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On a subclass meromorphic functions with positive
coefficients
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Abstract

In this paper we introduce and study a new subclass of meromorphically convex functions with positive coefficients
defined by a differential operator and obtain coefficient estimates, growth and distortion theorem, radius of
convexity, integral transforms, convex linear combinations, convolution properties and § —neighborhoods for the

class o, (o).
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1. Introduction

Let Y be denote the class of meromorphic functions of the
form

f(z)= l+ i am?", (am > 0) (1.1)
m=1

Z

which are analytic in the punctured unit disc E = {z:z €
Cand 0 < |z| < 1}. Let g(z) € ¥* be given by

=

1
g(z) = s bu?", (b >0). (1.2)
1

m=

Then the Hadamard product (or convolution ) of f(z) and g(z)
is given by

T
(F#8)(@) = -+ X anbn" = (g% f)(2). (13)
m=1
A function f € }¥'* is meromorphic starlike of order
a(0<oa<l1)if
z2f'(2) }
—Re >o, zeC. (1.4)
{ f(2)

The class of all such functions is denoted by Y i (a).

A function f € ¥* is meromorphically convex of order
a(0<a<l)if

2f"(2)
_Re{1+ ) }>a, z€E.

(1.5)

The class of all such functions is denoted by Y ; (o). The
classes Y () and Y7 () were introduced and studied by
Pommerenke [11], Clunie [3], Royster [15] and others.

For functions f(z) € Y*, we define a linear operator D"
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by the following form

Df(z) = f(z)

Dv@:%+wﬂ+Mﬁ+n.:Ez?X
D*f(z)=D(D'f(2))
D'f(z) = D(D""'f(2))

= i+m§‘,l(m+2)”amzm

:M7 forn=1,2,--- (1.6)

Z

Now, we define a new subclass o, () of Y*.

Definition 1.1. For —1 < o0 < 1, we let 6,(t) be the sub-
class of Y* consisting of the form (1.1) and satisfying the
analytic criterion

D"f(z) is given by (2?)

Dn+1f(z)

D)

; (1.7

The main object of the paper is to study some usual prop-
erties of the geometric function theory such as coefficient
bounds, growth and distortion properties, radius of convexity,
convex linear combination and convolution properties, inte-
gral operators and 6 —neighbourhoods for the class 6,(ct).

2. Coefficient inequality

In this section we obtain the coefficient bounds of function
f(z) for the class o, (o).

Theorem 2.1. A function f(z) of the form (1.1) is in o, () if

Z(m+2)"(2m+3—a)|am\ <(l-a), —1<a<]l.
m=1

@2.1)

Proof. 1t sufficient to show that

Dn+lf( ) D"Jrlf( )
zadld —1‘—Re{ S -1} < (1-a).

851

Now

5 Dan(Z)_l’

D"f(z)
2 El(erZ)”(er 1)]am||z"|

<

g~ L (m+2)"an||z"|
I m=1
Letting z — 1 along the real axis, we obtain

2% (m+2)"(m+1)|an|
S m=1

1= ¥ (m+2)"|ay|

m=

The above expression is bounded by (1 — «) if

oo

Y (m+2)"2m+3—a)lan| < (1-a).

m=1

Hence the theorem is completed O

Corollary 2.2. Let the function f(z) defined by (1.1) be in
the class op(ot). Then

< L7 m>1. 2.2)
Y (m+2)"2m+3—a)
m=1
Equality holds for the function of the form
1 -«
In(2) = -+ Sl " 2.3)

7z (m+2)"Cm+3—a)

3. Distortion Theorems
In this section we obtain the sharp for the Distortion theorems
of the form (1.1) .

Theorem 3.1. Let the function f(z) defined by (1.1) be
in the class o,(ct). Then for 0 < |z| =r <1,

) 1 (-a)

P aeoa) SO Ry O
with equality for the function

fz) = A ') z, at z=rnir. (3.2)

Tz 3(5-a)

Proof. Suppose f(z) is in o, (). In view of Theorem 2.1, we
have

35-a) Y an< ¥ (m4+2)"2m+3—a)<(1-a)
m=1

m=1

which evidently yields Y a, < ﬁ.
m=1



Consequently, we obtain

‘ +Zamz
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<[t £ ot

m=1 m=1
1
§7+r2am
r m=1
1 1-—
Ly U-a)
r 35-a)
Also, Zamz H ZamIZI’"
m=1
1 o
>—=r am
r m=1
>1—M}t
“r 35-a)

Hence the results (3.1) follow.

Theorem 3.2. Let the function f(z) defined by (1.1) be
in the class o, (at). Then for 0 < |z| =r < 1,

1 (-

I%

35—-a) ~

S s g S @IS S+

1 (1—o)
3n5-a)

The result is sharp, the extremal function being of

the form (3.2)

Proof. From Theorem 2.1, we have

3'5-a) i may, < i(m+2)”(2m+3—a)

m=1

which evidently yields Z ma, <

Consequently, we obtam

m=1

<(1-a

1-a
3(5-a)”

] (=]
@< |5+ Y manr™!
r m=1
| =
<5+ Y ma,
m=1
1 (1-—a)
< — :
S2 TG a)
/ 1 & m—1
Also, [f'(2)| > | — Z mapy,r
m=1
>l oy
> - Z Maty,
m=1
1 (1-a)
> — .
SRRy

This completes the proof.

4. Class preserving integral operators

In this section we consider the class preserving integral opera-
tor of the form (1.1) .

Theorem 4.1. Let the function f(z) defined by (1.1) be in the

class op(at). Then

4
1 N o
f(z):cz_c_l/tcf(t)dt:er — 47", >0

/ z Setm+1

(4.1)
belongs to the class o[8(a,n,c)], where

)—(1-a)c 42)

8(aot,n,c) = 3"(5_Z>(

The result is sharp for f(z) = % + %Z.

Proof. Suppose

| e
D)=—+ ) an"
T =
is in 0, (). we have

Z
f2) ZCZ’H({th(t)dt =1+ )Z —and", ¢>0.

It is sufficient to show that

i m+68 cay

1—-8m+c+1— =1L “.3)

Since f(z) is in 0, (), we have

Y (m+2)"2m+3— a)|am|
m=1 — <1. (4.4)

Thus (4.3) will be satisfied if
(m+0)c < (m+2)" 2m+m—a)

=8 omter) = - , for eachm or

< (m+2)"2m+3—a)(c+m+1)—mc(1— )
- (m+2)2m+3—-o)(c+m+1)+(1—a)

=G(m)
4.5)

Then G(m+ 1) — G(m) > 0, for each m.

Hence G(m) is an increasing function of m.
.  3(5—a)(c42)—c(1-a)
Since G(1) = F(G5—a)(ct2)te(I—a)
The result follows. O

5. Convex linear combinations and
convolution properties

In this section we obtain the radius meromorphically con-
vex of order 8§, convex linear combinations and convolution
properties for functions in the class o, ().
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Theorem 5.1. If the function f(z) = %—4— E, amZ™isinop,(t)  Proof. Let f(z) = Aofo(z) + ): Amfm(z) with Ag > 0,
m=1

m=

then f(z) is meromorphically convex ofo_rder 0(0<d8<1)
in|z] <r=r(a,d) where
1
e [ (1=8)(m42)" 2m3—a) | T
r(a,8) = }lgfl{ (l—n(;)m(rrH-’;—ﬁ) } :
The result is sharp.

An>0,m>1and Ay + Z JL,,,: 1. Then

m=1

() = hofol2) + i Donn(2)

-«
Proof. Let f(z) be in 0,(¢t). Then, by Theorem 2.1, we have - +mZ1 T ( (2ml3 ~a) o
2)"(2 — 1-
; Sinee 32 (MFVEn3@), (-
Z (m+2)"2m+3 - a)|an| < (1—-a). (5.1 = (1-a) (m+2)"(2m+3— )
o1 = Am =1- 2'() < 1.

It is sufficient to show that ‘2+ Z}{,éz)) < (1-9) for ,,,z:" |
|z| <r=r(a,d), where r(a, &) is specified in the statement By Theorem 2.1, f(z) is in the class o, ().
of the theorem. Then Conversely suppose that the function f(z) is in the class

o,(a), since

i m(m+1)a,z"! (1-a)
’2+ ") I < GryamsaC M2 1
f(2) 4 Y magzn! Am= Y %am and dg=1— Y A,. It follows
m=1 m=1 m=1
Z m(m+1)a’nlz|m+1 thatf( ) %fo( ) Z 2'mf;n( )
<m=l . This completes the proof of the theorem. O
1— Y may|z|™*! oo
m=1 For the functions f(z) = %—i— Z an?™ and g(z) = %4—
b, 7™ belongs to ¥, we denoted b * th lu-
This will be bounded by (1 —8§) if m):1 m g8t Z we denoted by (f+)(z) the convolu
tion of f(z) and g(z) and defined as
- mm+2-6) 1,y m
Z Wamk\ <I. (52) (fxg)(r) = -+ Zlambmz
m=1 m=
By (5.1), it follows that (5.2) is true if Theorem 5.3. If the function f(z) = 1 + )0:0, am?™ and g(z) =
m(m+2-35) 2+ < (m+2)'@mi3-0) 4 Lo
-0 — 1— bl -
or ] * —|— Z byu2™ are in the class 6,(@) then (f *g)(z) is in the
_ =8ty @mt3—a)|# oy 55(@)
2l = (1—a)m(m+2—25) : (-3) Proof. Suppose f(z) and g(z) are in 6, (). By Theorem 2.1,
< (m+2)"(2m+3—a)
Setting |z| = r(a, §) in (5.3), the result follows. we have mzl (1-a) am <1
The result is sharp for the function. and ): (m+2) 6(2:;3 a) by, <1.
1
! (1-a) Since /(z) and lar are i i
)=t 2 om> . ince f(z) and g(z) are regular are in E, so is (f *g)(z).
fn(2) z  (m+2)"(2m+3—-a) Further more
O = (m+2)"(2m+3—o)
L e
Theorem 5.2. Let fy(z) = % and m=1
_ 1 (1 (X) oo
f»&z)—*mz“ mz 1. < Z{ (m+2)" (2ma+)3 a)} b
Then f(z) = - + Z am2™ is in the class o, (o) =!
if and only lflt can be expressed in the form < Z (m+ 2 (2m J)r 3-0) am>
m=1
@) =%fo(2)+ Y Anfn(2), ( = m+2 2m+3 a) )
m=1 Z bm .
= —a)

where Ay > 0,4, >0,m>1land g+ ¥ A, = 1.
m=1

853 N



On a subclass meromorphic functions with positive coefficients — 854/854

Hence, by Theorem 2.1, (f*g)(z) is in the class 6, (o). O

6. Neighborhoods for the class c,(«,7)

In this section we define the § —neighborhood of a function
f(z) and establish a relation between § —neighborhood and
op(a,7) class of a function.

Definition 6.1. A function f € Y. is said to in the class 6,(Q,y)

p
if there exists a function g € 6, () such that
‘f(z)—l‘<(l—7/), 7€EE, 0<y<1. (6.1)
8(z)

Following the earlier works on neighborhoods of analytic
functions by Goodman [4] and Ruschweyh [16]. We defined
the d —neighborhood of a function f € ¥, by

p

+ i bpd"

m=1

Y. mlan —bu| < 8}
m=1

Ns()=1{g€Y | s(2) =
P

Z

(6.2)
Theorem 6.2. If g € 0, () and

65— )

; (6.3)

y=1-
then N5(g) C op(0t,7).

Proof. Let f € Ns(g). Then we find from (6.2) that

Y mlay —by| <8 (6.4)
m=1

which implies the coefficient of inequality
Y |am—bm| <6, meN.
m=1

Since g € 0, (@), we have ¥ by, = =%,
m=1 )
E ‘am_bml
So that ‘M — 1‘ < m=l < 3G
8(2) 1- Y by 4
m=1

provided 7 is given by (6.3).
Hence, by Definition, f € 6,(c, ) for y given by (6.3),
which completes the proof of theorem. U

=1 -7
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