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Abstract
Let (X ,Ψ) be a uniform space. We define an equivalence relation on a superstructure ∗X of X . The set of
equivalence classes is denoted by X̄ . We extend the uniform structure Ψ of X to a suitable uniform structure Ψ̂

on X̄ . We embed X as a dense subspace of X̄ and show that X̄ is compact. Thus X̄ turns out to be a uniform
compactification of X .

Keywords
Standard, Nonstandard, Uniform Structure, Uniform spaces, Compactness, Compactification, Weak topology

AMS Subject Classification
54J05, 54E15, 54E50.

1 Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli - 627012, Tamil Nadu, India.
*Corresponding author: alagu391@gmail.com
Article History: Received 24 January 2021; Accepted 09 March 2021 c©2021 MJM.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882

3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885

1. Introduction
Non-standard analysis is a branch of Mathematics introduced
by Abraham Robinson in 1966[1]. Abraham Robinson con-
structed a superstructure to work in any given structure like
the Euclidean spaces, topological spaces, algebraic structures
(rings, fields etc.,.), graphs and so on. The basic idea is not
necessarily to study the superstructure but to study the clas-
sical spaces by getting on to a higher platform, namely a
superstructure, and get a microscopic view of the classical
space below.

2. Preliminaries
We assume preliminaries and notations like V (X) ,V (∗X) for
superstructures, as in [1] and [2]. For preliminaries on uniform
spaces we refer to [3],[4],[7].

Definition 2.1.
Let X be a set. A uniform structure on X is a filter

Ψ⊆ X×X such that
(i) ∀U ∈Ψ,∆(X)⊆U , where ∆(X) = {(x,x) : x ∈ X} being
the diagonal of X .

(ii) ∀U ∈Ψ,U−1 ∈Ψ, where U−1 = {(x,y) : (y,x) ∈U}
(iii) ∀U ∈Ψ,∃ V ⊆U such that V ◦V ⊆U ,
where V ◦W = {(x,z) : (x,y) ∈V ∧ (y,z) ∈W}, for general
V,W ⊆ X×X .

Definition 2.2.
Let X be a set with uniform structure Ψ. For

V ∈ Ψ,x ∈ X define V (x) = {y ∈ X : (x,y) ∈V}. There ex-
ists a topology on X such that ∀ x ∈ X , {V (x) : V ∈Ψ} is a
neighbourhood base for x. Henceforth X with this induced
topology will be referred to as the uniform space X .

As a common notation as in [1],[2], ∗X denotes a non-
standard extension of X , V (X) ,V (∗X) the corresponding su-
perstructures on X , ∗X respectively. We assume V (∗X) is an
enlargement of ∗X , as defined in [2].
We now give the definition of concurrence.

Definition 2.3.
A binary relation P is said to be concurrent on

A ⊆ domP if for each finite set {x1,x2....xn} in A there is a
y ∈ rangeP so that 〈xi,y〉 ∈ P,1≤ i≤ n. P is concurrent if it
is concurrent on domP.

The following proposition is from [2].

Proposition 2.4.
The following are equivalent.

(i) V (∗X) is an enlargement of V (X).
(ii) For each concurrent relation P ∈V (X) there is an element
b ∈ range ∗P so that 〈∗x,b〉 ∈ ∗P for all x ∈ domP
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3. Main Results
Let (X ,Ψ) be a uniform space.
In ∗X define x′ ∼ y′ if ∗ f (x′)' ∗ f (y′) ∀ f ∈ C (X ,R)
Here C (X ,R) is the space of bounded continuous real-valued
functions on X .
Clearly ∼ is an equivalence relation on X .
Let X̄ be the set of equivalence classes. We denote the equiva-
lence class of x′ ∈ ∗X by [x′].
First we make the following observation.

Proposition 3.1.
For x ∈ X , [x] = m(x), the monad of x.

Proof.
We recall m(x) = ∩ ∗G where G is a neighbourhood of x.
Let y ∈ [x]
Suppose y /∈ m(x)
Then y /∈ ∗G for some neighbourhood G of x in X .
By complete regularity of a uniform space,
∃ f ∈ C (X ,R) , f : X→ [0,1] such that f (x)= 0, f (X−G)=
{1}
Then ∗ f (x) = 0, ∗ f (y) = 1 since y ∈ ∗ (X−G)
Therefore ∗ f (x) and ∗ f (y) are not infinitely close to each
other, contradicting x∼ y
Therefore y ∈ m(x)
Therefore [x]⊆ m(x)

Conversely let y ∈ m(x)
Then y' x
Therefore ∗ f (y)' f (x) ∀ f ∈C (X ,R), by continuity of f
Therefore y∼ x
That is, y ∈ [x]
Therefore m(x)⊆ [x]
Hence [x] = m(x)

Next we have the following.

Proposition 3.2.
The map ϕ : X → X̄ defined by ϕ (x) = [x] is one-

one.

Proof.
Let [x] = [y] for x,y ∈ X
Then x∼ y
Therefore ∗ f (x)' ∗ f (y) ∀ f ∈C (X ,R)
That is, f (x) = f (y) ∀ f ∈C (X ,R)
Therefor x = y, by complete regularity of X
Therefore ϕ is one-one.

For U ∈Ψ, let Û ⊆ X̄× X̄ be defined by
Û = {([x′] , [y′]) : (x′,y′) ∈ ∗U}
Let Ψ̂ =

{
E ⊆ X̄× X̄ : E ⊇ Û f or some U ∈Ψ

}
That is, Ψ̂ is the collection of all supersets of the Û’s, U ∈Ψ

We make the following fundamental observation.

Proposition 3.3.(
X̄ ,Ψ̂

)
is a uniform space.

Proof.
We shall verify the conditions one by one.
(i) Since φ /∈Ψ, we get φ /∈ Ψ̂

Now let V,W ∈Ψ

Then ([x] , [y]) ∈ V̂ ∩Ŵ ⇔ ([x] , [y]) ∈ V̂ and ([x] , [y]) ∈ Ŵ
⇔ (x,y) ∈ ∗V and (x,y) ∈ ∗W
⇔ (x,y) ∈ ∗V ∩ ∗W = ∗ (V ∩W )

⇔ ([x] , [y]) ∈ V̂ ∩W
Therefore V̂ ∩Ŵ = V̂ ∩W

Let E,F ∈ Ψ̂

Then V̂ ⊆ E,Ŵ ⊆ F for some V,W ∈Ψ

Therefore V̂ ∩W = V̂ ∩Ŵ ⊆ E ∩F and V ∩W ∈Ψ

Therefore E ∩F ∈ Ψ̂

Next let E ∈ Ψ̂ and E ⊆ F
∃ V ∈Ψ such that V̂ ⊆ E
Therefore V̂ ⊆ F
F ∈ Ψ̂

Therefore Ψ̂ is a filter of subsets of X̄× X̄

(ii) Let E ∈ Ψ̂

Then V̂ ⊆ E for some V ∈Ψ

∀ x ∈ X , (x,x) ∈V
By Transfer ∀ x ∈ ∗X , (x,x) ∈ ∗V
Therefore ∀ x ∈ ∗X , ([x] , [x]) ∈ V̂ ⊆ E
Therefore ∀ [x] ∈ X̄ ,([x] , [x]) ∈ E

(iii) For V ∈Ψ;x,y ∈ ∗X ;
([y] , [x]) ∈ V̂−1⇔ ([x] , [y]) ∈ V̂ ⇔ (x,y) ∈ ∗V
Now (x,y) ∈V ⇔ (y,x) ∈V−1 for x,y ∈ X
Therefore, by Transfer (x,y) ∈ ∗V ⇔ (y,x) ∈ ∗ (V−1

)
⇔

([y] , [x]) ∈ V̂−1

Thus ([y] , [x]) ∈
(

V̂
)−1
⇔ ([y] , [x]) ∈ V̂−1

Therefore
(

V̂
)−1

= V̂−1

Let V̂ ∈ Ψ̂, where V ∈Ψ

Then V−1 ∈Ψ

Therefore V̂−1 ∈ Ψ̂

That is,
(

V̂
)−1
∈ Ψ̂

Thus V̂ ∈ Ψ̂⇒
(

V̂
)−1
∈ Ψ̂

If E ∈ Ψ̂, then V̂ ⊆ E for some V ∈Ψ

Therefore
(

V̂
)−1
⊆ E−1

As already shown,
(

V̂
)−1
∈ Ψ̂

Therefore E−1 ∈ Ψ̂ ∀ E ∈ Ψ̂

(iv) Let Û ∈ Ψ̂, where U ∈Ψ

∃ V ∈Ψ such that V ⊆U and V ◦V ⊆U
Claim : V̂ ◦V̂ ⊆ Û
Let ([x] , [y]) ∈ V̂ ◦V̂ , where x,y ∈ ∗X
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Then ([x] , [z]) ∈ V̂ and ([z] , [y]) ∈ V̂ for some z ∈ ∗X
Therefore (x,z) ∈ ∗V and (z,y) ∈ ∗V
Now (x,z) ∈V and (z,y) ∈V ⇒ (x,y) ∈ (V ◦V )
By Transfer, (x,z) ∈ ∗V and (z,y) ∈ ∗V ⇒ (x,y) ∈ ∗ (V ◦V )
⇒ (x,y) ∈ ∗U
⇒ ([x] , [y]) ∈ Û
Therefore V̂ ◦V̂ ⊆ Û , proving our claim.

If E ∈ Ψ̂, then Û ⊆ E for some U ∈Ψ

By what we have proved, ∃ V ∈ Ψ such that V ⊆ U and
V̂ ◦V̂ ⊆ Û ⊆ E
Now V ⊆U ⇒ V̂ ⊆ Û ⊆ E
Thus ∀ E ∈ Ψ̂, ∃ V̂ ∈ Ψ̂ such that V̂ ⊆ E and V̂ ◦V̂ ⊆ E
Therefore

(
X̄ ,Ψ̂

)
is a uniform space.

For f ∈ C (X ,R), define f̄ on X̄ by f̄ ([x]) = st ∗ f (x),
where x ∈ ∗X .
Since f is bounded, ∗ f (x) is a finite real number and hence
st ∗ f (x) exists.
Also if [x] = [y], then x∼ y; so ∗ f (x)' ∗ f (y).
Hence f̄ ([x]) = f̄ ([y]) showing that f̄ is a well-defined map.

Next we have the striking result.

Proposition 3.4.
The uniform topology ℑ, generated by the uniform

structure Ψ̂, on X̄ , is the same as the weak topology ω induced
by the f̄ ’s on X̄ , where each f ∈C (X ,R)

Proof.
Let Û ([x]) be a basic open set in (X̄ ,ℑ), where U ∈Ψ.
Let V ∈Ψ be such that V ⊆U and V ◦V ⊆U
∃W ∈Ψ such that W ⊆V, W̄ (x)⊆V (x), by regularity of X .
∃ f ∈ C (X ,R) such that f : X → [0,1] , f ≡ 1 in W̄ (x) and
f ≡ 0 in (V (x))c, by complete regularity of f .
Now f−1

(( 1
2 ,1
])

is an open set containing V (x), by continu-
ity of f .
Claim :

(
f̄
)−1 (( 1

2 ,1
])
⊆ Û ([x])

Let [y] ∈
(

f̄
)−1 (( 1

2 ,1
])

Therefore f̄ ([y]) ∈
( 1

2 ,1
]

That is, st ∗ f (y) ∈
( 1

2 ,1
]

Therefore 1
2 < ∗ f (y)≤ 1

Now we need to prove [y] ∈ Û ([x])
Equivalently, ([x] , [y]) ∈ Û
That is to prove (x,y) ∈ ∗U
Since f ≡ 0 in (V (x))c, ∗ f ≡ 0 in (∗ (V (x)))c

Since 1
2 < ∗ f (y)≤ 1, we get y ∈ ∗V (x)

Therefore y ∈ ∗U (x), since V ⊆U
Therefore (x,y) ∈ ∗U proving the claim.
Hence ℑ⊆ ω

Conversely let G = ∩n
i=1
{
[z] ∈ X̄ :

∣∣ f̄i ([z])− f̄i ([y])
∣∣< ε

}
be a typical ω-basic neighbourhood of [y] ∈ X̄ , where y ∈ ∗X
Now G = ∩n

i=1 {[z] ∈ X̄ : |st ∗ fi (z)− st ∗ fi (y)|< ε}
= ∩n

i=1 {[z] ∈ X̄ : |∗ fi (z)− st ∗ fi (y)|< ε}

=∩n
i=1Ûi, where Ui = {z ∈ X : | fi (z)− st ∗ fi (y)|< ε}

is open in ℑ, by continuity of each fi
Therefore G ∈ ℑ

Therefore ω ⊆ ℑ

Hence ω = ℑ

Theorem 3.5.(
X̄ ,Ψ̂

)
is a compactification of (X ,Ψ).

Proof.
We intend to show that ϕ : X → X̄ , defined by ϕ (x) = [x],
imbeds X as a dense subspace in X̄ and that X̄ is compact.
We have already seen that ϕ is one-one, by Proposition 1.2
Let V̂ [x] be a basic neighbourhood of [x] in X̄ , where x ∈
X , V ∈Ψ

Now y ∈V (x)⇒ (x,y) ∈V
⇒ (x,y) ∈ ∗V
⇒ ([x] , [y]) ∈ V̂
⇒ ϕ (y) = [y] ∈ V̂ [x]

Therefore ϕ is continuous.
To prove ϕ is an open map into ϕ (X), let V (x) be a basic
neighbourhood of x ∈ X , where V ∈Ψ

By complete regularity of X , fix f ∈ C (X ,R) such that f :
X → [0,1] , f (x) = 0 and f (V (x)c) = {1}
Now z ∈ ∗X , |∗ f (z)|< 1

2 ⇒ z /∈ (∗V (x))c⇒ z ∈ ∗V (x)——
—(1)
Let [z] ∈ X̄ with z ∈ X ,

∣∣ f̄ ([z])∣∣< 1
2

Then | f (z)|< 1
2

Therefore z ∈V (x), by (1).
Therefore [z] ∈ ϕ (V (x))———-(2)
Also

{
[z] ∈ X̄ : z ∈ X ,

∣∣ f̄ ([z])− f̄ ([x])
∣∣< 1

2

}
is a neighbour-

hood of [x] = ϕ (x) in ϕ (X)
This neighbourhood =

{
[z] ∈ X̄ : z ∈ X ,

∣∣ f̄ ([z])∣∣< 1
2

}
, since

f (x) = 0
⊆ ϕ (V (x)), by (2)

Therefore ϕ (V (x)) is open in ϕ (X)
Therefore ϕ is an open map.
Therefore ϕ : X → X̄ is a homeomorphism of X onto ϕ (X)
Next we show ϕ (X) is dense in X̄ .
Let [y] ∈ X̄−ϕ (X)
We take a basic neighbourhood of [y] given by
G = ∩n

i=1
{
[z] ∈ X̄ :

∣∣ f̄i ([z])− f̄i [y]
∣∣< ε

}
Now ∩n

i=1
{

x ∈ ∗X :
∣∣∗ fi (x)− f̄i ([y])

∣∣< ε
}
6= φ , since it con-

tains y.
∩n

i=1
{

x ∈ X :
∣∣ fi (x)− f̄i ([y])

∣∣< ε
}
6= φ , by Downward Trans-

fer.
That is, ∩n

i=1
{

x ∈ X :
∣∣ f̄i ([x])− f̄i ([y])

∣∣< ε
}
6= φ

Therefore ∃ [x] ∈ G for some x ∈ X
Therefore ϕ (X) is dense in X̄
Finally we show X̄ is compact and complete the proof.
For each [y] ∈ X̄ , we associate a map T ([y]) from C (X ,R) to
R defined by
T [y] ( f ) = f̄ ([y]) = st ∗ f (y)
Let A be the range of T .
Claim : T is a one-one mapping of X̄ onto A.
[y1] 6= [y2]⇒ ∗ f (y1) and ∗ f (y2) are not infinitely close to
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each other for some f ∈C (X ,R)
⇒ st ∗ f (y1) 6= st ∗ f (y2)
⇒ f̄ ([y1]) 6= f̄ ([y2])
⇒ T ([y1]) ( f ) 6= T ([y2]) ( f )

Therefore T ([y1]) 6= T ([y2])
Therefore T is one-one, establishing the claim.
Define a topology on A by declaring U open in A if
T−1 (U) is open in X̄ .
By definition, T is a homeomorphism of X̄ onto A.
To show X̄ is compact, all we need to show is that A is com-
pact.
A basic neighbourhood of α ∈ A is of the form
G = ∩n

i=1 {β ∈ A : |α ( fi)−β ( fi)|< ε},
where ε > 0 and f1, f2, ... fn ∈C (X ,R)
Since X is dense in X̄ ,∃ x ∈ X such that T [x] ∈ G
That is, |α ( fi)−T [x] ( fi)|< ε for i = 1,2, ....n
That is, α ( fi)− fi (x)< ε for i = 1,2, ....n
That is, ∀ α ∈ A,∀ f1, ... fn ∈C (X ,R) , ∀ ε > 0 in R,
∃ x ∈ X such that |α ( fi)− fi (x)|< ε for i = 1,2, ....n
By concurrence, ∃ x ∈ ∗X such that ∀ α ∈ ∗A, ∀ f ∈
C (X ,R) , ∀ ε > 0 in ∗R,
|α (∗ f )− ∗ f (x)|< ε

Taking ε > 0 as a positive infinitesimal, we get the following :
∃ x∈ ∗X such that ∀ α ∈ ∗A, ∀ f ∈C (X ,R) , α (∗ f )' ∗ f (x)—
—–(3)
Now let γ ∈ ∗A
To show A is compact, we need to show that γ is near some
δ ∈ A
By (3), ∃ x ∈ ∗X such that ∀ f ∈C (X ,R) , γ (∗ f )' ∗ f (x)
Take δ = T ([x])
Then ∀ f ∈C (X ,R) , δ ( f ) = T [x] ( f ) = st ∗ f (x)' ∗ f (x)'
γ (∗ f )
Therefore γ ' δ ∈ A
Therefore A is compact.
This completes the proof.
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