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Abstract
In this study, we derive explicit two-derivative improved Runge-Kutta direct methods (TDIRKD) which incorporates
the fourth derivative of the solution to solve special third order ordinary differential equations. The improved
Runge-Kutta direct methods are extended to these methods. TDIRKD methods which involve one evaluation
of third derivative and multiple evaluations of fourth derivative per step are constructed. Order conditions for
TDIRKD methods are derived up to order five. Two-stage fourth-order TDIRKD method is presented. The stability
polynomial of the proposed method have been obtained. Numerical computations have been given to illustrate
the accuracy and efficiency of the suggested method compared to the accessible methods in the literature.
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1. Introduction
In this paper, we are deal with the initial value problem of
special third-order ordinary differential equations (ODEs) as
follows:

y′′′(x)= f (x,y) y(x0)= y0, y′(x0)= y′0, y′′(x0)= y′′0 , (1.1)

where y ∈ Rd , f : R×Rd → Rd . Equation (1.1) may be used
to explain mathematical models in engineering and many
applied sciences. The third order system (1.1) may be solved
by converting into a first-order system [4, 8, 11]. Using this

way to solve Eq. (1.1), it causes to increase the computational
time. Therefore, the direct integration methods for solving Eq.
(1.1) are useful [1–3, 9, 10, 14–16, 20, 21].

Some studies have been done by using of higher order
derivatives of the solution in the formulation of the method
to increase the efficiency of the method [5, 6, 17]. Recently,
some authors have presented studies on two-derivative Runge-
Kutta type methods for third-order ordinary differential equa-
tions [12, 13]. Following the same idea in [12, 13], in this
paper we construct two-derivative improved Runge–Kutta di-
rect methods (TDIRKD) to solve Eq. (1.1). This method is
not self-starting, that is two-step in nature. This paper is orga-
nized as follows: The formulation of the TDIRKD methods
for solving (1.1) are presented in Section 2. In Section 3, we
derive the order conditions for TDIRKD methods. Next, we
present a two-stage explicit two-derivative improved Runge-
Kutta direct method of order four for solving (1.1) in Section
4. Then, in Section 5, the stability polynomial of TDIRKD
methods is investigated. Section 6 gives some numerical ex-
amples to show efficiency of our proposed methods. Finally,
conclusion is given in Section 7.
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2. Derivation of TDIRKD methods

The improved Runge-Kutta direct methods are extended to
two-derivative improved Runge-Kutta direct methods by in-
cluding the fourth-derivative of the solution for solving third-
order ODEs. That is, we derive two-derivative improved
Runge-Kutta direct methods using the fourth derivative infor-
mations. It is assumed that the fourth derivative of the solution
is known

y(iv)(x) = g(x,y,y′) = fx(x,y)+ fy(x,y)y′

and it is incorparated in the formulation of the method. We
consider methods that consist of one evaluation of f (third
derivative) and many evaluations of g (fourth derivative). A
modified s-stage explicit improved Runge-Kutta direct method
obtained by using the fourth derivative in classical improved
Runge-Kutta direct methods [9, 10] is given as follows:

yn+1 = yn +
3
2

hy′n−
1
2

hy′n−1 +
5

12
h2y′′n−

5
12

h2y′′n−1

+
1
6

h3 f (xn,yn)−
1
6

h3 f (xn−1,yn−1) (2.1)

+h4
s

∑
i=1

b′′i (ki− k−i),

y′n+1 = y′n +
3
2

hy′′n−
1
2

hy′′n−1 +
5
12

h2 f (xn,yn)

− 5
12

h2 f (xn−1,yn−1)+h3
s

∑
i=1

b′i(ki− k−i) (2.2)

y′′n+1 = y′′n +
3
2

h f (xn,yn)−
1
2

h f (xn−1,yn−1)

+h2
s

∑
i=1

bi(ki− k−i), (2.3)

where

k1 = g(xn,yn,y′n), (2.4)
k−1 = g(xn−1,yn−1,y′n−1), (2.5)

ki = g(xn + cih,Y i
n,Y
′i
n ), (2.6)

k−i = g(xn−1 + cih,Y i
n−1,Y

′i
n−1), (2.7)

Y i
n = yn +hciy′n +

1
2

h2c2
i y′′n +

1
6

h3c3
i f (xn,yn)

+h4
i−1

∑
j=1

ai jk j, (2.8)

Y ′in = y′n +hciy′′n +
1
2

h2c2
i f (xn,yn)

+h3
i−1

∑
j=1

âi jk j, (2.9)

Y i
n−1 = yn−1 +hciy′n−1 +

1
2

h2c2
i y′′n−1

+
1
6

h3c3
i f (xn−1,yn−1)+h4

i−1

∑
j=1

ai jk− j, (2.10)

Y ′in−1 = y′n−1 +hciy′′n−1 +
1
2

h2c2
i f (xn−1,yn−1)

+h3
i−1

∑
j=1

âi jk− j. (2.11)

The coefficients of the TDIRKD method are b′′i ,b
′
i,bi,ai j, âi j

(ai j = âi j = 0, if i≤ j) and ci(c1 = 0) for i=1, . . . , s and j=1,
. . . , s-1. TDIRKD method (2.1)-(2.11) can be expressed by
the Butcher tableau as follows:

c A Â

b′′T b′T bT

3. Order conditions
In this section, the order conditions for TDIRKD method are
derived. There are many ways to obtain the order conditions.
The Taylor series expansions are used to obtain the order
conditions of TDIRKD method. System of nonlinear algebraic
equations are obtained using Maple for algebraic calculations.

The order conditions up to order five for TDIRKD method
are listed below:
Order three

s

∑
i=1

bi =
5
12

. (3.1)

Order four
s

∑
i=2

bici =
1
6
,

s

∑
i=1

b′i =
1
6
. (3.2)

Order five
s

∑
i=2

bic2
i =

31
360

,
s

∑
i=2

b′ici =
31
720

,
s

∑
i=1

b′′i =
31

720
. (3.3)

4. Derivation of explicit TDIRKD method
We present an explicit fourth-order TDIRKD method with
two-stage in this section. The coefficients of the fourth-order
TDIRKD method with two-stage (s = 2) are found by using
the order conditions up to order four (3.1)-(3.2). Therefore,
there are 3 nonlinear equations with 9 unknowns, which in-
clude the four unknowns a21, â21, b′′1 and b′′2 .

The parameters of TDIRKD method have been generated
by utilised the following simplifying assumptions

i−1

∑
j=1

ai j =
c4

i
24

,
i−1

∑
j=1

âi j =
c3

i
6
, i = 2, . . . ,s. (4.1)

The unknowns a21 and â21 are obtained from (4.1). The free
parameters can be determined by using the same idea in [7].
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With Maple software, the free parameters can be chosen as
c2 =

31
60 , b′2 =

1
12 , b′′1 = 27

1000 and b′′2 = 1
62 . Thus, the other

coefficients of the fourth-order TDIRKD method are given as
follows

b1 =
35

372
, b2 =

10
31

, b′1 =
1
12

.

The two-stage fourth-order TDIRKD method may be rep-
resented with the tableau as follows:

0
31
60

923521
311040000

29791
1296000

27
1000

1
62

1
12

1
12

35
372

10
31

We denote this method by TDIRKD4.

5. Stability Analysis

In this section, we investigate the stability properties of the
TDIRKD method. This method (2.1)-(2.11) can be written as
follows

Y 1
n = yn,

Y ′1n = y′n,

Y 1
n−1 = yn−1,

Y ′1n−1 = y′n−1,

Y i
n = yn +hciy′n +

1
2

h2c2
i y′′n +

1
6

h3c3
i f (xn,yn)

+h4
i−1

∑
j=1

ai jg(xn + c jh,Y j
n ,Y

′ j
n ), i = 2, . . . ,s

Y ′in = y′n +hciy′′n +
1
2

h2c2
i f (xn,yn)

+h3
i−1

∑
j=1

âi jg(xn + c jh,Y j
n ,Y

′ j
n ), i = 2, . . . ,s

Y i
n−1 = yn−1 +hciy′n−1 +

1
2

h2c2
i y′′n−1

+
1
6

h3c3
i f (xn−1,yn−1)

+h4
i−1

∑
j=1

ai jg(xn−1 + c jh,Y
j

n−1,Y
′ j
n−1), i = 2, . . . ,s,

Y ′in−1 = y′n−1 +hciy′′n−1 +
1
2

h2c2
i f (xn−1,yn−1)

+h3
i−1

∑
j=1

âi jg(xn−1 + c jh,Y
j

n−1,Y
′ j
n−1), i = 2, . . . ,s,

yn+1 = yn +
3
2

hy′n−
1
2

hy′n−1 +
5

12
h2y′′n−

5
12

h2y′′n−1

+
1
6

h3 f (xn,yn)−
1
6

h3 f (xn−1,yn−1)

+h4
s

∑
i=1

b′′i g(xn + cih,Y i
n,Y
′i
n )

−h4
s

∑
i=1

b′′i g(xn−1 + cih,Y i
n−1,Y

′i
n−1), (5.1)

y′n+1 = y′n +
3
2

hy′′n−
1
2

hy′′n−1 +
5
12

h2 f (xn,yn)

− 5
12

h2 f (xn−1,yn−1),

+h3
s

∑
i=1

b′ig(xn + cih,Y i
n,Y
′i
n )

−h3
s

∑
i=1

b′ig(xn−1 + cih,Y i
n−1,Y

′i
n−1)

y′′n+1 = y′′n +
3
2

h f (xn,yn)−
1
2

h f (xn−1,yn−1)

+h2
s

∑
i=1

big(xn + cih,Y i
n,Y
′i
n )

−h2
s

∑
i=1

big(xn−1 + cih,Y i
n−1,Y

′i
n−1).

To obtain the stability polynomial of the TDIRKD is used
the test equation y′′′ =−λ 3y. If the TDIRKD method (5.1) is
applied to the test equation, the following recursion

Y ′n = N−1
(

ey′n +hcy′′n +
1
2

h2c2(−λ
3yn)

)
Y ′n−1 = N−1

(
ey′n−1 +hcy′′n−1 +

1
2

h2c2(−λ
3yn−1)

)
yn+1 = yn +

3
2

hy′n−
1
2

hy′n−1 +
5

12
h2y′′n−

5
12

h2y′′n−1

− 1
6

z3yn +
1
6

z3yn−1− z3b′′T (hY ′n−hY ′n−1),

hy′n+1 = hy′n +
3
2

h2y′′n−
1
2

h2y′′n−1−
5
12

z3yn

+
5

12
z3yn−1− z3b′T (hY ′n−hY ′n−1),

h2y′′n+1 = h2y′′n−
3
2

z3yn +
1
2

z3yn−1

− z3bT (hY ′n−hY ′n−1),

where z = λh, e = (1, . . . ,1)T , the matrix Â = [âi, j]
s
i, j=1 is

strictly lower triangular with âi j = 0, if i≤ j, N = I+z3Â, the
vectors Y ′n−1 = [Y ′1n−1,Y

′2
n−1, . . . ,Y

′s
n−1], c= [0,c2, . . . ,cs]

T , c2 =

[0,c2
2, . . . ,c

2
s ]

T , Y ′n = [Y ′1n ,Y ′2n , . . . ,Y ′sn ], b = [b1,b2, . . . ,bs]
T ,
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b′ = [b′1,b
′
2, . . . ,b

′
s]

T and b′′ = [b′′1 ,b
′′
2 , . . . ,b

′′
s ]

T is obtained [9,
18, 19]. If the vectors Y ′n and Y ′n−1 is eliminated the recursion

yn+1
yn

hy′n+1
hy′n

h2y′′n+1
h2y′′n

= Q̂(z3)


yn

yn−1
hy′n

hy′n−1
h2y′′n

h2y′′n−1

 (5.2)

with

Q̂(z3) =


Q̂11 Q̂12 Q̂13 Q̂14 Q̂15 Q̂16

1 0 0 0 0 0
Q̂31 Q̂32 Q̂33 Q̂34 Q̂35 Q̂36

0 0 1 0 0 0
Q̂51 Q̂52 Q̂53 Q̂54 Q̂55 Q̂56

0 0 0 0 1 0


is obtained. In matrix Q̂(z3), we have the followings

Q̂11 = 1− 1
6

z3 +
1
2

z6b′′T N−1c2

Q̂12 =
1
6

z3− 1
2

z6b′′T N−1c2

Q̂13 =
3
2
− z3b′′T N−1e

Q̂14 =−
1
2
+ z3b′′T N−1e

Q̂15 =
5
12
− z3b′′T N−1c

Q̂16 =−
5
12

+ z3b′′T N−1c

Q̂31 =−
5
12

z3 +
1
2

z6b′T N−1c2

Q̂32 =
5
12

z3− 1
2

z6b′T N−1c2

Q̂33 = 1− z3b′T N−1e

Q̂34 = z3b′T N−1e

Q̂35 =
3
2
− z3b′T N−1c

Q̂36 =−
1
2
+ z3b′T N−1c

Q̂51 =−
3
2

z3 +
1
2

z6bT N−1c2

Q̂52 =
1
2

z3− 1
2

z6bT N−1c2

Q̂53 =−z3bT N−1e

Q̂54 = z3bT N−1e

Q̂55 = 1− z3bT N−1c

Q̂56 = z3bT N−1c

The matrix Q̂(z3) in (5.2) is named as the stability matrix
for the TDIRKD method (5.1). For the stability features
of the IRKD method is important the roots of the stability

polynomial

p(µ,z3) = det
(
µI− Q̂(z3)

)
. (5.3)

The region of absolute stability of the method (5.1) is the
set of all z ∈ C such that all the roots µi(z) of the stability
polynomial p(µ,z3) are inside of the unit circle. The stability
polynomial of TDIRKD4 method is given by

p(µ,z3) = µ
6 +

(
1
2

z3− 63271
15552000

z6−3
)

µ
5

+

(
3+

3
8

z3 +
222031

160704000
z6
)

µ
4

−
(

102331
2332800000

z9
)

µ
4

+

(
−1+

1
2

z3− 9197759
160704000

z6
)

µ
3

+

(
108922967

289267200000
z9
)

µ
3

+

(
−3

4
z3− 1042289

482112000
z6
)

µ
2

−
(

104187847
289267200000

z9
)

µ
2

+

(
1
2

z3 +
4949803

80352000
z6
)

µ

+

(
13203523

96422400000
z9
)

µ

− 1
8

z3 +
3223

6696000
z6− 703481

6428160000
z9.

6. Numerical Experiments
In this section, the performances of our proposed method
and the existing methods have been tested on four problems
selected from literature. In these methods, L∞ norm has been
used for evaluating the errors. We list the methods which is
used for comparison as follows:

• TDIRKD4:two-stage fourth-order TDIRKD method de-
rived in Section 4 of this paper.

• IRKD4:three-stage fourth-order IRKD method given in
[9].

• TDRKT4:two-stage fourth-order TDRKT method given
in [12].

• RK4:the classical fourth-order Runge–Kutta method
given in [8], p.138.

Problem 1. We take the following linear IVP{
y′′′ =−y,
y(0) = 1, y′(0) =−1, y′′(0) = 1.
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Figure 1. The graph of efficiency for Problem 1 with
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Figure 2. The graph of efficiency for Problem 2 with
h = 1/2k, k = 4 . . . ,8

The exact solution of the problem is given by y(x) = e−x

([12]). Solution of the problem has been done in the interval
[0,5]. The results have been shown in Fig.1.

Problem 2. We take the following linear IVP{
y′′′− y = cos(x),
y(0) = 0, y′(0) = 0, y′′(0) = 1.

The exact solution of the problem is given by ([21])

y(x) =
1
2
(ex− cos(x)− sin(x)) .

Solution of the problem has been done in the interval [0,10].
The results have been shown in Fig.2.

Problem 3. We take the following linear IVP{
y′′′ =

(
12x−8x3

)
y,

y(0) = 1, y′(0) = 0, y′′(0) =−2.
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Figure 3. The graph of efficiency for Problem 3 with
h = 1/2k, k = 4 . . . ,8
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Figure 4. The graph of efficiency for Problem 4 with
h = 0.05

2k , k = 0,1 . . . ,4

The exact solution of the problem is given by y(x) = e−x2

([10]). Solution of the problem has been done in the interval
[0,5]. The results have been shown in Fig.3.

Problem 4. We take the following nonlinear IVP

y′′′ =
3
8

y−5, y(0) = 1, y′(0) =
1
2
, y′′(0) =−1

4
.

The exact solution of the problem is given by y(x) =
√

1+ x
([12]). Solution of the problem has been done in the interval
[0,5]. The results have been shown in Fig.4.

In Figs. 1-4, the efficiency curves in terms of the error
versus the number of function evaluations for each methods
are given.

From Figs. 1-4, we can see that the TDIRKD method
outperforms the classical Runge-Kutta, TDRKT and IRKD
methods on both linear and nonlinear problems.
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7. Conclusion
In this study, we present an explicit two-stage fourth-order
two-derivative improved Runge-Kutta direct method (TDIRKD)
for solving Eq. (1.1). The fourth derivative y(iv) = g(x,y,y′)
is used in the formulation of this method. This increases the
efficiency of the method. We have performed experiments on
four standard problems from literature. Our proposed method
have been compared with the classical Runge-Kutta, TDRKT
and IRKD methods. It is obvious that our proposed method
is more efficient than the classical Runge-Kutta, TDRKT and
IRKD methods.

In this study we have obtained the order conditions via
Taylor series expansion. As a further study, we will derive
the order conditions for TDIRKD based on rooted tree theory
and the corresponding B-series theory and obtain higher order
TDIRKD methods.
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