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Abstract
This paper deals with non binary repeated restricted burst errors. In this paper lower and upper bounds on the
number of parity check digits needed for a linear code having the capability to correct the repeated restricted
bursts are presented. Restricted bursts are introduced by Tyagi and Lata [11] for non binary case over GF(3). By
a restricted burst of length l or less we mean a vector whose all the non zero components are confined to some l
consecutive positions, the first and the last of which is nonzero with a restriction that all the non zero consecutive
positions contain same field element. For example in non binary case for q = 3,n = 3 and l = 2, we have the
following vectors of length 2 or less 110, 220, 011, 022, 100, 010, 001, 200, 020, 002.
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1. Introduction
During very early stages in the history of coding theory codes
were meant for detecting and correcting only random errors.
But at a later stage it was observed that in almost all channels
errors were more in adjacent positions and quite less in ran-
dom manner. Adjacent error correcting codes were introduced
and developed by Abramson [1]. The generalization of this
idea was put in the category of errors that is now known as
burst errors. A burst of length l or less may be defined as
follows: “A burst of length l is a vector whose only nonzero
components are confined to some l consecutive positions, the
first and the last of which is non-zero”. This definition is due
to P. Fire [6] where he defined such errors as open loop bursts
errors. He also defined closed loop bursts errors according
to which: “A closed loop bursts of length l is a vector, all of

whose nonzero components are confined to some l consecu-
tive positions the first and the last of which is nonzero and
the number of its starting positions is n”. (i.e. it is possible to
come back cyclically at the first position after the last position
for enumeration of the length of the burst. There is yet another
burst error due to Chien and Tang [3] according to which: “A
burst of length l is a vector whose only non-zero components
are confined to some l consecutive positions, the first of which
is non-zero”. Among various generalizations of burst errors,
Fire’s definition has been found of great importance and a
good deal of research has gone into the development of bursts
and multiple bursts error correcting codes. See [2, 8, 9, 12, 13]
and many more. As there is not any uniform terminology for
multiple bursts; repeated busts errors correcting codes are
also put in this category. Dass and Verma [4] introduced the
idea of repeated bursts error correcting codes and derived
both the bounds on the number of parity check digits needed
for correcting repeated burst errors over GF(q). It was also
pointed out in the end that they have not been able to con-
struct codes for non binary cases and that it’s a open problem.
We in this paper study non-binary repeated restricted burst
error correcting codes over GF(q);q > 2 . While working
on the possibility of the existence of 2-burst correcting non-
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binary codes, (initially discussed by Tuvi Etzion [5] in binary
case)the procedure lead us to the idea of restricted burst errors.
Tyagi and Lata [11] have been able to give non-binary optimal
restricted 2- burst correcting codes and byte oriented codes
over GF(3). We in this paper discuss this new burst defined
as ‘restricted burst’ and develop theorems for the existence
of restricted burst errors correcting codes. The paper is or-
ganized into three sections. Section 2 gives necessary and
sufficient conditions for 2 repeated restricted burst of length 2
or less whereas section 3 presents correction of m- repeated
restricted burst of length 2 or less. In section 4, we conclude
the paper by presenting an examples of (8,2) codes with an
open problem in the end.

Definition 1.1. “An m-repeated restricted burst of length l
whose only non-zero components are confined to m-distinct
sets of l-consecutive components, the first and last component
of each set being non-zero and all the non-zero components
contain same field element”.

In particular a 2-repeated restricted burst may be obtained
by putting m=2 in the above definition.
The vector (00222200202200) is an example of a 2-repeated
burst of length 4 over GF(3).
To prove our theorems, we use the following results:

Result 1.2. (Dass and Verma, [4])“ A q-ary (n,k) linear code
correcting m-repeated burst errors of length l or less must
satisfy

qn−k ≥qm(l−1)

[(
n−ml +m

m

)
(q−1)m+

m−1

∑
p=0

(
n−ml + p

p

)
(q−1)pqm−1−p

]
”.

Result 1.3. (Dass and Verma, [4]) “A q-ary (n,k) linear
code correcting m-repeated burst errors of length l or less
(n > 2ml) will always exist

qn−k >q2m(l−1)

[(
n−2ml +2m−1

2m−1

)
(q−1)2m−1+

2m−2

∑
p=0

(
n−2ml + p

p

)
(q−1)lq2m−2−p

]
”.

2. Correction of m-Repeated Restricted
Bursts

In this section we consider linear codes capable of correcting
m-repeated restricted bursts of length l or less and obtain the
lower and upper bound for such codes.

Theorem 2.1. An (n,k) linear code over GF(q);q > 2 that
corrects all m-repeated restricted bursts of length l or less

must satisfies

qn−k ≥(q−1)2m(l−1)

[(
n−ml +m

m

)
+ (2.1)

m−1

∑
p=0

(
n−mb+ l

l

)
2m−1−p

]
− (q−2).

Proof. This theorem can be proved simply by enumerating the
total number of correctable error vectors which are m-repeated
restricted bursts of length l or less.It has been observed that
the total number of m-repeated restricted bursts of length l or
less for q = 3 is equal to one less than the double of the total
number m-repeated burst errors of length l or less for binary
case in Result 1.2 (Theorem 3.1 [4]). For q = 4 the total
number of such errors is equal to thrice of the total number
of m-repeated burst error of length l or less for binary case in
Result 1.2 (Theorem 3.1 [4]) minus two. In this manner we
conclude that the total number of m-repeated restricted burst
errors of length l or less for q > 2 is

(q−1)2m(l−1)

[(
n−ml +m

m

)
+ (2.2)

m−1

∑
p=0

(
n−mb+ l

l

)
2m−1−p

]
− (q−2).

Since all these error patterns must belong to different
cosets for correction and the largest number of cosets available
is qn−k, then we have

qn−k ≥(q−1)2m(l−1)

[(
n−ml +m

m

)
+

m−1

∑
p=0

(
n−ml + p

p

)
2m−1−p

]
− (q−2).

This completes the required proof.

If we put m = 2 in Theorem 2.1, we get a corollary, which
gives a necessary condition for the codes having the capacity
to correct 2-repeated restricted burst errors of length l or less.
We give the corollary as follows:

Corollary 2.2. An (n,k) linear code over GF(q);q > 2 that
corrects all 2-repeated restricted bursts of length l or less
must satisfies

qn−k ≥(q−1)22(l−1)

[(
n−2l +2

2

)
+

(
n−2l +1

1

)
+2

]
− (q−2).

We now give a sufficient condition on the number of parity
check digits required for the existence of such a code.
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Theorem 2.3. The existence an (n,k) linear code over GF(q);
q > 2 that corrects all m-repeated restricted bursts of length l
or less (n≥ 2ml) provided that

qn−k >
(
(q−1)2m(l−1)− (q−2)

)
× (2.3)[

(q−1)22m(l−1)

[(
n−2ml +(2m−1)

2m−1

)
+

2m−2

∑
p=0

(
n−2ml + p

p

)
22m−2−p

]
− (q−2)

]
.

Proof. This result can be proved by forming an suitable parity
check matrix H by following the method used to prove the
Theorem 4.7 [7]( also refer Sacks [10] and Theorem 3.2 [4]).
Let H = [c1c2c3 . . .cn] for the desired code. First of all we
select j−1 columns c1,c2,c3, . . . ,c j−1 of H suitably. Now we
lay down a restriction to add the jth column c j to the matrix H
as follows: c j must not be written in the form of linear sum of
just preceding l−1 or lesser columns c j−l+1,c j−l+2, . . . ,c j−1
of H along with any (2m−1) sets of l or fewer consecutive
columns that are distinct and each of them is from amongst
the first j− l columns c1,c2,c3, . . . ,c j−l . In different words
with same meaning,

c j 6=(u1c j−l+1 +u2c j−l+2 + · · ·+ul−1c j−1) (2.4)
+(v1ci1 + v2ci1+1 + · · ·+ vlci1+l−1)

+(w1ci2 +w2ci2+1 + · · ·+ vlci2+l−1)

+

...
+

+(x1ci2m−1 + x2ci2m−1+1 + · · ·+ xlci2m−1+l−1).

where ui,vi,wi, . . .xi ∈GF(q); ui = vi = wi = · · ·= xi 6= 0 and
i1 + i2 + i3 + · · ·+ i2m−1 +(2m−1)b− (2m−1)≤ j−b.
The total number of coefficients ui’s will be equal to (q−
1)×2l−1− (q−2).The calculation of the number of the coef-
ficients vi,wi,xi will be same as the enumeration of (2m−1)-
repeated restricted burst errors lying in a vector of length j−b
which can be calculated by using the Theorem 3.1 [4] and
given as

(q−1)2(2m−1)(l−1)

[(
j−2ml +(2m−1)

2m−1

)
(2.5)

+
2m−2

∑
p=0

(
j−2ml + p

p

)
22m−2−p

]
− (q−2).

Considering the all coefficients ui,vi,wi, . . .xi simultaneously,
we get the total number of linear sums that can not be put to

be equal to c j is equal to(
(q−1)2m(l−1)− (q−2)

)
× (2.6)[

(q−1)2(2m−1)(l−1)

[(
j−2ml +(2m−1)

2m−1

)

+
2m−2

∑
p=0

(
j−2ml + p

p

)
22m−2−p

]
− (q−2)

]
.

Therefore in view of the fact that total number of (n− k)
tuples is qn−k ,addition of the jth column c j to H can be done
provided qn−k is greater than (2.6).That is

qn−k >
(
(q−1)2m(l−1)− (q−2)

)
×[

(q−1)2(2m−1)(l−1)

[(
j−2ml +(2m−1)

2m−1

)
+

2m−2

∑
p=0

(
j−2ml + p

p

)
22m−2−p

]
− (q−2)

]
.

The proof of the required theorem is completed by replac-
ing j by n.

If we put m = 2 in Theorem 2.3, we get a corollary, which
gives a sufficient condition for the codes having the capacity to
correct 2-repeated restricted burst errors of length l or less.We
give the corollary as follows:

Corollary 2.4. The existence of an (n,k) linear code over
GF(q);q > 2 that corrects all 2-repeated restricted bursts of
length l or less (n≥ 4l) is ensured, provided that

qn−k >
(
(q−1)2(l−1)− (q−2)

)
× (2.7)[

(q−1)23(l−1)
[(

n−4l +3
3

)
+

(
n−4l +2

2

)
+

2
(

n−4l +1
1

)
+4
]
− (q−2)

]
.

for the verification of such codes, we are providing an
example which is given as follows:

Example 2.5. For n = 8,m = 2, l = 2, Consider a (8,2) code
over GF(3) with parity check matrix

H =


1 0 0 0 0 0 1 0
0 2 0 0 0 0 2 1
0 0 1 0 0 0 1 1
0 0 0 2 0 0 2 1
0 0 0 0 1 0 1 1
0 0 0 0 0 2 2 1


This parity check matrix has been formed by the method used
in the proof of Theorem 2.3 for repeated restricted burst errors
by taking l = 2 over GF(3).The error patterns and syndromes
table for this parity check matrix is given below as:
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Err. Patterns Syndromes Err. Patterns Syndromes
10000000 100000 20000000 200000
01000000 020000 02000000 010000
00100000 001000 00200000 002000
00010000 000200 00020000 000100
00001000 000010 00002000 000020
00000100 000002 00000200 000001
00000010 121212 00000020 212121
00000001 011111 00000002 022222
11000000 120000 22000000 210000
10100000 101000 20200000 202000
10010000 100200 20020000 200200
10001000 100010 20002000 200020
10000100 100002 20000200 200001
10000010 221212 20000020 112121
10000001 111111 20000002 222222
01100000 021000 02200000 012000
01010000 020200 02020000 010100
01001000 020010 02002000 010020
01000100 020002 02000200 010001
01000010 111212 02000020 222121
01000001 001111 02000002 002222
00110000 001200 00220000 002100
00101000 001010 00202000 002020
00100100 001002 00200200 002001
00100010 122212 00200020 211121
00100001 012111 00200002 021222
00011000 000210 00022000 000120
00010100 000202 00020200 000101
00010010 121112 00020020 212221
00010001 011011 00020002 022022
00001100 000012 00002200 000021
00001010 121222 00002020 212111
00001001 011121 00002002 022212
00000110 121211 00000220 212122
00000101 011112 00000202 022221
00000011 102020 00000022 201010
11100000 121000 22200000 212000
11010000 120200 22020000 210100
11001000 120010 22002000 210020
11000100 120002 22000200 210001
11000010 211212 22000020 122121
11000001 101111 22000002 202222
01110000 021200 02220000 012100
01101000 021010 02202000 012020
01100100 021002 02200200 012001
01100010 112212 02200020 221121
01100001 002111 02200002 001222
00111000 001210 00222000 002120
00110100 001202 00220200 002101
00110010 122112 00220020 211221
00110001 012011 00220002 021022
00011100 000212 00022200 000121
00011010 121122 00022020 212211

Err. Patterns Syndromes Err. Patterns Syndromes
00011001 011021 00022002 022012
00001110 121221 00002220 212112
00001101 011120 00002202 022210
00000111 102022 00000222 201011
10110000 101200 20220000 202100
10011000 100210 20022000 200120
10001100 100012 20002200 200021
10000110 221211 20000220 112122
10000011 202020 20000022 101010
01011000 020210 02022000 010120
01001100 020012 02002200 010021
01000110 111211 02000220 222122
01000011 122020 02000022 211010
00101100 001012 00202200 002021
00100110 122211 00200220 211122
00100011 100020 00200022 200010
00010110 121111 00020220 212222
00010011 102220 00020022 201110
00001011 102000 00002022 201000
11110000 121200 22220000 212100
11011000 120210 22022000 210120
11001100 120012 22002200 210021
11000110 211211 22000220 122122
11000011 222020 22000022 111010
01111000 021210 02222000 012120
01101100 021012 02202200 012021
01100110 112211 02200220 221122
01100011 120020 02200022 210010
00111100 001212 00222200 002121
00110110 122111 00220220 211222
00110011 100220 00220022 200110
00011110 121121 00022220 212212
00011011 102200 00022022 201100
00001111 102002 00002222 201001

It can be verified from the above error pattern- syndrome table
that the syndromes of different 2-repeated bursts of length 2
or less are distinct. This shows that the code which is the
null space of the matrix given above corrects all 2-repeated
restricted bursts errors of length 2 or less.

3. Conclusion
We have shown with the help of one example that 2 repeated
restricted burst correcting codes over GF(3) exist. It would be
interesting to see a general matrix formation for such codes
for any given value of q, l, n and k.
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