

https://doi.org/10.26637/MJM0901/0162

On commutative CI-algebras

Kulajit Pathak^{1*} and Pulak Sabhapandit²

Abstract

CI-algebra is a generalization of BE-algebra. The concept of Commutative BE-algebra was first introduced by A. Walendziak. B. L. Meng applied the same definition in CI-algebras and established that any commutative CI-algebra is a BE/dual BCK-algebra. In this paper we continue to study commutative CI-algebras and try to establish some properties in some specific CI-algebras.

Keywords

CI-algebra, BE-algebra, Commutative.

AMS Subject Classification

06F35, 03G25, 08A30.

¹Department of Mathematics, B.H. college, Howly, Assam, India.

² Department of Mathematics, Biswanath college, Biswanath Chariali, Assam, India.

*Corresponding author: ¹ kulajitpathak79@gmail.com

Article History: Received 10 January 2021; Accepted 19 March 2021

Contents

1	Introduction914
2	Preliminaries914
3	Commutative CI-Algebra915
	References

1. Introduction

Since the introduction of the concepts of BCK and BCIalgebras ([2,3]) by Y Imai and K.Iseki, some more concepts of similar type like BCH ([1]), BH ([4]), d ([8]), etc have developed and studied by a number of authors in the last two decades. In 2006, H. S. kim nad Y. H. Kim introduced the notion of BE-algebras ([6]) as a generalization of dual BCK-algebras ([5]). The concept of Commutative BE-algebra ([11]) was first introduced by A. Walendziak. In 2010 ([7]) B. L. Meng introduced the notion of a new algebraic structure called CI-algebras as a generalization of BE-algebras. In his paper Meng defined the commutativity property of CIalgebras along with many new concepts and established that any commutative CI-algebra is a BE/dual BCK-algebra. The concept of Cartesian product has been developed by us in 2013 ([9]). In 2018, we introduce some special types of CIalgebras ([10]) obtained from a given CI-algebra. In this paper we continue to study commutative CI-algebras and discuss some new properties of it in these specific CI-algebras.

2. Preliminaries

©2021 MJM

Definition 2.1 ([6]). An algebraic system (U; *, 1) is called a *BE*-algebra if it satisfies the following axioms:

$$(U1) \ b * b = 1$$
$$(U2) \ b * 1 = 1$$

$$(U3) \ 1 * b = s$$

(U4) b * (c * d) = c * (b * d) for all $b, c, d \in A$.

Definition 2.2 ([8]). An algebraic system (U; *, 1) is called a CI-algebra if it satisfies the following axioms:

- (A1) b * b = 1
- (A2) 1 * b = b
- (A3) b * (c * d) = c * (b * d) for all $b, c, d \in A$

Example 2.3. Let U be a non-empty set and let F(U) be the set of all function $f: U \to (0, \infty)$. For $k, f \in F(U)$, we define

$$(k*f)(w) = \frac{f(w)}{k(w)}, w \in U$$

If we put 1(w) = 1 for all $w \in U$, then $1 \in F(U)$ and simple computation proves that (F(U); *, 1) is a CI- algebra. In U, we can define a binary relation $\leq by \ b \leq c$ iff b * c = 1.

Lemma 2.4 ([8]). In a CI-algebra (U; *, 1) following results are true:

1.
$$b * ((b * c) * c) = 1$$

2. (b * c) * 1 = (b * 1) * (c * 1) for all $b, c \in U$

Theorem 2.5 ([10]). Let (U; *, 1) be a system consisting of a non-empty set U, a binary operation * and a distinct element 1. Let $V = U \times U = \{(b_1, b_2) : b_1, b_2 \in U$. For $u, w \in V$ with $u = (b_1, b_2), w = (c_1, c_2)$, we define an operation \otimes in V as

 $u \otimes w = (b_1 * c_1, b_2 * c_2)$

Then $(V; \otimes, (1, 1))$ is a CI-algebra iff (U; *, 1) is a CI-algebra.

Corollary 2.6 ([10]). If (U;*,1) and (V;o,e) are two CIalgebras, then W = UxV is also a CI-algebra under the binary operation defined as follows: For $u = (b_1,c_1)$ and $w = (b_2,c_2)$ in R,

$$u \otimes w = (b_1 * b_2, c_1 \circ c_2)$$

Here the distinct element of W *is* (1, e)*.*

Theorem 2.7 ([11]). Let (U;*,1) be a CI-algebra and let P(U) be the class of all functions $f: U \to U$. Let a binary operation o be defined in P(U) as follows:

For
$$f, t \in P(U)$$
 and $w \in U$
 $(f \circ t)(w) = f(w) * t(w)$

Then $(P(U); 0, 1^{\sim})$ is a CI-algebra where 1^{\sim} is defined as $1^{\sim}(w) = 1$ for all $w \in U$. Here two functions $f, t \in P(U)$ are equal iff f(w) = t(w) for all $w \in U$.

- **Notation 2.8** ([11]). (a) For any set $U_1 \subseteq U$, let $P(U_1)$ denote the set of all functions $f \in P(U)$ such that $f(w) \in U_1$ for all $w \in U$
 - (b) For any $u \in U$, we consider $f_u \in P(U)$ defined as $f_u(w) = u$ for all $w \in U$.

Definition 2.9 ([11]). A BE-algebra (U; *, 1) is said to be commutative if (b * c) * c = (c * b) * b for all $b, c \in U$.

Example 2.10 ([11]). Let $N_0 = N \cup \{0\}$ and let the binary operation * be defined on N_0 as follows:

$$b * c = \begin{cases} 0 & \text{if } b \ge c \\ c - b & \text{if } c > b \end{cases}$$

Then $(N_0; *, 0)$ is a commutative BE-algebra

3. Commutative CI–Algebra

Definition 3.1. A CI-algebra (U; *, 1) is said to be commutative if (b * c) * c = (c * b) * b for all $b, c \in U$.

Example 3.2. We consider a system (U;*,1) where $U = \{1, p, q, r\}$ and the binary operation *is given by

This (U;*,1) is a commutative BE/CI -algebra

Theorem 3.3. Let U and V be CI-algebras as considered in theorem (2.5). Then V is commutative iff U is commutative.

Proof. First suppose that V is commutative. Let b and c be arbitrary elements of U. We choose u = (b, 1) and w = (c, 1). Since V is commutative, we have

$$(u \otimes w) \otimes w = (w \otimes u) \otimes u$$

This gives ((b*c)*c, 1) = ((c*b)*b, 1), which in turns imply that

$$(b*c)*c = (c*b)*b$$

Hence U is commutative.

Conversely, suppose that U is commutative. Let $u = (b_1, b_2)$ and $w = (c_1, c_2)$ be any two arbitrary elements of V. Then

$$(u \otimes w) \otimes w = ((b_1, b_2) \otimes (c_1, c_2)) \otimes (c_1, c_2)$$

= $(b_1 * c_1, b_2 * c_2) \otimes (c_1, c_2)$
= $((b_1 * c_1) * c_1, (b_2 * c_2) * c_2)$
= $((c_1 * b_1) * b_1, (c_2 * b_2) * b_2)$
= $((c_1, c_2) \otimes (b_1, b_2)) \otimes (b_1, b_2)$
= $(w \otimes u) \otimes u.$

Hence U is commutative.

Corollary 3.4. Let U,V and W be CI-algebras as considered in corollary (2.6). Then W is commutative iff both U and V are commutative.

Theorem 3.5. Let $(P(U); 0, 1^{\sim})$ be CI-algebra as considered in theorem (2.7). Then P(U) is commutative if and only if U is commutative.

Proof. First suppose that U is commutative. Then

$$(b*c)*c = (c*b)*b$$
 for all $b, c \in U$

Let $f, t \in P(U)$. Then for any $w \in U$, we have

$$(f \circ t) \circ t)(w) = (f(w) * t(w)) * t(w) = (t(w) * f(w)) * f(w) = ((t \circ f) \circ f)(w).$$

This proves that $(f \circ t) \circ t = (t \circ f) \circ f$ Hence P(U) is commutative.

Conversely, let P(U) be commutative. Let $u, w \in U$. We consider $f_u, f_w \in P(U)$. Then

$$(f_u \circ f_w) \circ f_w = (f_w \circ f_u) \circ f_u$$

This gives

$$\left(\left(f_{u}\circ f_{w}\right)\circ f_{w}\right)(v)=\left(\left(f_{w}\circ f_{u}\right)\circ f_{u}\right)(v);v\in U$$

This implies that (u * w) * w = (w * u) * u (notation (2.8)(*b*)) Hence *X* is commutative.

References

- [1] Hu Q. P., Li X., On BCH-algebras, *Math. Seminer Notes*, 11(2)(1983), 313-320.
- [2] Imai Y., Iseki k., On axiom systems of propositional calculi XIV, Proc. *Japan Academy*, 42(1966), 19-22.
- [3] Iseki k., An algebra related with a propositional calculus, *Proc. Japan Acad.* 42(1)(1966), 26-29.
- [4] Jun Y. B., Roh E. H.and Kim H. S., On BH-algebras, *Sci. Math.* 1(1998), 347-354.
- [5] Kim, K. H. and Yon, Y. H., Dual BCK–algebra and MV–algebra, *Sci. Math. Japon.* 66(2)(2007), 247-253.
- [6] Kim H. S. and Kim Y.H., On BE-algebras, *Sci. Math. Japonicae* 66(2007), 113-116.
- [7] Meng B. L., CI-algebras, Sci. Math. Japonicae online, e-2009, 695-701.
- [8] Negger J. and Kim H. S., On d-algebras, *Math. Slovaca*, 40(1999), 19-26.
- [9] Pathak, K., Sabhapandit, P., and Chetia, B. C., Cartesian Product of BE/CI-algebras, J. Assam Acad.Math. 6(2013), 33-40
- ^[10] Sabhapandit P. and Pathak K., Some special Type of CIalgebras, *Int. J. of Trends and tech.* 64, 6-11
- ^[11] Walendziak, A., On commutative BE–algebras, *Sci. Math. Japon.* 69(2)(2009), 281-284.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

