (P,,n —

{x}/x € [n] and
2) =n—3, for every n > 3.

(v). To prove da.(P,,n—3) = %[nz —9n + 20, for every

n>6.
We apply induction on n.
Whenn =6

LHS: d».(Ps,3) = 1 [From table]

RHS: %[(6)2 —9(6) +20] = %[36 —544+20]

=1

Therefore LHS =RHS.

Now suppose that the result is true for all numbers less
than n and we prove it for n.

By Theorem 3.2, we have,

d2e(Pn; n*S) d2e( n—1,1n— 4)+d2€( n—2,1n— 4)
1
:5[(11—1)2—9(n—1)+20]+(n—2)—3
1
:E[n2+1—2n—9n+9+zo}+n—5
~ n?—9n+20
N 2
Hence dse(Py,n —3) = [n* —9n+20], for every n > 6.
(vi). To prove, dy.(P,,n—4) = 6[11 — 1812 4+ 1071 — 210],

009 nn,,
5:

; ‘a’uv
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for every n > 8.
We apply induction on n.
When n = 8.

LHS:

dpe(Pg,4) = 1[ from table]

RHS := é[(8)3 —18(8)% +107(8) — 210]

1
= (51211524856 —210)

Therefore LHS = RHS.

Now suppose that the result is true for all numbers less
than n and we prove it for n.
By Theorem 3.2, we have

dre(Pyyn—4) =dpe(Py—1,n—5) + dpe(Pyr—n,n—5)

= é[(n— 1)* —18(n—1)*+107(n— 1) —210]

+%[(n—2)2 —9(n—2)+20]

1—18n* — 184360+ 107n— 107 —210]
+ 1% +4—4n—9n+18420]

1
= 6[713 —21n? + 146n — 336 + 3n* — 391+ 126)

1
:6[n373n2+3n7

= é[;ﬁ — 187 + 1070 —210]
Hence da,(P,,n—4) = %[
ery n > 8.
(vii). To prove, dy.(P,,n—35) =
+3024], for every n > 10.
We apply induction on 7.
When n =10
LHS: d5.(P19,5) = 1 [From table]

1
RHS := [(10)* —30(10)% +335(10)> — 1650(10) + 3024]

— 1812 +107n —210], for ev-

21 [n* —30n% 433572 — 1650n

1
ﬂx[IOOOO 30000 + 33500 — 16500 + 3024]

Therefore LHS = RHS
Now suppose that the result is true for all numbers less
than n and we prove it for n.
By Theorem 3.2, we have
dZe( n,Nn -5 )

d2€( n—1,1 6)+d26( n—2,1— 6)

1
=54 1(n— 1)*—=30(n—1)*+335(n—

+—[(n—2)> = 18(n—2)> +107(n —2) — 210]

N =

848

1)2—1650(n— 1) +3024]

1
= gl —4n’ +6n% —dn+1-30(n> ~3n> +3n— 1) +335(n’
1-2n) —1650(n — 1) +3024]

1
+8[n3 —6n +12n— 8 —18(n* +4—4n) +107(n—2) +210]

1
=51 [n* — 340° +-431n% — 2414n + 5040]

1
+8[n3 —24n° 4 191n — 504]

1
= ﬁ[n“—34n3+431n2—2414n+5040+4n3 —96n* +764n —

2016]

1
= 7 In* =30m +335n% — 16500 +3024)

Hence, dp.(P,,n—5) =
3024], for every n > 10.

a1 [n* = 30n° + 33572 — 1650n +

O
Theorem 3.4. (i).X2" d>.(Pi,n) = 2575 %d.(P;,n — 1), for
everyn > 3.
(ii). For every j> [ 7],
d2e( n+17]+1) dZe( na]"l‘l) dZe( nv]) dZe( n— 21])

(iii). lfSn = Z?:(%de (Pn
S,_2 with initial values

,J), then for everyn>6, S, = S,_1 +

S3=1,54=2,85=3,5=5,57=8.
Proof. (i). First we prove by induction on n.
Suppose n =3 then

ZdZe Pla3) 4= 2Zd26 ])H 2)
i=3 =

Y doe(Pk) = zzkdk(, 1 k=1)+ X2, doo(Pon.k—
1)

2(k—1) 2(k—1)

=2 Y d(P1,k—=2)+2 ) do(P2k—2)
i=k—1 i=k—1

2(k—2)
=2 Y do(P1.k—1)
i=k—1
Hence, E%ﬁndge(P,',n) 22” 2dze( P,
(ii). By Theorem 2.7, we have
d2e( 1, J 1) d2€( s J T+ 1)
—dZe( ny )+d2€( n—1,J ) dZe( n—1,J] )
Therefore, doe(Pyt1,j+ 1) — dae(Py, j+ 1)
—dQe( ny ) d26( n— 27])
Therefore we have the result.
(iii). By Theorem 2.7, we have

—1), for every n > 3.

(d2e< n— 23])
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n

= [d2e(Pn717j_1)+d2e(Pn727j_1)]
=71

= Z?;%%W_lee(Pn—lv j_ 1) + ?;%%]_lee(Pn—Zaj_ 1)

[SE

Hence S, = S,,—1 + Su—».

4. Conclusion

In this paper 2- edge domination sets of paths and 2- edge
domination polynomials of paths are studied and obtained
some properties. We can generalize this study to any power
of path.
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