

https://doi.org/10.26637/MJM0901/0148

2-Edge dominating sets and 2-Edge domination polynomials of paths

K. Lal Gipson¹ and Arun Williams. S^{2*}

Abstract

Let P_n be the path with *n* vertices and $(n-1)$ edges. Let $D_{2e}(G, i)$ be the family of 2- edge dominating sets in *G* with cardinality i. The polynomial $D_{2e}(G, i) = \sum_{i = \infty}^{|E(G)|}$ $\frac{dE(G)|}{dE(G)}d_{2e}(G,i)x^{i}$ is called the 2-edge domination polynomial of G . In this paper, we obtain a recursive formula for $d_{2e}(P_n,i)$. Using this recursive formula we construct 2- edge domination polynomial, $D_{2e}(P_n,x)=\Sigma_{i=\lceil\frac{n}{2}\rceil}^{n-1}d_{2e}(P_n,i)x^i$ where $d_{2e}(P_n,i)$ is the number of 2- edge dominating sets of P_n of cardinality *i* and obtain some properties of this polynomial.

Keywords

Path, 2-edge dominating set, 2-edge domination number and 2-edge domination polynomial.

AMS Subject Classification 05C38, 05C31.

¹*Assistant Professor, Department of Mathematics, Scott Christian College (Autonomous), Nagercoil, Kanyakumari District, Tamil Nadu, India.* ²*Research Scholar[Reg. No.: 18213112091009], Department of Mathematics, Scott Christian College (Autonomous), Nagercoil, Kanyakumari District, Tamil Nadu, India.*

Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012,Tamil Nadu, India.

***Corresponding author**: 1 lalgipson@yahoo.com; ² *arunwilliams1994@gmail.com

Article History: Received **24** January **2021**; Accepted **18** March **2021** c 2021 MJM.

Contents

1. Introduction

Let $G = (V, E)$ be a simple graph of order *n*. For any vertex, *v* ∈ *V*, the open neighbourhood of *V* is the set $N(v) = \{u \in V\}$ $V/uv \in E$ and the Closed neighbourhood of *V* is the set $N[v] = N(v) \cup \{v\}$. For a set *S* ⊆ *V* the open nighbourhood of S is $N(S) = N[S] = N(S) \cup S$. A dominating set for a graph *G* is a subset *D* of *V* such that every vertex not in *D* is adjacent to atleast one member of D. The domination number $\gamma(G)$ is the number of vertices in a smallest dominating set of G. An edge dominating set for a graph *G* is a set of $D \subseteq E$ such that every edge not in *D* is adjacent to atleast one edge in D. An edge dominating set is also known as a line dominating set. The edge domination number of a graph *G* is the minimum size of an edge dominating set in *G* and is denoted by $\gamma_e(G)$. A simple path is a path in which all its internal vertices have

degree two and the end vertices have degree one is denoted by P_n . We use the notation $\lceil x \rceil$ for the smallest integer greater than or equal to *x* and $|x|$ for the largest integer less than or equal to *x*. Also we denote the set the $\{1, 2, 3,...n\}$ by $[n]$ throughout this paper.

2. 2-Edge Dominating Sets of Paths

In this section, we state the 2-edge domination number of path and some of its properties.

Definition 2.1. *Le G be a simple graph of order n and size m.* A set $D ⊆ E$ *is a 2- edge dominating set of the graph G, if every edge* $e \in E$ -*D* is adjacent to atleast 2-edges in D. The *2-edge domination number* $\gamma_{2e}(G)$ *is the minimum cardinality among the 2-edge dominating sets of G.*

Example for 2-Edge Dominating Sets of Paths.

Let us consider P_5 as an example.

Figure 2.1

Here $E = \{e_1, e_2, e_3, e_4\}$, we take $D = \{e_1, e_2, e_4\}$, $E - D$ is $\{e_3\}$, $\{e_3\}$ is adjacent to $\{e_2\}$ and $\{e_4\}$. Therefore, the set ${e_1, e_2, e_4}$ is a 2-edge dominating set.

Lemma 2.2. *Let* P_n , $n \geq 4$ *be the path with n vertices and n*−1 *edges. Then its 2-edge domination number is* $\gamma_{2e}(G)$ = $\lceil \frac{n}{2} \rceil$.

Lemma 2.3. Let P_n , $n \geq 4$ be the path with $|V(P_n)| = n$ and $|E(P_n)| = n - 1$ *. Then* $d_{2e}(P_n, i) = 0$ *if* $i < \lceil \frac{n}{2} \rceil$ *or* $i > n - 1$ *and* $d_{2e}(P_n, i) > 0$ *if* $\lceil \frac{n}{2} \rceil \le i \le n - 1$.

Proof. If $i < \lceil \frac{n}{2} \rceil$ or $i > n - 1$, then there is no 2-edge dominating set of cardinality *i*. Therefore, $d_{2e}(P_n, i) = 0$ if $i < \lceil \frac{n}{2} \rceil$ or $i > n - 1$. By lemma 2.2, the cardinality of the minimum 2-edge dominating set is $\lceil \frac{n}{2} \rceil$. Therefore $d_{2e}(P_n, i) > 0$ if $i \geq \lceil \frac{n}{2} \rceil$ and $i \leq n-1$. Hence we have $d_{2e}(P_n, i) = 0$ if $i < \lceil \frac{n}{2} \rceil$ or $i > n - 1$ and $d_{2e}(P_n, i) > 0$ if $\lceil \frac{n}{2} \rceil \le i \le n - 1$.

Lemma 2.4. *Let* P_n , $n \geq 4$ *be the path with* $|V(P_n)| = n$ *and* $|E(P_n)| = n - 1$ *. Then, (i). If* $D_{2e}(P_{n-1}, i-1) = \phi$ *and* $D_{2e}(P_{n-3}, i-1) = \phi$ *then,* $D_{2e}(P_{n-2}, i-1) = \phi.$ *(ii). If* $D_{2e}(P_{n-1}, i-1) \neq \emptyset$ *and* $D_{2e}(P_{n-3}, i-1) \neq \emptyset$ *then,* $D_{2e}(P_{n-2}, i-1) \neq \emptyset$. *(iii). If* $D_{2e}(P_{n-1}, i-1) = \phi$ *and* $D_{2e}(P_{n-2}, i-1) = \phi$ *then,* $D_{2e}(P_n, i) = \phi$. (iv) *. If* $D_{2e}(P_{n-1}, i-1) \neq \emptyset$ *and* $D_{2e}(P_{n-2}, i-1) \neq \emptyset$ *then,* $D_{2e}(P_n, i) \neq \emptyset$.

Proof. (i). Since, $D_{2e}(P_{n-1}, i-1) = \phi$ and $D_{2e}(P_{n-3}, i-1) =$ ϕ .

by Lemma 2.3 we have

$$
i-1 > n-2
$$
 or $i-1 < \lceil \frac{n-1}{2} \rceil$ and
 $i-1 > n-4$ or $i-1 < \lceil \frac{n-3}{2} \rceil$.

Therefore, $i-1 > n-2$ or $i-1 < \lceil \frac{n-3}{2} \rceil$. Therefore, $i-1 > n-3$ or $i-1 < \lceil \frac{n-2}{2} \rceil$ holds.

Hence, $D_{2e}(P_{n-2}, i-1) = \phi$.

(ii). Suppose $D_{2e}(P_{n-2}, i-1) = \phi$, by Lemma 2.3, we have $i-1 > n-3$ or $i-1 < \lceil \frac{n-2}{2} \rceil$.

If *i*−1 > *n*−3, then *i*−1 > 4. Therefore, $D_{2e}(P_{n-3}, i-1) = φ$, which is a contradiction.

If *i*−1 < $\lceil \frac{n-2}{2} \rceil$, then *i*−1 < $\lceil \frac{n-1}{2} \rceil$. Therefore, $D_{2e}(P_{n-1}, i 1) = \phi$, which is a contradiction.

Hence, $D_{2e}(P_{n-2}, i-1) \neq \emptyset$.

(iii). Since $D_{2e}(P_{n-1}, i-1) = \phi$ and $D_{2e}(P_{n-2}, i-1) = \phi$, by Lemma 2.3,

$$
i-1 > n-2 \text{ or } i-1 < \lceil \frac{n-1}{2} \rceil \text{ and}
$$
\n
$$
i-1 > n-3 \text{ or } i-1 < \lceil \frac{n-2}{2} \rceil.
$$

Therefore, $i - 1 > n - 2$ or $i - 1 < \lceil \frac{n-2}{2} \rceil$. Therefore, $i > n - 1$ or $i < \lceil \frac{n}{2} \rceil$ holds. Therefore, $D_{2e}(P_n, i) = \phi$. (iv). By hyphothesis $\lceil \frac{n-1}{2} \rceil \leq i - 1 \leq n - 2$ and $\lceil \frac{n-2}{2} \rceil \leq$ *i*−1 ≤ *n*−3. Therefore, $\lceil \frac{n-2}{2} \rceil \leq i-1 \leq n-2$. Therefore, $\lceil \frac{n}{2} \rceil \leq i \leq n-1$, holds. \Box Therefore, $D_{2e}(P_n, i) \neq \emptyset$.

Lemma 2.5. *Let* P_n , $n \geq 4$ *be the path with* $|V(P_n)| = n$ *and* $|E(P_n)| = n - 1$ *. Suppose that* $D_{2e}(P_n, i) \neq \emptyset$ *, then (i). If* $D_{2e}(P_{n-1}, i-1) = \emptyset$ *,* $D_{2e}(P_{n-2}, i-1) \neq \emptyset$ *and* $D_{2e}(P_{n-3}, i-1) \neq \emptyset$ *if and only if n* = 2*k*, *i* = *k*. (iii) *.* If $D_{2e}(P_{n-2}, i-1) = \phi$, $D_{2e}(P_{n-3}, i-1) = \phi$ and $D_{2e}(P_{n-1}, i-1)$ $1) \neq \emptyset$ *if and only if i* = *n* − 1*.* (iii) *.* If $D_{2e}(P_{n-1}, i-1) \neq \emptyset$, $D_{2e}(P_{n-2}, i-1) \neq \emptyset$ and $D_{2e}(P_{n-3}, i-1)$ $1) = \phi$ *if and only if i* = *n* − 2*.* (iv) *. If* $D_{2e}(P_{n-1}, i-1) \neq \emptyset$ *,* $D_{2e}(P_{n-2}, i-1) \neq \emptyset$ and $D_{2e}(P_{n-3}, i-1)$ $1) \neq \emptyset$ *if and only if* $\lceil \frac{n-1}{2} \rceil + 1 \leq i \leq n-3$ *.*

Proof. (i). Since $D_{2e}(P_{n-1}, i-1) = \phi$, by Lemma 2.3, we get $i-1 > n-2$ or $i-1 < \lceil \frac{n-1}{2} \rceil$.

If *i*−1 > *n*−2, then *i* > *n*−1. Then by Lemma 2.3, $D_{2e}(P_n, i) = \phi$, which is a contradiction.

So $i < \lceil \frac{n-1}{2} \rceil + 1$ and since $D_{2e}(P_n, i) \neq \emptyset$, together $\lceil \frac{n}{2} \rceil \leq i \leq$ $\lceil \frac{n-1}{2} \rceil + 1$, which gives $n = 2k$ and $i = k$ for some $k \in N$.

Conversely, if $n = 2k$, $i = k$ for some $k \in N$. Then by Lemma 2.3,

 $D_{2e}(P_{n-1}, i-1) = \emptyset$, $D_{2e}(P_{n-2}, i-1) \neq \emptyset$ and $D_{2e}(P_{n-3}, i-1)$ $1) \neq \phi$. (ii). Assume that $D_{2e}(P_{n-2}, i-1) = \phi$, $D_{2e}(P_{n-3}, i-1) = \phi$ and $D_{2e}(P_{n-1}, i-1) \neq \emptyset$. Since $D_{2e}(P_{n-2}, i-1) = \phi$ and $D_{2e}(P_{n-3}, i-1) = \phi$, by Lemma 2.3, we have $i-1 > n-3$ or $i-1 < \lceil \frac{n-2}{2} \rceil$ and $i-1 > n-4$ or $i-1 < \lceil \frac{n-3}{2} \rceil$. Therefore, $i - 1 > n - 3$ or $i - 1 < \lceil \frac{n-3}{2} \rceil$. Since $D_{2e}(P_{n-1}, i-1) \neq \emptyset$, we have $\lceil \frac{n-1}{2} \rceil \leq i-1 \leq n-2.$ If $i-1 < \lceil \frac{n-3}{2} \rceil$, then $i-1 < \lceil \frac{n-1}{2} \rceil$. Therefore by Lemma 2.3, $D_{2e}(P_{n-1}, i-1) \neq \emptyset$, which is a contradiction. So we have $i-1 > n-2$. Therefore $i > n-1$(1) Also, since $D_{2e}(P_{n-1}, i-1) \neq \emptyset$, we have $i-1 \leq n-2$. Therefore *i* ≤ *n*−1............(2) Combining (1) and (2), we get $i = n - 1$. Conversely, if $i = n - 1$. $D_{2e}(P_{n-2}, i-1) = D_{2e}(P_{n-2}, n-2) = \phi.$ $D_{2e}(P_{n-3}, i-1) = D_{2e}(P_{n-3}, n-2) = \phi.$ $D_{2e}(P_{n-1}, i-1) = D_{2e}(P_{n-1}, n-2) \neq \emptyset$. (iii). Assume that $D_{2e}(P_{n-1}, i-1) \neq \emptyset$, $D_{2e}(P_{n-2}, i-1) \neq \emptyset$ and $D_{2e}(P_{n-3}, i-1) = \phi$. Since $D_{2e}(P_{n-3}, i-1) = \phi$, by Lemma 2.3, we have $i-1$

n−4 or *i* − 1 < $\left[\frac{n-3}{2}\right]$(1) Since $D_{2e}(P_{n-1}, i-1) \neq \emptyset$, we have $\lceil \frac{n-1}{2} \rceil \leq i-1 \leq n-2$(2) Suppose $i-1 < \lceil \frac{n-3}{2} \rceil$, then (2) does not hold. Therefore our assumption is wrong. Therefore $i-1 > n-4$. Also since $D_{2e}(P_{n-2}, i-1) \neq \emptyset$ We have $\lceil \frac{n-2}{2} \rceil \leq i-1 \leq n-3$(3) But *i*−1 > *n*−4. Therefore, $i-1 \ge n-3$(4)

Combining (3) and (4), we get $i-1 = n-3$. Therefore $i = n - 2$. Conversely, if $i = n - 2$. Then $D_{2e}(P_{n-1}, i-1) = D_{2e}(P_{n-1}, n-3) \neq \emptyset$. $D_{2e}(P_{n-2}, i-1) = D_{2e}(P_{n-2}, n-3) \neq \emptyset$. $D_{2e}(P_{n-3}, i-1) = D_{2e}(P_{n-3}, n-3) = \phi.$ (iv). Assume that $D_{2e}(P_{n-1}, i-1) \neq \emptyset$, $D_{2e}(P_{n-2}, i-1) \neq \emptyset$ and $D_{2e}(P_{n-3}, i-1) \neq \emptyset$. Then by Lemma 2.3, $\lceil \frac{n-1}{2} \rceil \leq i - 1 \leq n - 2$, $\lceil \frac{n-2}{2} \rceil \leq i - 1 \leq$ *n*−3 and $\lceil \frac{n-3}{2} \rceil \leq i-1 \leq n-4$. $\sum_{n=1}^{\infty}$ and $\left\lfloor \frac{n-1}{2} \right\rfloor \leq i-1 \leq n-4$ and hence $\left\lceil \frac{n-1}{2} \right\rceil +$ 1 ≤ *i* ≤ *n*−3. Conversely, suppose $\lceil \frac{n-1}{2} \rceil + 1 \le i \le n-3$. Therefore, $\lceil \frac{n-1}{2} \rceil \leq i-1 \leq n-4$. Then $\lceil \frac{n-1}{2} \rceil \leq i - 1 \leq n - 2, \lceil \frac{n-2}{2} \rceil \leq i - 1 \leq n - 3, \lceil \frac{n-3}{2} \rceil \leq$ *i*−1 ≤ *n*−4 holds. From these we obtain $D_{2e}(P_{n-1}, i-1) \neq \emptyset$, $D_{2e}(P_{n-2}, i-1) \neq \emptyset$ ϕ and $D_{2e}(P_{n-3}, i-1) \neq \phi$. \Box Hence the theorem.

Theorem 2.6. *(i).* $D_{2e}(P_{2n}, n) = \{1, 3, 5, 7, 9, ..., 2n - 1\}$ *. (ii). If* $D_{2e}(P_{n-2}, i-1) = \emptyset$ *,* $D_{2e}(P_{n-3}, i-1) = \emptyset$ *and* $D_{2e}(P_{n-1}, i-1) \neq \emptyset$, then $D_{2e}(P_n, i) = D_{2e}(P_n, n-1) =$ [*n*−1]*. (iii). If* $D_{2e}(P_{n-1}, i-1) \neq \emptyset$ *,* $D_{2e}(P_{n-2}, i-1) \neq \emptyset$ *and* $D_{2e}(P_{n-3}, i-1) = \phi$ *, then* $D_{2e}(P_n, i) = D_{2e}(P_n, n-2) = \{ [n-1] - \{x\} / x \in [n-1] \}$ *and* $x \neq 1, n-1$ }. (iv) *. If* $D_{2e}(P_{n-1}, i-1) = \emptyset$ *,* $D_{2e}(P_{n-2}, i-1) \neq \emptyset$ *, then* $D_{2e}(P_n, i) = \{X \cup \{n-1\}/X \in D_{2e}(P_{n-2}, i-1)\}.$ (v) *. If* $D_{2e}(P_{n-1}, i-1) \neq \emptyset$ *,* $D_{2e}(P_{n-2}, i-1) = \emptyset$ *, then* $D_{2e}(P_n, i) = \{ Y \cup \{n-1\} / Y \in D_{2e}(P_{n-1}, i-1) \}.$ (vi) *. If* $D_{2e}(P_{n-1}, i-1) \neq \emptyset$ *,* $D_{2e}(P_{n-2}, i-1) \neq \emptyset$ *, then D*_{2*e*}(*P_n*,*i*) = {*X* ∪ {*n*−1} ∪ *Y* ∪ {*n*−1}} *where X* ∈ *D*_{2*e*}(*P*_{*n*−1},*i* − 1) *and Y* ∈ *D*_{2*e*}(*P*_{*n*−2},*i* − 1)*.*

Proof. (i). For every $n \ge 6$, $D_{2e}(P_{2n}, n)$ has only one 2-edge dominating sets as $D_{2e}(P_{2n}, n) = \{1, 3, 5, 7, 9, ..., 2n-1\}.$ (ii). Since $D_{2e}(P_{n-2}, i-1) = \phi$, $D_{2e}(P_{n-3}, i-1) = \phi$ and $D_{2e}(P_{n-1}, i-1) \neq \emptyset$, by Lemma 2.5(ii), $i = n-1$. Therefore, $D_{2e}(P_n, i) = D_{2e}(P_n, n-1) = [n-1].$ (iii). Since $D_{2e}(P_{n-1}, i-1) \neq \emptyset$, $D_{2e}(P_{n-2}, i-1) \neq \emptyset$ and $D_{2e}(P_{n-3}, i-1) = \phi$, by Lemma 2.5(iii), i = n - 2.. Therefore, $D_{2e}(P_n, i) = D_{2e}(P_n, n-2) = \{ [n-1] - \{x\}/x \in$ $[n-1]$ and $x \neq 1, n-1$.

(iv). Let *X* be 2-edge dominating set of P_{n-2} with cardinality *i*−1. All the elements of $D_{2e}(P_{n-2}, i-1)$ end with $n-3$.

Therefore $n - 3 \in X$, adjoin $n - 1$ with *X*. Hence every *X* of $D_{2e}(P_{n-2}, i-1)$ belongs to $D_{2e}(P_n, i)$ by adjoining *n* − 1 only.

Conversely suppose $Z \in D_{2e}(P_n, i)$. Here all the elements of *D*_{2*e*}(*P_n*,*i*) end with *n* − 1 only. Suppose, *n* − 1 ∈ *Z* then $Z = X \cup \{n-1\}$ where *X* ends with $n-3$.

(v) Let *Y* be a 2-edge dominating set of P_{n-1} with cardinality $i-1$. All the elements of $D_{2e}(P_{n-1}, i-1)$ end with $n-2$. Therefore *n*−2 ∈ *Y* adjoin *n*−1 with *Y*. Hence every *Y* of $D_{2e}(P_{n-1}, i-1)$ belongs to $D_{2e}(P_n, i)$ by adjoining *n*−1 only. Conversely suppose $Z \in D_{2e}(P_n, i)$. Here all the elements of *D*_{2*e*}(P_n ,*i*) ends with *n*−1 only. Suppose, *n*−1 ∈ *Z* then $Z = Y \cup \{n-1\}$ where *Y* ends with $n-1$.

(vi). Construction of $D_{2e}(P_n, i)$ from $D_{2e}(P_{n-1}, i-1)$ and $D_{2e}(P_{n-2}, i-1)$. Let *X* be a 2-edge dominating set of P_{n-1} with cardinality $i - 1$. All the elements of $D_{2e}(P_{n-1}, i-1)$ ends with *n*−2. Therefore *n*−2 ∈ *X* adjoin *n*−1 with *X*.

Hence every *X* of $D_{2e}(P_{n-1}, i-1)$ belongs to $D_{2e}(P_n, i)$ by adjoining $n-1$ only. Let *Y* be a 2-edge dominating set of P_{n-2} with cardirality *i*−1. All the elements of $D_{2e}(P_{n-2}, i-1)$ ends with $n-3$. Therefore $n-3 \in Y$ adjoin $n-1$ with *Y*. Hence every *Y* of $D_{2e}(P_{n-2}, i-1)$ belongs to $D_{2e}(P_n, i)$ by adjoining *n*−1 only.

Conversely suppose $Z \in D_{2e}(P_n, i)$. Here all the elements of $D_{2e}(P_n, i)$, ends with $n-1$ only. Suppose $n-1 \in \mathbb{Z}$, then *Z* = *X* ∪ {*n* − 1} ∪ *Y* ∪ {*n* − 1} where *X* ends with *n* − 2, *X* ∈ *D*₂*e*(P_{n-1} ,*i*−1) and *Y* ends with $n-3$, $Y \in D_{2e}(P_{n-2}, i-1)$. Hence the proof. \Box

Theorem 2.7. *If* $D_{2e}(P_n, i)$ *be the family of the 2-edge dominatirg sets of P_n with cardinality i, where* $i \geq \lceil \frac{n}{2} \rceil$ *then*

$$
d_{2e}(P_n,i) = d_{2e}(P_{n-1},i-1) + d_{2e}(P_{n-2},i-1).
$$

Proof. Using Theorem 2.6, we consider all the four cases given below, where $i \geq \lceil \frac{n}{2} \rceil$.

(i). If $D_{2e}(P_{n-1}, i-1) = \phi$ and $D_{2e}(P_{n-2}, i-1) = \phi$, then $D_{2e}(P_n,i) = \phi$. (ii). If $D_{2e}(P_{n-1}, i-1) = \phi$, $D_{2e}(P_{n-2}, i-1) \neq \phi$, then $D_{2e}(P_n, i) = \{X \cup \{n-1\}/X \in D_{2e}(P_{n-2}, i-1)\}.$ (iii). If $D_{2e}(P_{n-1}, i-1) \neq \emptyset$, $D_{2e}(P_{n-2}, i-1) = \emptyset$, then $D_{2e}(P_n, i) = \{ Y \cup \{n-1\}/Y \in D_{2e}(P_{n-1}, i-1) \}.$ (iv). If $D_{2e}(P_{n-1}, i-1) \neq \emptyset$, $D_{2e}(P_{n-2}, i-1) \neq \emptyset$, then $D_{2e}(P_n, i) = \{X \cup \{n-1\} \cup Y \cup \{n-1\}\}\$ where $X \in D_{2e}(P_{n-1}, i-1)$ and $Y \in D_{2e}(P_{n-2}, i-1)$.

From the above construction in each case, we obtain

$$
d_{2e}(P_n,i) = d_{2e}(P_{n-1},i-1) + d_{2e}(P_{n-2},i-1).
$$

 \Box

3. 2-Edge Domination Polynominals of Paths

Definition 3.1. Let $D_{2e}(P_n, i)$ be the family of 2-edge dominat*ing sets of* P_n *with cardinality i and let* $d_{2e}(P_n,i) = |D_{2e}(P_n,i)|$ *.*

Then the 2- edge domination polynomial $D_{2e}(P_n, x)$ *of* P_n *is* defined as $D_{2e}(P_n,x)=\sum_{i=\gamma_{2e}(P_n)}^{n-1}d_{2e}(P_n,i)x^i$, where $\gamma_{2e}(P_n)$ is *the 2-edge domination number of Pn*.

Theorem 3.2. *For every n* \geq 5,

$$
D_{2e}(P_n,x) = x[D_{2e}(P_{n-1},x) + D_{2e}(P_{n-2},x)]
$$

with initial values

$$
D_{2e}(P_3, x) = x^2
$$

$$
D_{2e}(P_4, x) = x^2 + x^3.
$$

Proof. We have

$$
d_{2e}(P_n, i) = d_{2e}(P_{n-1}, i-1) + d_{2e}(P_{n-2}, i-1)
$$

Therefore,

$$
d_{2e}(P_n, i)x^i = d_{2e}(P_{n-1}, i-1)x^i + d_{2e}(P_{n-2}, i-1)x^i
$$

\n
$$
\Sigma d_{2e}(P_n, i)x^i = \Sigma d_{2e}(P_{n-1}, i-1)x^i + \Sigma d_{2e}(P_{n-2}, i-1)x^i
$$

\n
$$
\Sigma d_{2e}(P_n, i)x^i = x\Sigma d_{2e}(P_{n-1}, i-1)x^{i-1} + x\Sigma d_{2e}(P_{n-2}, i-1)x^{i-1}
$$

\n
$$
D_{2e}(P_n, x) = xD_{2e}(P_{n-1}, x) + xD_{2e}(P_{n-2}, x)
$$

Therefore

$$
D_{2e}(P_n, x) = x[D_{2e}(P_{n-1}, x) + D_{2e}(P_{n-2}, x)]
$$

With the initial values

$$
D_{2e}(P_3, x) = x^2
$$

$$
D_{2e}(P_4, x) = x^2 + x^3.
$$

 $d_{2e}(P_n, i)$ the number of 2-edge dominating sets of P_n witil cardinality *i* for $3 \le n \le 14$ and $2 \le i \le 13$ as shown in Table 1.

Theorem 3.3. *The following properties hold for the coefficients of D*_{2*e*}(P_n, x)

(i). $d_{2e}(P_{2n}, n) = 1$ *, for every n* ≥ 2 *. (ii).* $d_{2e}(P_{2n-1}, n) = n - 1$ *, for every n* ≥ 2*.*

(*iii*).
$$
d_{2e}(P_n, n-1) = 1
$$
, for every $n \ge 3$.

(iv). $d_{2e}(P_n, n-2) = n-3$ *, for every n* ≥ 3*.*

 (v) *.* $d_{2e}(P_n, n-3) = \frac{1}{2}[n^2 - 9n + 20]$ *, for every n* ≥ 6*.* (vi) *.* $d_{2e}(P_n, n-4) = \frac{1}{6}[n^3 - 18n^2 + 107n - 210]$ *, for every* $n > 8$. (vii) *.* $d_{2e}(P_n, n-5) = \frac{1}{24}[n^4 - 30n^3 + 335n^2 - 1650n + 3024]$ *, for every n* \geq 10*.*

Proof. (i). Since $D_{2e}(P_{2n}, n) = \{2, 4, 6, 8, \ldots, 2n\}$, we have $d_{2e}(P_{2n}, n) = 1.$ (ii). To prove $d_{2e}(P_{2n-1}, n) = n-1$, for every $n \ge 2$, we apply induction on *n*. When $n = 2$, LHS: $d_{2e}(P_3, 2) = 1$, [From table]. RHS : $n-1 = 2-1 = 1$. Therefore, LHS= RHS.

Now suppose that the result is true for all numbers less than $n+1$ and we prove it for *n*. By Theorem 3.2, we have

$$
d_{2e}(P_{2n-1},n) = d_{2e}(P_{2n-2},n-1) + d_{2e}(P_{2n-3},n-1)
$$

= 1 + n - 2
= n - 1

Hence $d_{2e}(P_{2n-1}, n) = n-1$, for every *n* ≥ 2. (iii). Since $D_{2e}(P_n, n-1) = \{ [n-1] \}$, we have the result.

(iv). We have $D_{2e}(P_n, n-2) = \{ [n-2] - \{x\} \mid x \in [n] \text{ and }$ $x \neq 1, n$. Therefore $d_{2e}(P_n, n-2) = n-3$, for every $n \geq 3$.

(v). To prove $d_{2e}(P_n, n-3) = \frac{1}{2}[n^2 - 9n + 20]$, for every $n > 6$.

We apply induction on *n*.

When $n = 6$

 \Box

LHS: $d_{2e}(P_6, 3) = 1$ [From table]

RHS:
$$
\frac{1}{2}[(6)^2 - 9(6) + 20] = \frac{1}{2}[36 - 54 + 20]
$$

= 1.

Therefore LHS =RHS.

Now suppose that the result is true for all numbers less than *n* and we prove it for *n*.

By Theorem 3.2, we have,

$$
d_{2e}(P_n, n-3) = d_{2e}(P_{n-1}, n-4) + d_{2e}(P_{n-2}, n-4)
$$

= $\frac{1}{2}[(n-1)^2 - 9(n-1) + 20] + (n-2) - 3$
= $\frac{1}{2}[n^2 + 1 - 2n - 9n + 9 + 20] + n - 5$
= $\frac{n^2 - 9n + 20}{2}$

Hence $d_{2e}(P_n, n-3) = \frac{1}{2}[n^2 - 9n + 20]$, for every $n \ge 6$. (vi). To prove, $d_{2e}(P_n, n-4) = \frac{1}{6}[n^3 - 18n^2 + 107n - 210]$,

for every $n \geq 8$. We apply induction on *n*. When $n = 8$.

LHS:

 $d_{2e}(P_8, 4) = 1$ [from table]

$$
RHS := \frac{1}{6}[(8)^3 - 18(8)^2 + 107(8) - 210]
$$

$$
= \frac{1}{6}[512 - 1152 + 856 - 210]
$$

$$
= \frac{1}{6}[6]
$$

$$
= 1
$$

Therefore LHS = RHS.

Now suppose that the result is true for all numbers less than *n* and we prove it for *n*.

By Theorem 3.2, we have

$$
d_{2e}(P_n, n-4) = d_{2e}(P_{n-1}, n-5) + d_{2e}(P_{n-2}, n-5)
$$

= $\frac{1}{6}[(n-1)^3 - 18(n-1)^2 + 107(n-1) - 210]$
+ $\frac{1}{2}[(n-2)^2 - 9(n-2) + 20]$

$$
= \frac{1}{6}[n^3 - 3n^2 + 3n - 1 - 18n^2 - 18 + 36n + 107n - 107 - 210]
$$

+ $\frac{1}{2}[n^2 + 4 - 4n - 9n + 18 + 20]$
= $\frac{1}{6}[n^3 - 21n^2 + 146n - 336 + 3n^2 - 39n + 126]$
= $\frac{1}{6}[n^3 - 18n^2 + 107n - 210]$
Hence $d_{2e}(P_n, n - 4) = \frac{1}{6}[n^3 - 18n^2 + 107n - 210]$, for ev-

ery $n \geq 8$. (vii). To prove, $d_{2e}(P_n, n-5) = \frac{1}{24} [n^4 - 30n^3 + 335n^2 - 1650n]$ $+3024$, for every $n \ge 10$.

We apply induction on *n*.

When $n = 10$

LHS:
$$
d_{2e}(P_{10}, 5) = 1
$$
 [From table]
\n $RHS := \frac{1}{24}[(10)^4 - 30(10)^3 + 335(10)^2 - 1650(10) + 3024]$
\n $= \frac{1}{24}x[10000 - 30000 + 33500 - 16500 + 3024]$
\n $= 1$

Therefore LHS = RHS

Now suppose that the result is true for all numbers less than *n* and we prove it for *n*.

By Theorem 3.2, we have

$$
d_{2e}(P_n, n-5) = d_{2e}(P_{n-1}, n-6) + d_{2e}(P_{n-2}, n-6)
$$

=
$$
\frac{1}{24}[(n-1)^4 - 30(n-1)^3 + 335(n-1)^2 - 1650(n-1) + 3024]
$$

+
$$
\frac{1}{6}[(n-2)^3 - 18(n-2)^2 + 107(n-2) - 210]
$$

$$
= \frac{1}{24} [n^4 - 4n^3 + 6n^2 - 4n + 1 - 30(n^3 - 3n^2 + 3n - 1) + 335(n^2 + 1 - 2n) - 1650(n - 1) + 3024]
$$

+
$$
\frac{1}{6} [n^3 - 6n^2 + 12n - 8 - 18(n^2 + 4 - 4n) + 107(n - 2) + 210]
$$

=
$$
\frac{1}{24} [n^4 - 340^3 + 431n^2 - 2414n + 5040]
$$

+
$$
\frac{1}{6} [n^3 - 24n^2 + 191n - 504]
$$

=
$$
\frac{1}{24} [n^4 - 34n^3 + 431n^2 - 2414n + 5040 + 4n^3 - 96n^2 + 764n - 2016]
$$

$$
=\frac{1}{24}[n^4 - 30n^3 + 335n^2 - 1650n + 3024]
$$

Hence, $d_{2e}(P_n, n-5) = \frac{1}{24} [n^4 - 30n^3 + 335n^2 - 1650n +$ 3024], for every $n \ge 10$.

$$
\qquad \qquad \Box
$$

Theorem 3.4. *(i)*. $\Sigma_{i=n}^{2n}d_{2e}(P_i, n) = 2\Sigma_{i=2}^{2n-2}d_{2e}(P_i, n-1)$, *for every* $n \geq 3$ *. (ii). For every* $j \geq \lceil \frac{n}{2} \rceil$ *,*

$$
d_{2e}(P_{n+1},j+1)-d_{2e}(P_n,j+1)=d_{2e}(P_n,j)-d_{2e}(P_{n-2},j).
$$

(iii). lf $S_n = \sum_{i=\lceil \frac{n}{2} \rceil}^n d_{2e}(P_n, j)$ *, then for every n*≥ 6*,* $S_n = S_{n-1} +$ *Sn*−² *with initial values*

$$
S_3 = 1, S_4 = 2, S_5 = 3, S_6 = 5, S_7 = 8.
$$

Proof. (i). First we prove by induction on *n*. Suppose $n = 3$ then

$$
\sum_{i=3}^{6} d_{2e}(P_i,3) = 4 = 2 \sum_{i=2}^{4} d_{2e}(P_i,2).
$$
\n
$$
\sum_{i=k}^{2k} d_{2e}(P_i,k) = \sum_{i=k}^{2k} d_{2e}(P_{i-1},k-1) + \sum_{i=k}^{2k} d_{2e}(P_{i-2},k-1)
$$

$$
=2\sum_{i=k-1}^{2(k-1)}d_{2e}(P_{i-1},k-2)+2\sum_{i=k-1}^{2(k-1)}d_{2e}(P_{i-2},k-2)
$$

$$
=2\sum_{i=k-1}^{2(k-2)}d_{2e}(P_{i-1},k-l)
$$

Hence, $\sum_{i=n}^{2n} d_{2e}(P_i, n) = 2\sum_{i=2}^{2n-2} d_{2e}(P_i, n-1)$, for every *n* ≥ 3. (ii). By Theorem 2.7, we have $d_{2e}(P_{n+1}, j+1)-d_{2e}(P_n, j+1)$

 $= d_{2e}(P_n, j) + d_{2e}(P_{n-1}, j) - d_{2e}(P_{n-1}, j) - (d_{2e}(P_{n-2}, j))$ Therefore, $d_{2e}(P_{n+1}, j+1)-d_{2e}(P_n, j+1)$ $= d_{2e}(P_n, j) - d_{2e}(P_{n-2}, j)$ Therefore we have the result. (iii). By Theorem 2.7, we have

$$
S_n=\sum_{j=\lceil\frac{n}{2}\rceil}^n d_{2e}(P_n,j)
$$

$$
= \sum_{j=\lceil \frac{n}{2} \rceil}^{n} [d_{2e}(P_{n-1}, j-1) + d_{2e}(P_{n-2}, j-1)]
$$

$$
= \sum_{j=\lceil \frac{n}{2} \rceil-1}^{n-1} d_{2e}(P_{n-1}, j-1) + \sum_{j=\lceil \frac{n}{2} \rceil-1}^{n-1} d_{2e}(P_{n-2}, j-1)
$$

Hence $S_n = S_{n-1} + S_{n-2}$.

 \Box

4. Conclusion

In this paper 2- edge domination sets of paths and 2- edge domination polynomials of paths are studied and obtained some properties. We can generalize this study to any power of path.

References

- [1] Y.Caro, y. Roditty, A Note on the k- Domination Number of a Graph, *J. Math a Math. Sci*, Vol.13, No. 1, 205- 206,1990.
- [2] Saeid AIikhani, Yee-Hock Peng, Dominating Sets and Domination Polynomials of Certain Graphs, *OPUSCULA MATHEMATICA,* Vol.30,(2010.).
- [3] Saeid AIikhani, Yee- Hock Peng, Dominating Sets and Domination Polynomials of Paths, *lnternational Journal of Mathematics ad Mathematical Sciences*, Vol. (2009), Article ID 542040.
- [4] P.C.Priyanka Nair, T. Anitha Baby and V.M. Arul FIower Mary, 2- Dominating set and 2- Domination Polynomial of Paths, *Journal of Shanghai Jiaotong University*, Vol.16, lssue 10, (2020).
- [5] A. Vijayan, K. Lal Gipson, Dominating Sets and Domination Polynomials of Square of Paths, *Open Journal of Discrete Mathematics*, pp.60- 69, (2013).

 $* * * * * * * * * * *$ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

