

https://doi.org/10.26637/MJM0901/0162

On commutative CI-algebras

Kulajit Pathak^{1*} and Pulak Sabhapandit²

Abstract

CI-algebra is a generalization of BE-algebra. The concept of Commutative BE-algebra was first introduced by A. Walendziak. B. L. Meng applied the same definition in CI-algebras and established that any commutative CI-algebra is a BE/dual BCK-algebra. In this paper we continue to study commutative CI-algebras and try to establish some properties in some specific CI-algebras.

Keywords

CI-algebra, BE-algebra, Commutative.

AMS Subject Classification

06F35, 03G25, 08A30.

¹*Department of Mathematics, B.H. college, Howly, Assam, India.*

²*Department of Mathematics, Biswanath college, Biswanath Chariali, Assam, India.*

***Corresponding author**: ¹ kulajitpathak79@gmail.com

Article History: Received **10** January **2021**; Accepted **19** March **2021** c 2021 MJM.

Contents

1. Introduction

Since the introduction of the concepts of BCK and BCIalgebras ([2,3]) by Y Imai and K.Iseki, some more concepts of similar type like BCH $([1])$, BH $([4])$, d $([8])$, etc have developed and studied by a number of authors in the last two decades. In 2006, H. S. kim nad Y. H. Kim introduced the notion of BE-algebras ([6]) as a generalization of dual BCK-algebras ([5]). The concept of Commutative BE-algebra ([11]) was first introduced by A. Walendziak. In 2010 ([7]) B. L. Meng introduced the notion of a new algebraic structure called CI-algebras as a generalization of BE-algebras. In his paper Meng defined the commutativity property of CIalgebras alongwith many new concepts and established that any commutative CI-algebra is a BE/dual BCK-algebra. The concept of Cartesian product has been developed by us in 2013 ([9]). In 2018, we introduce some special types of CIalgebras ([10]) obtained from a given CI-algebra. In this paper we continue to study commutative CI-algebras and discuss some new properties of it in these specific CI–algebras.

2. Preliminaries

Definition 2.1 ([6]). *An algebraic system* (*U*;∗,1) *is called a BE-algebra if it satisfies the following axioms:*

$$
(U1) b * b = 1
$$

$$
(U2) b * 1 = 1
$$

$$
(U3) 1 * b = s
$$

(U4) $b*(c*d) = c*(b*d)$ *for all* $b, c, d ∈ A$.

Definition 2.2 ([8]). *An algebraic system (U; *, 1) is called a CI-algebra if it satisfies the following axioms:*

- $(A1)$ *b* ∗ *b* = 1
- $(A2)$ 1 $*$ *b* = *b*
- *(A3)* $b * (c * d) = c * (b * d)$ *for all* $b, c, d \in A$

Example 2.3. Let *U* be a non-empty set and let $F(U)$ be the *set of all function* $f: U \to (0, \infty)$ *. For* $k, f \in F(U)$ *, we define*

$$
(k * f)(w) = \frac{f(w)}{k(w)}, w \in U
$$

If we put $1(w) = 1$ *for all* $w \in U$ *, then* $1 \in F(U)$ *and simple computation proves that* $(F(U); *, 1)$ *is a CI- algebra. In U, we can define a binary relation* \leq *by b* \leq *c iff b* $*$ *c* = 1.

Lemma 2.4 ([8]). *In a CI-algebra* (*U*;∗,1) *following results are true:*

1.
$$
b * ((b * c) * c) = 1
$$

2. $(b * c) * 1 = (b * 1) * (c * 1)$ *for all b, c* $\in U$

Theorem 2.5 ([10]). *Let* $(U;*,1)$ *be a system consisting of a non-empty set U, a binary operation* ∗ *and a distinct element 1. Let* $V = U \times U = \{(b_1, b_2) : b_1, b_2 \in U$. For *u*, *w* ∈ *V with* $u = (b_1, b_2)$, $w = (c_1, c_2)$, we define an operation \otimes in V as

 $u \otimes w = (b_1 * c_1, b_2 * c_2)$

Then $(V; \otimes, (1,1))$ *is a CI-algebra iff* $(U;*,1)$ *is a CI-algebra.*

Corollary 2.6 ([10]). *If* $(U;*,1)$ *and* $(V;o,e)$ *are two CIalgebras, then* $W = UxV$ *is also a CI-algebra under the binary operation defined as follows: For* $u = (b_1, c_1)$ *and* $w = (b_2, c_2)$ *in R,*

$$
u\otimes w=(b_1* b_2,c_1\circ c_2)
$$

Here the distinct element of W is $(1,e)$ *.*

Theorem 2.7 ([11]). *Let* (*U*;∗,1) *be a CI-algebra and let* $P(U)$ *be the class of all functions* $f: U \rightarrow U$ *. Let a binary operation o be defined in P*(*U*) *as follows:*

For
$$
f, t \in P(U)
$$
 and $w \in U$
 $(f \circ t)(w) = f(w) * t(w)$

Then $(P(U); 0, 1^{\sim})$ *is a CI-algebra where* 1^{\sim} *is defined as* $1^\sim(w) = 1$ *for all* $w \in U$ *. Here two functions* $f, t \in P(U)$ *are equal iff* $f(w) = t(w)$ *for all* $w \in U$.

- **Notation 2.8** ([11]). *(a) For any set* U_1 ⊂ U *, let* $P(U_1)$ *denote the set of all functions* $f \in P(U)$ *such that* $f(w) \in$ *U*¹ *for all* $w \in U$
	- *(b) For any* $u \in U$ *, we consider* $f_u \in P(U)$ *defined as* $f_u(w) =$ *u* for all $w \in U$.

Definition 2.9 ([11]). *A BE-algebra* (*U*;∗,1) *is said to be commutative if* $(b * c) * c = (c * b) * b$ *for all b, c* $\in U$.

Example 2.10 ([11]). *Let* $N_0 = N \cup \{0\}$ *and let the binary operation* ∗ *be defined on N*⁰ *as follows:*

$$
b * c = \begin{cases} 0 & \text{if } b \ge c \\ c - b & \text{if } c > b \end{cases}
$$

Then (*N*0;∗,0) *is a commutative BE-algebra*

3. Commutative CI–Algebra

Definition 3.1. *A CI-algebra* (*U*;∗,1) *is said to be commutative if* $(b * c) * c = (c * b) * b$ *for all b, c* $\in U$.

Example 3.2. *We consider a system* $(U;*,1)$ *where* $U =$ {1, *p*,*q*,*r*} *and the binary operation *is given by*

$$
\begin{array}{c|cccc}\n* & I & p & q & r \\
\hline\nI & I & p & q & r \\
p & I & I & q & r \\
q & I & p & I & r \\
r & I & p & q & I\n\end{array}
$$

This (*U*;∗,1) *is a commutative BE*/*CI -algebra*

Theorem 3.3. *Let U and V be CI-algebras as considered in theorem (2.5). Then V is commutative iff U is commutative.*

Proof. First suppose that *V* is commutative. Let *b* and *c* be arbitrary elements of *U*. We choose $u = (b, 1)$ and $w = (c, 1)$. Since *V* is commutative, we have

$$
(u\otimes w)\otimes w=(w\otimes u)\otimes u
$$

This gives $((b*c)*c,1) = ((c*b)*b,1)$, which in turns imply that

$$
(b * c) * c = (c * b) * b
$$

Hence U is commutative.

Conversely, suppose that *U* is commutative. Let $u = (b_1, b_2)$ and $w = (c_1, c_2)$ be any two arbitrary elements of *V*. Then

$$
(u \otimes w) \otimes w = ((b_1, b_2) \otimes (c_1, c_2)) \otimes (c_1, c_2)
$$

= $(b_1 * c_1, b_2 * c_2) \otimes (c_1, c_2)$
= $((b_1 * c_1) * c_1, (b_2 * c_2) * c_2)$
= $((c_1 * b_1) * b_1, (c_2 * b_2) * b_2)$
= $((c_1, c_2) \otimes (b_1, b_2)) \otimes (b_1, b_2)$
= $(w \otimes u) \otimes u$.

Hence U is commutative.

Corollary 3.4. *Let U*,*V and W be CI-algebras as considered in corollary (2.6). Then W is commutative iff both U and V are commutative.*

Theorem 3.5. *Let* $(P(U); 0, 1^{\sim})$ *be CI-algebra as considered in theorem (2.7). Then* $P(U)$ *is commutative if and only if* U *is commutative.*

Proof. First suppose that *U* is commutative. Then

$$
(b * c) * c = (c * b) * b
$$
 for all $b, c \in U$

Let $f, t \in P(U)$. Then for any $w \in U$, we have

$$
((f \circ t) \circ t)(w) = (f(w) * t(w)) * t(w)
$$

=
$$
(t(w) * f(w)) * f(w)
$$

=
$$
((t \circ f) \circ f)(w).
$$

This proves that $(f \circ t) \circ t = (t \circ f) \circ f$ Hence $P(U)$ is commutative.

Conversely, let $P(U)$ be commutative. Let $u, w \in U$. We consider $f_u, f_w \in P(U)$. Then

$$
(f_u \circ f_w) \circ f_w = (f_w \circ f_u) \circ f_u
$$

This gives

$$
((f_u \circ f_w) \circ f_w)(v) = ((f_w \circ f_u) \circ f_u)(v); v \in U
$$

This implies that $(u * w) * w = (w * u) * u$ (notation $(2.8)(b)$) Hence *X* is commutative. \Box

 \Box

References

- [1] Hu Q. P., Li X., On BCH-algebras, *Math. Seminer Notes,* 11(2)(1983), 313-320.
- [2] Imai Y., Iseki k., On axiom systems of propositional calculi XIV, Proc. *Japan Academy,* 42(1966), 19-22.
- [3] Iseki k., An algebra related with a propositional calculus, *Proc. Japan Acad.* 42(1)(1966), 26-29.
- [4] Jun Y. B., Roh E. H.and Kim H. S., On BH-algebras, *Sci. Math.* 1(1998), 347-354.
- [5] Kim, K. H. and Yon, Y. H., Dual BCK–algebra and MV–algebra, *Sci. Math. Japon.* 66(2)(2007), 247-253.
- [6] Kim H. S. and Kim Y.H., On BE-algebras, *Sci. Math. Japonicae* 66(2007), 113-116.
- [7] Meng B. L., CI-algebras, S*ci. Math. Japonicae online*, e-2009, 695-701.
- [8] Negger J. and Kim H. S., On d-algebras, *Math. Slovaca,* 40(1999), 19-26.
- [9] Pathak, K., Sabhapandit, P., and Chetia, B. C., Cartesian Product of BE/CI-algebras, *J. Assam Acad.Math.* 6(2013), 33-40
- [10] Sabhapandit P. and Pathak K., Some special Type of CIalgebras, *Int. J. of Trends and tech.* 64, 6-11
- [11] Walendziak, A., On commutative BE–algebras, *Sci. Math. Japon.* 69(2)(2009), 281-284.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 $**********$

