

2-Edge dominating sets and 2-Edge domination polynomials of paths

K. Lal Gipson¹ and Arun Williams. S^{2*}

Abstract

Let P_n be the path with n vertices and (n-1) edges. Let $D_{2e}(G,i)$ be the family of 2- edge dominating sets in G with cardinality i. The polynomial $D_{2e}(G,i) = \sum_{i=\gamma_{2e}(G)}^{|E(G)|} d_{2e}(G,i)x^i$ is called the 2-edge domination polynomial of G. In this paper, we obtain a recursive formula for $d_{2e}(P_n,i)$. Using this recursive formula we construct 2- edge domination polynomial, $D_{2e}(P_n,x) = \sum_{i=\lceil \frac{n}{2} \rceil}^{n-1} d_{2e}(P_n,i)x^i$ where $d_{2e}(P_n,i)$ is the number of 2- edge dominating sets of P_n of cardinality i and obtain some properties of this polynomial.

Keywords

Path, 2-edge dominating set, 2-edge domination number and 2-edge domination polynomial.

AMS Subject Classification 05C38, 05C31.

Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, Tamil Nadu, India.

Article History: Received 24 January 2021; Accepted 18 March 2021

©2021 MJM.

Contents

1	Introduction	84
2	2-Edge Dominating Sets of Paths	844
3	2-Edge Domination Polynominals of Paths	840
4	Conclusion	849
	References	849

degree two and the end vertices have degree one is denoted by P_n . We use the notation $\lceil x \rceil$ for the smallest integer greater than or equal to x and $\lfloor x \rfloor$ for the largest integer less than or equal to x. Also we denote the set the $\{1, 2, 3,...n\}$ by [n] throughout this paper.

1. Introduction

Let G=(V,E) be a simple graph of order n. For any vertex, $v \in V$, the open neighbourhood of V is the set $N(v)=\{u \in V/uv \in E\}$ and the Closed neighbourhood of V is the set $N[v]=N(v)\cup\{v\}$. For a set $S\subseteq V$ the open nighbourhood of S is $N(S)=N[S]=N(S)\cup S$. A dominating set for a graph G is a subset D of V such that every vertex not in D is adjacent to atleast one member of D. The domination number $\gamma(G)$ is the number of vertices in a smallest dominating set of D. An edge dominating set for a graph D is a set of $D\subseteq E$ such that every edge not in D is adjacent to atleast one edge in D. An edge dominating set is also known as a line dominating set. The edge domination number of a graph D is the minimum size of an edge dominating set in D and is denoted by $\gamma_E(D)$. A simple path is a path in which all its internal vertices have

2. 2-Edge Dominating Sets of Paths

In this section, we state the 2-edge domination number of path and some of its properties.

Definition 2.1. Le G be a simple graph of order n and size m. A set $D \subseteq E$ is a 2- edge dominating set of the graph G, if every edge $e \in E$ -D is adjacent to at least 2-edges in D. The 2-edge domination number $\gamma_{2e}(G)$ is the minimum cardinality among the 2-edge dominating sets of G.

Example for 2-Edge Dominating Sets of Paths.

Let us consider P_5 as an example.

¹ Assistant Professor, Department of Mathematics, Scott Christian College (Autonomous), Nagercoil, Kanyakumari District, Tamil Nadu, India. ² Research Scholar[Reg. No.: 18213112091009], Department of Mathematics, Scott Christian College (Autonomous), Nagercoil, Kanyakumari District, Tamil Nadu, India.

^{*}Corresponding author: 1 lalgipson@yahoo.com; 2*arunwilliams1994@gmail.com

Figure 2.1

Here $E=\{e_1,e_2,e_3,e_4\}$, we take $D=\{e_1,e_2,e_4\}$, E-D is $\{e_3\}$, $\{e_3\}$ is adjacent to $\{e_2\}$ and $\{e_4\}$. Therefore, the set $\{e_1,e_2,e_4\}$ is a 2-edge dominating set.

Lemma 2.2. Let P_n , $n \ge 4$ be the path with n vertices and n-1 edges. Then its 2-edge domination number is $\gamma_{2e}(G) = \lceil \frac{n}{2} \rceil$.

Lemma 2.3. Let P_n , $n \ge 4$ be the path with $|V(P_n)| = n$ and $|E(P_n)| = n - 1$. Then $d_{2e}(P_n, i) = 0$ if $i < \lceil \frac{n}{2} \rceil$ or i > n - 1 and $d_{2e}(P_n, i) > 0$ if $\lceil \frac{n}{2} \rceil \le i \le n - 1$.

Proof. If $i<\lceil\frac{n}{2}\rceil$ or i>n-1, then there is no 2-edge dominating set of cardinality i. Therefore, $d_{2e}(P_n,i)=0$ if $i<\lceil\frac{n}{2}\rceil$ or i>n-1. By lemma 2.2, the cardinality of the minimum 2-edge dominating set is $\lceil\frac{n}{2}\rceil$. Therefore $d_{2e}(P_n,i)>0$ if $i\geq\lceil\frac{n}{2}\rceil$ and $i\leq n-1$. Hence we have $d_{2e}(P_n,i)=0$ if $i<\lceil\frac{n}{2}\rceil$ or i>n-1 and $d_{2e}(P_n,i)>0$ if $\lceil\frac{n}{2}\rceil\leq i\leq n-1$.

Lemma 2.4. Let P_n , $n \ge 4$ be the path with $|V(P_n)| = n$ and $|E(P_n)| = n - 1$. Then,

- (i). If $D_{2e}(P_{n-1}, i-1) = \phi$ and $D_{2e}(P_{n-3}, i-1) = \phi$ then, $D_{2e}(P_{n-2}, i-1) = \phi$.
- (ii). If $D_{2e}(P_{n-1}, i-1) \neq \phi$ and $D_{2e}(P_{n-3}, i-1) \neq \phi$ then, $D_{2e}(P_{n-2}, i-1) \neq \phi$.
- (iii). If $D_{2e}(P_{n-1}, i-1) = \phi$ and $D_{2e}(P_{n-2}, i-1) = \phi$ then, $D_{2e}(P_n, i) = \phi$.
- (iv). If $D_{2e}(P_{n-1}, i-1) \neq \emptyset$ and $D_{2e}(P_{n-2}, i-1) \neq \emptyset$ then, $D_{2e}(P_n, i) \neq \emptyset$.

Proof. (i). Since, $D_{2e}(P_{n-1}, i-1) = \phi$ and $D_{2e}(P_{n-3}, i-1) = \phi$,

by Lemma 2.3 we have

$$i-1 > n-2$$
 or $i-1 < \lceil \frac{n-1}{2} \rceil$ and $i-1 > n-4$ or $i-1 < \lceil \frac{n-3}{2} \rceil$.

Therefore, i-1 > n-2 or $i-1 < \lceil \frac{n-3}{2} \rceil$.

Therefore, i-1 > n-3 or $i-1 < \lceil \frac{n-2}{2} \rceil$ holds.

Hence, $D_{2e}(P_{n-2}, i-1) = \phi$.

(ii). Suppose $D_{2e}(P_{n-2}, i-1) = \phi$, by Lemma 2.3, we have i-1 > n-3 or $i-1 < \lceil \frac{n-2}{2} \rceil$.

If i-1 > n-3, then i-1 > 4. Therefore, $D_{2e}(P_{n-3}, i-1) = \phi$, which is a contradiction.

If $i-1 < \lceil \frac{n-2}{2} \rceil$, then $i-1 < \lceil \frac{n-1}{2} \rceil$. Therefore, $D_{2e}(P_{n-1}, i-1) = \phi$, which is a contradiction.

Hence, $D_{2e}(P_{n-2}, i-1) \neq \phi$.

(iii). Since $D_{2e}(P_{n-1},i-1)=\phi$ and $D_{2e}(P_{n-2},i-1)=\phi$, by Lemma 2.3,

$$i-1 > n-2$$
 or $i-1 < \lceil \frac{n-1}{2} \rceil$ and $i-1 > n-3$ or $i-1 < \lceil \frac{n-2}{2} \rceil$.

Therefore, i-1 > n-2 or $i-1 < \lceil \frac{n-2}{2} \rceil$.

Therefore, i > n-1 or $i < \lceil \frac{n}{2} \rceil$ holds.

Therefore, $D_{2e}(P_n, i) = \phi$.

(iv). By hyphothesis $\lceil \frac{n-1}{2} \rceil \le i-1 \le n-2$ and $\lceil \frac{n-2}{2} \rceil \le i-1 \le n-3$.

Therefore, $\lceil \frac{n-2}{2} \rceil \le i-1 \le n-2$.

Therefore, $\lceil \frac{n}{2} \rceil \le i \le n-1$, holds.

Therefore, $D_{2e}(P_n, i) \neq \phi$.

Lemma 2.5. Let P_n , $n \ge 4$ be the path with $|V(P_n)| = n$ and $|E(P_n)| = n - 1$. Suppose that $D_{2e}(P_n, i) \ne \emptyset$, then

(i). If $D_{2e}(P_{n-1}, i-1) = \phi$, $D_{2e}(P_{n-2}, i-1) \neq \phi$ and $D_{2e}(P_{n-3}, i-1) \neq \phi$ if and only if n = 2k, i = k.

(ii). If $D_{2e}(P_{n-2}, i-1) = \phi$, $D_{2e}(P_{n-3}, i-1) = \phi$ and $D_{2e}(P_{n-1}, i-1) \neq \phi$ if and only if i = n - 1.

(iii). If $D_{2e}(P_{n-1}, i-1) \neq \phi$, $D_{2e}(P_{n-2}, i-1) \neq \phi$ and $D_{2e}(P_{n-3}, i-1) = \phi$ if and only if i = n-2.

(iv). If $D_{2e}(P_{n-1}, i-1) \neq \emptyset$, $D_{2e}(P_{n-2}, i-1) \neq \emptyset$ and $D_{2e}(P_{n-3}, i-1) \neq \emptyset$ if and only if $\lceil \frac{n-1}{2} \rceil + 1 \leq i \leq n-3$.

Proof. (i). Since $D_{2e}(P_{n-1}, i-1) = \phi$, by Lemma 2.3, we get i-1 > n-2 or $i-1 < \lceil \frac{n-1}{2} \rceil$.

If i-1 > n-2, then i > n-1. Then by Lemma 2.3,

 $D_{2e}(P_n, i) = \phi$, which is a contradiction.

So $i < \lceil \frac{n-1}{2} \rceil + 1$ and since $D_{2e}(P_n, i) \neq \emptyset$, together $\lceil \frac{n}{2} \rceil \leq i \leq \lceil \frac{n-1}{2} \rceil + 1$, which gives n = 2k and i = k for some $k \in N$.

Conversely, if n = 2k, i = k for some $k \in N$. Then by Lemma 2.3,

 $D_{2e}(P_{n-1}, i-1) = \phi$, $D_{2e}(P_{n-2}, i-1) \neq \phi$ and $D_{2e}(P_{n-3}, i-1) \neq \phi$.

(ii). Assume that $D_{2e}(P_{n-2},i-1)=\phi$, $D_{2e}(P_{n-3},i-1)=\phi$ and $D_{2e}(P_{n-1},i-1)\neq\phi$.

Since $D_{2e}(P_{n-2}, i-1) = \phi$ and

 $D_{2e}(P_{n-3}, i-1) = \phi$, by Lemma 2.3, we have i-1 > n-3 or $i-1 < \lceil \frac{n-2}{2} \rceil$ and i-1 > n-4 or $i-1 < \lceil \frac{n-3}{2} \rceil$.

Therefore, i-1 > n-3 or $i-1 < \lceil \frac{n-3}{2} \rceil$.

Since $D_{2e}(P_{n-1}, i-1) \neq \emptyset$, we have

 $\lceil \frac{n-1}{2} \rceil \le i-1 \le n-2.$

If $i-1 < \lceil \frac{n-3}{2} \rceil$, then $i-1 < \lceil \frac{n-1}{2} \rceil$.

Therefore by Lemma 2.3, $D_{2e}(\tilde{P}_{n-1}, i-1) \neq \emptyset$, which is a contradiction.

So we have i-1 > n-2. Therefore i > n-1......(1)

Also, since $D_{2e}(P_{n-1}, i-1) \neq \emptyset$, we have $i-1 \leq n-2$.

Therefore $i \le n - 1$(2)

Combining (1) and (2), we get i = n - 1.

Conversely, if i = n - 1.

 $D_{2e}(P_{n-2}, i-1) = D_{2e}(P_{n-2}, n-2) = \phi.$

 $D_{2e}(P_{n-3}, i-1) = D_{2e}(P_{n-3}, n-2) = \phi.$

 $D_{2e}(P_{n-1},i-1)=D_{2e}(P_{n-1},n-2)\neq \phi.$

(iii). Assume that $D_{2e}(P_{n-1}, i-1) \neq \phi$, $D_{2e}(P_{n-2}, i-1) \neq \phi$ and $D_{2e}(P_{n-3}, i-1) = \phi$.

Since $D_{2e}(P_{n-3}, i-1) = \phi$, by Lemma 2.3, we have i-1 > 0

n-4 or $i-1 < \lceil \frac{n-3}{2} \rceil \dots (1)$ Since $D_{2e}(P_{n-1}, i-1) \neq \emptyset$, we have $\lceil \frac{n-1}{2} \rceil \le i-1 \le n-2 \dots (2)$

Suppose $i-1 < \lceil \frac{n-3}{2} \rceil$, then (2) does not hold.

Therefore our assumption is wrong.

Therefore i - 1 > n - 4.

Also since $D_{2e}(P_{n-2}, i-1) \neq \phi$

We have $\lceil \frac{n-2}{2} \rceil \le i - 1 \le n - 3 \dots (3)$

But i - 1 > n - 4.

Therefore, $i - 1 \ge n - 3$(4)

Combining (3) and (4), we get i - 1 = n - 3.

Therefore i = n - 2. Conversely, if i = n - 2.

Then $D_{2e}(P_{n-1}, i-1) = D_{2e}(P_{n-1}, n-3) \neq \emptyset$.

 $D_{2e}(P_{n-2},i-1)=D_{2e}(P_{n-2},n-3)\neq \phi.$

 $D_{2e}(P_{n-3},i-1)=D_{2e}(P_{n-3},n-3)=\phi.$

(iv). Assume that $D_{2e}(P_{n-1}, i-1) \neq \phi$, $D_{2e}(P_{n-2}, i-1) \neq \phi$ and $D_{2e}(P_{n-3}, i-1) \neq \phi$.

Then by Lemma 2.3, $\lceil \frac{n-1}{2} \rceil \le i-1 \le n-2$, $\lceil \frac{n-2}{2} \rceil \le i-1 \le n-3$ and $\lceil \frac{n-3}{2} \rceil \le i-1 \le n-4$.

Combining all these $\lceil \frac{n-1}{2} \rceil \le i-1 \le n-4$ and hence $\lceil \frac{n-1}{2} \rceil + 1 \le i \le n-3$.

Conversely, suppose $\lceil \frac{n-1}{2} \rceil + 1 \le i \le n-3$.

Therefore, $\lceil \frac{n-1}{2} \rceil \le i-1 \le n-4$.

Then $\lceil \frac{n-1}{2} \rceil \le i-1 \le n-2$, $\lceil \frac{n-2}{2} \rceil \le i-1 \le n-3$, $\lceil \frac{n-3}{2} \rceil \le i-1 \le n-4$ holds.

From these we obtain $D_{2e}(P_{n-1}, i-1) \neq \phi$, $D_{2e}(P_{n-2}, i-1) \neq \phi$ and $D_{2e}(P_{n-3}, i-1) \neq \phi$.

Hence the theorem.

Theorem 2.6. (i). $D_{2e}(P_{2n},n) = \{1,3,5,7,9,...,2n-1\}$. (ii). If $D_{2e}(P_{n-2},i-1) = \emptyset$, $D_{2e}(P_{n-3},i-1) = \emptyset$ and $D_{2e}(P_{n-1},i-1) \neq \emptyset$, then $D_{2e}(P_n,i) = D_{2e}(P_n,n-1) = [n-1]$. (iii). If $D_{2e}(P_{n-1},i-1) \neq \emptyset$, $D_{2e}(P_{n-2},i-1) \neq \emptyset$ and $D_{2e}(P_{n-3},i-1) = \emptyset$, then $D_{2e}(P_{n-3},i-1) = \emptyset$, then $D_{2e}(P_n,i) = D_{2e}(P_n,n-2) = \{[n-1]-\{x\}/x \in [n-1] \text{ and } x \neq 1,n-1\}$. (iv). If $D_{2e}(P_{n-1},i-1) = \emptyset$, $D_{2e}(P_{n-2},i-1) \neq \emptyset$, then $D_{2e}(P_n,i) = \{X \cup \{n-1\}/X \in D_{2e}(P_{n-2},i-1)\}$. (v). If $D_{2e}(P_{n-1},i-1) \neq \emptyset$, $D_{2e}(P_{n-2},i-1) = \emptyset$, then $D_{2e}(P_n,i) = \{Y \cup \{n-1\}/Y \in D_{2e}(P_{n-1},i-1)\}$.

(vi). If $D_{2e}(P_{n-1}, i-1) \neq \emptyset$, $D_{2e}(P_{n-2}, i-1) \neq \emptyset$, then

 $D_{2e}(P_n, i) = \{X \cup \{n-1\} \cup Y \cup \{n-1\}\} \text{ where }$

 $X \in D_{2e}(P_{n-1}, i-1)$ and $Y \in D_{2e}(P_{n-2}, i-1)$.

[n-1] and $x \neq 1, n-1$.

Proof. (i). For every $n \geq 6$, $D_{2e}(P_{2n},n)$ has only one 2-edge dominating sets as $D_{2e}(P_{2n},n) = \{1,3,5,7,9,...,2n-1\}$. (ii). Since $D_{2e}(P_{n-2},i-1) = \phi$, $D_{2e}(P_{n-3},i-1) = \phi$ and $D_{2e}(P_{n-1},i-1) \neq \phi$, by Lemma 2.5(ii), i=n-1. Therefore, $D_{2e}(P_n,i) = D_{2e}(P_n,n-1) = [n-1]$. (iii). Since $D_{2e}(P_{n-1},i-1) \neq \phi$, $D_{2e}(P_{n-2},i-1) \neq \phi$ and $D_{2e}(P_{n-3},i-1) = \phi$, by Lemma 2.5(iii), i=n-2.. Therefore, $D_{2e}(P_n,i) = D_{2e}(P_n,n-2) = \{[n-1] - \{x\}/x \in A\}$

(iv). Let *X* be 2-edge dominating set of P_{n-2} with cardinality i-1. All the elements of $D_{2e}(P_{n-2}, i-1)$ end with n-3.

Therefore $n-3 \in X$, adjoin n-1 with X. Hence every X of $D_{2e}(P_{n-2},i-1)$ belongs to $D_{2e}(P_n,i)$ by adjoining n-1 only.

Conversely suppose $Z \in D_{2e}(P_n, i)$. Here all the elements of $D_{2e}(P_n, i)$ end with n-1 only. Suppose, $n-1 \in Z$ then $Z = X \cup \{n-1\}$ where X ends with n-3.

(v) Let Y be a 2-edge dominating set of P_{n-1} with cardinality i-1. All the elements of $D_{2e}(P_{n-1},i-1)$ end with n-2. Therefore $n-2 \in Y$ adjoin n-1 with Y. Hence every Y of $D_{2e}(P_{n-1},i-1)$ belongs to $D_{2e}(P_n,i)$ by adjoining n-1 only. Conversely suppose $Z \in D_{2e}(P_n,i)$. Here all the elements of $D_{2e}(P_n,i)$ ends with n-1 only. Suppose, $n-1 \in Z$ then $Z = Y \cup \{n-1\}$ where Y ends with n-1.

(vi). Construction of $D_{2e}(P_n,i)$ from $D_{2e}(P_{n-1},i-1)$ and $D_{2e}(P_{n-2},i-1)$. Let X be a 2-edge dominating set of P_{n-1} with cardinality i-1. All the elements of $D_{2e}(P_{n-1},i-1)$ ends with n-2. Therefore $n-2 \in X$ adjoin n-1 with X.

Hence every X of $D_{2e}(P_{n-1},i-1)$ belongs to $D_{2e}(P_n,i)$ by adjoining n-1 only. Let Y be a 2-edge dominating set of P_{n-2} with cardirality i-1. All the elements of $D_{2e}(P_{n-2},i-1)$ ends with n-3. Therefore $n-3 \in Y$ adjoin n-1 with Y. Hence every Y of $D_{2e}(P_{n-2},i-1)$ belongs to $D_{2e}(P_n,i)$ by adjoining n-1 only.

Conversely suppose $Z \in D_{2e}(P_n,i)$. Here all the elements of $D_{2e}(P_n,i)$, ends with n-1 only. Suppose $n-1 \in Z$, then $Z = X \cup \{n-1\} \cup Y \cup \{n-1\}$ where X ends with $n-2, X \in D_{2e}(P_{n-1},i-1)$ and Y ends with $n-3, Y \in D_{2e}(P_{n-2},i-1)$. Hence the proof. \square

Theorem 2.7. If $D_{2e}(P_n, i)$ be the family of the 2-edge dominating sets of P_n with cardinality i, where $i \ge \lceil \frac{n}{2} \rceil$ then

$$d_{2e}(P_n,i) = d_{2e}(P_{n-1},i-1) + d_{2e}(P_{n-2},i-1).$$

Proof. Using Theorem 2.6, we consider all the four cases given below, where $i \ge \lceil \frac{n}{2} \rceil$.

(i). If $D_{2e}(P_{n-1}, i-1) = \phi$ and $D_{2e}(P_{n-2}, i-1) = \phi$, then $D_{2e}(P_n, i) = \phi$.

(ii). If $D_{2e}(P_{n-1}, i-1) = \phi$, $D_{2e}(P_{n-2}, i-1) \neq \phi$, then $D_{2e}(P_n, i) = \{X \cup \{n-1\}/X \in D_{2e}(P_{n-2}, i-1)\}.$

(iii). If $D_{2e}(P_{n-1}, i-1) \neq \phi$, $D_{2e}(P_{n-2}, i-1) = \phi$, then $D_{2e}(P_n, i) = \{Y \cup \{n-1\}/Y \in D_{2e}(P_{n-1}, i-1)\}.$

(iv). If $D_{2e}(P_{n-1}, i-1) \neq \phi$, $D_{2e}(P_{n-2}, i-1) \neq \phi$, then $D_{2e}(P_n, i) = \{X \cup \{n-1\} \cup Y \cup \{n-1\}\}\}$ where $X \in D_{2e}(P_{n-1}, i-1)$ and $Y \in D_{2e}(P_{n-2}, i-1)$.

From the above construction in each case, we obtain

$$d_{2e}(P_n, i) = d_{2e}(P_{n-1}, i-1) + d_{2e}(P_{n-2}, i-1).$$

3. 2-Edge Domination Polynominals of Paths

Definition 3.1. Let $D_{2e}(P_n, i)$ be the family of 2-edge dominating sets of P_n with cardinality i and let $d_{2e}(P_n, i) = |D_{2e}(P_n, i)|$.

Then the 2- edge domination polynomial $D_{2e}(P_n,x)$ of P_n is defined as $D_{2e}(P_n,x) = \sum_{i=\gamma_{2e}(P_n)}^{n-1} d_{2e}(P_n,i)x^i$, where $\gamma_{2e}(P_n)$ is the 2-edge domination number of P_n .

Theorem 3.2. For every $n \ge 5$,

$$D_{2e}(P_n,x) = x[D_{2e}(P_{n-1},x) + D_{2e}(P_{n-2},x)]$$

with initial values

$$D_{2e}(P_3,x)=x^2$$

$$D_{2e}(P_4,x) = x^2 + x^3$$
.

Proof. We have

$$d_{2e}(P_n, i) = d_{2e}(P_{n-1}, i-1) + d_{2e}(P_{n-2}, i-1)$$

Therefore,

$$\begin{aligned} d_{2e}(P_n,i)x^i &= d_{2e}(P_{n-1},i-1)x^i + d_{2e}(P_{n-2},i-1)x^i \\ \Sigma d_{2e}(P_n,i)x^i &= \Sigma d_{2e}(P_{n-1},i-1)x^i + \Sigma d_{2e}(P_{n-2},i-1)x^i \\ \Sigma d_{2e}(P_n,i)x^i &= x\Sigma d_{2e}(P_{n-1},i-1)x^{i-1} + x\Sigma d_{2e}(P_{n-2},i-1)x^{i-1} \\ D_{2e}(P_n,x) &= xD_{2e}(P_{n-1},x) + xD_{2e}(P_{n-2},x) \end{aligned}$$

Therefore

$$D_{2e}(P_n,x) = x[D_{2e}(P_{n-1},x) + D_{2e}(P_{n-2},x)]$$

With the initial values

$$D_{2e}(P_3, x) = x^2$$

 $D_{2e}(P_4, x) = x^2 + x^3$.

 $d_{2e}(P_n, i)$ the number of 2-edge dominating sets of P_n witil cardinality i for $3 \le n \le 14$ and $2 \le i \le 13$ as shown in Table

Table 1

i n	2	3	4	5	6	7	8	9	10	11	12	13
3	1											
4	1	1										
5	0	2	1									
6	0	1	3	1								
7	0	0	3	4	1							
8	0	0	1	6	5	1						
9	0	0	0	4	10	6	1					
10	0	0	0	1	10	15	7	1				
11	0	0	0	0	5	20	21	8	1			
12	0	0	0	0	1	15	35	28	9	1		
13	0	0	0	0	0	6	35	56	36	10	1	
14	0	0	0	0	0	1	21	70	84	45	11	1

Theorem 3.3. The following properties hold for the coefficients of $D_{2e}(P_n, x)$

- (i). $d_{2e}(P_{2n}, n) = 1$, for every $n \ge 2$.
- (ii). $d_{2e}(P_{2n-1}, n) = n 1$, for every $n \ge 2$.
- (iii). $d_{2e}(P_n, n-1) = 1$, for every $n \ge 3$.
- (iv). $d_{2e}(P_n, n-2) = n-3$, for every $n \ge 3$.

(v).
$$d_{2e}(P_n, n-3) = \frac{1}{2}[n^2 - 9n + 20]$$
, for every $n \ge 6$.
(vi). $d_{2e}(P_n, n-4) = \frac{1}{6}[n^3 - 18n^2 + 107n - 210]$, for every $n \ge 8$.

(vii).
$$d_{2e}(P_n, n-5) = \frac{1}{24}[n^4 - 30n^3 + 335n^2 - 1650n + 3024],$$
 for every $n \ge 10$.

Proof. (i). Since $D_{2e}(P_{2n}, n) = \{2, 4, 6, 8, \dots 2n\}$, we have $d_{2e}(P_{2n}, n) = 1$.

(ii). To prove $d_{2e}(P_{2n-1}, n) = n-1$, for every $n \ge 2$, we apply induction on n.

When n = 2, LHS: $d_{2e}(P_3, 2) = 1$, [From table].

RHS: n-1=2-1=1.

Therefore, LHS= RHS.

Now suppose that the result is true for all numbers less than n + 1 and we prove it for n.

By Theorem 3.2, we have

$$d_{2e}(P_{2n-1}, n) = d_{2e}(P_{2n-2}, n-1) + d_{2e}(P_{2n-3}, n-1)$$

$$= 1 + n - 2$$

$$= n - 1$$

Hence $d_{2e}(P_{2n-1}, n) = n-1$, for every $n \ge 2$. (iii). Since $D_{2e}(P_n, n-1) = \{[n-1]\}$, we have the result.

(iv). We have $D_{2e}(P_n, n-2) = \{ [n-2] - \{x\} \mid x \in [n] \text{ and } x \neq 1, n \}.$

Therefore $d_{2e}(P_n, n-2) = n-3$, for every $n \ge 3$.

(v). To prove $d_{2e}(P_n, n-3) = \frac{1}{2}[n^2 - 9n + 20]$, for every $n \ge 6$.

We apply induction on n.

When n = 6

LHS:
$$d_{2e}(P_6, 3) = 1$$
 [From table]

RHS:
$$\frac{1}{2}[(6)^2 - 9(6) + 20] = \frac{1}{2}[36 - 54 + 20]$$

= 1.

Therefore LHS = RHS.

Now suppose that the result is true for all numbers less than n and we prove it for n.

By Theorem 3.2, we have,

$$d_{2e}(P_n, n-3) = d_{2e}(P_{n-1}, n-4) + d_{2e}(P_{n-2}, n-4)$$

$$= \frac{1}{2}[(n-1)^2 - 9(n-1) + 20] + (n-2) - 3$$

$$= \frac{1}{2}[n^2 + 1 - 2n - 9n + 9 + 20] + n - 5$$

$$= \frac{n^2 - 9n + 20}{2}$$

Hence $d_{2e}(P_n, n-3) = \frac{1}{2}[n^2 - 9n + 20]$, for every $n \ge 6$.

(vi). To prove, $d_{2e}(P_n, n-4) = \frac{1}{6}[n^3 - 18n^2 + 107n - 210],$

for every $n \ge 8$.

We apply induction on n.

When n = 8.

LHS:

 $d_{2e}(P_8,4) = 1[$ from table]

$$RHS := \frac{1}{6}[(8)^3 - 18(8)^2 + 107(8) - 210]$$
$$= \frac{1}{6}[512 - 1152 + 856 - 210]$$
$$= \frac{1}{6}[6]$$
$$= 1$$

Therefore LHS = RHS.

Now suppose that the result is true for all numbers less than n and we prove it for n.

By Theorem 3.2, we have

$$d_{2e}(P_n, n-4) = d_{2e}(P_{n-1}, n-5) + d_{2e}(P_{n-2}, n-5)$$

$$= \frac{1}{6}[(n-1)^3 - 18(n-1)^2 + 107(n-1) - 210]$$

$$+ \frac{1}{2}[(n-2)^2 - 9(n-2) + 20]$$

$$= \frac{1}{6}[n^3 - 3n^2 + 3n - 1 - 18n^2 - 18 + 36n + 107n - 107 - 210]$$

$$+ \frac{1}{2}[n^2 + 4 - 4n - 9n + 18 + 20]$$

$$= \frac{1}{6}[n^3 - 21n^2 + 146n - 336 + 3n^2 - 39n + 126]$$

$$= \frac{1}{6}[n^3 - 18n^2 + 107n - 210]$$

Hence $d_{2e}(P_n, n-4) = \frac{1}{6}[n^3 - 18n^2 + 107n - 210]$, for every n > 8.

(vii). To prove, $d_{2e}(P_n, n-5) = \frac{1}{24}[n^4 - 30n^3 + 335n^2 - 1650n + 3024]$, for every $n \ge 10$.

We apply induction on n.

When n = 10

LHS:
$$d_{2e}(P_{10}, 5) = 1$$
 [From table]
 $RHS := \frac{1}{24} [(10)^4 - 30(10)^3 + 335(10)^2 - 1650(10) + 3024]$
 $= \frac{1}{24} x [10000 - 30000 + 33500 - 16500 + 3024]$
 $= 1$

Therefore LHS = RHS

Now suppose that the result is true for all numbers less than n and we prove it for n.

By Theorem 3.2, we have

$$d_{2e}(P_n, n-5) = d_{2e}(P_{n-1}, n-6) + d_{2e}(P_{n-2}, n-6)$$

$$= \frac{1}{24} [(n-1)^4 - 30(n-1)^3 + 335(n-1)^2 - 1650(n-1) + 3024]$$

$$+ \frac{1}{6} [(n-2)^3 - 18(n-2)^2 + 107(n-2) - 210]$$

$$= \frac{1}{24}[n^4 - 4n^3 + 6n^2 - 4n + 1 - 30(n^3 - 3n^2 + 3n - 1) + 335(n^2 + 1 - 2n) - 1650(n - 1) + 3024]$$

$$+ \frac{1}{6}[n^3 - 6n^2 + 12n - 8 - 18(n^2 + 4 - 4n) + 107(n - 2) + 210]$$

$$= \frac{1}{24}[n^4 - 340^3 + 431n^2 - 2414n + 5040]$$

$$+ \frac{1}{6}[n^3 - 24n^2 + 191n - 504]$$

$$= \frac{1}{24}[n^4 - 34n^3 + 431n^2 - 2414n + 5040 + 4n^3 - 96n^2 + 764n - 2016]$$

$$= \frac{1}{24}[n^4 - 30n^3 + 335n^2 - 1650n + 3024]$$

Hence, $d_{2e}(P_n, n-5) = \frac{1}{24}[n^4 - 30n^3 + 335n^2 - 1650n + 3024]$, for every $n \ge 10$.

Theorem 3.4. (i). $\Sigma_{i=n}^{2n} d_{2e}(P_i, n) = 2\Sigma_{i=2}^{2n-2} d_{2e}(P_i, n-1)$, for every $n \ge 3$.

(ii). For every $j \geq \lceil \frac{n}{2} \rceil$,

$$d_{2e}(P_{n+1},j+1)-d_{2e}(P_n,j+1)=d_{2e}(P_n,j)-d_{2e}(P_{n-2},j).$$

(iii). If $S_n = \sum_{i=\lceil \frac{n}{2} \rceil}^n d_{2e}(P_n, j)$, then for every $n \ge 6$, $S_n = S_{n-1} + S_{n-2}$ with initial values

$$S_3 = 1, S_4 = 2, S_5 = 3, S_6 = 5, S_7 = 8.$$

Proof. (i). First we prove by induction on n. Suppose n = 3 then

$$\sum_{i=3}^{6} d_{2e}(P_i, 3) = 4 = 2 \sum_{i=2}^{4} d_{2e}(P_i, 2).$$

$$\sum_{i=k}^{2k} d_{2e}(P_i, k) = \sum_{i=k}^{2k} d_{2e}(P_{i-1}, k-1) + \sum_{i=k}^{2k} d_{2e}(P_{i-2}, k-1)$$

$$=2\sum_{i=k-1}^{2(k-1)}d_{2e}(P_{i-1},k-2)+2\sum_{i=k-1}^{2(k-1)}d_{2e}(P_{i-2},k-2)$$

$$=2\sum_{i=k-1}^{2(k-2)}d_{2e}(P_{i-1},k-l)$$

Hence, $\sum_{i=n}^{2n} d_{2e}(P_i, n) = 2\sum_{i=2}^{2n-2} d_{2e}(P_i, n-1)$, for every $n \ge 3$.

(ii). By Theorem 2.7, we have

$$d_{2e}(P_{n+1}, j+1) - d_{2e}(P_n, j+1) = d_{2e}(P_n, j) + d_{2e}(P_{n-1}, j) - d_{2e}(P_{n-1}, j) - (d_{2e}(P_{n-2}, j))$$

Therefore, $d_{2e}(P_{n+1}, j+1) - d_{2e}(P_n, j+1)$

$$= d_{2e}(P_n, j) - d_{2e}(P_{n-2}, j)$$

Therefore we have the result.

(iii). By Theorem 2.7, we have

$$S_n = \sum_{j=\lceil \frac{n}{2} \rceil}^n d_{2e}(P_n, j)$$

$$= \sum_{j=\lceil \frac{n}{2} \rceil}^{n} [d_{2e}(P_{n-1}, j-1) + d_{2e}(P_{n-2}, j-1)]$$

$$= \sum_{j=\lceil \frac{n}{2} \rceil-1}^{n-1} d_{2e}(P_{n-1}, j-1) + \sum_{j=\lceil \frac{n}{2} \rceil-1}^{n-1} d_{2e}(P_{n-2}, j-1)$$
Hence $S_n = S_{n-1} + S_{n-2}$.

4. Conclusion

In this paper 2- edge domination sets of paths and 2- edge domination polynomials of paths are studied and obtained some properties. We can generalize this study to any power of path.

References

- [1] Y.Caro, y. Roditty, A Note on the k- Domination Number of a Graph, *J. Math a Math. Sci*, Vol.13, No. 1, 205-206,1990.
- [2] Saeid Alikhani, Yee-Hock Peng, Dominating Sets and Domination Polynomials of Certain Graphs, *OPUSCULA MATHEMATICA*, Vol.30,(2010.).
- [3] Saeid Alikhani, Yee- Hock Peng, Dominating Sets and Domination Polynomials of Paths, *International Journal* of Mathematics ad Mathematical Sciences, Vol. (2009), Article ID 542040.
- [4] P.C.Priyanka Nair, T. Anitha Baby and V.M. Arul Flower Mary, 2- Dominating set and 2- Domination Polynomial of Paths, *Journal of Shanghai Jiaotong University*, Vol.16, Issue 10, (2020).
- [5] A. Vijayan, K. Lal Gipson, Dominating Sets and Domination Polynomials of Square of Paths, *Open Journal of Discrete Mathematics*, pp.60-69, (2013).

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
