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Abstract
One of the important topics in the field of graph theory is graph labeling. L(3,1)-labeling problem has been
widely studied in the last four decades due to its wide applications, specially in frequency assignment in mobile
communication system, circuit design, radar, X-ray crystallography, coding theory, etc. Distance two surjective
labeling is the surjective labeling satisfying the condition at distance one and two. Surjective L(3,1)-labeling is
a distance two surjective labeling, which is now becomes a well studied problem. Motivated from the L(3,1)-
labeling problem and the importance of surjective L(3,1)-labeling problem, we consider surjective L(3,1)-labeling
problem for circular-arc graph (CAG), where CAG is a very important subclass of intersection graph. A surjective
L(3,1)-labeling of a graph G = (V,E) is a function ϑ from the node set V (G) to the set of positive integers such
that |ϑ(u)−ϑ(v)| ≥ 3 if d(u,v) = 1 and |ϑ(u)−ϑ(v)| ≥ 1 if d(u,v) = 2, and every label 1,2, . . . ,n is used exactly
once, where d(u,v) represents the distance between the nodes u and v and n is the number of nodes of the
graph G. If a graph G with n nodes be label by surjective L(3,1)-labeling then the largest label used is obviously
equal to n.
In this article, it is shown that for any CAG G with n nodes and degree ∆ > 2 can be surjectively labeled using
L(3,1)-labeling if n = 5∆−2. Also, efficient algorithms are designed to label a CAG by surjective L(3,1)-labeling.
This is the first result for the problems on CAGs.
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1. Introduction
One of the key topics in the field of graph theory is graph label-
ing (or coloring). Graph labeling are motivated by problems
like channel assignment in wireless communications, traffic
phasing, task assignment, fleet maintenance, etc. The channel
assignment problem is that of assigning a frequency to each

radio transmitter so that interfering transmitters are assigned
frequencies whose separation is not a set of disallowed sep-
arations. This problem was formulated as a vertex coloring
problem of graph by Hale [5]. In 1988, Roberts proposed
a variation of the frequency assignment problem in which
‘close’ transmitters must receive different channel and ‘very
close’ transmitters must receive channel at least two apart. To
convert this problem into graph theory, the transmitters are
represented by the nodes of a graph; two nodes u and v are
‘very close’ if the distance between them is 1 and ‘close’ if the
distance between u and v is 2. The notion of L(2,1)-labeling
was introduced by Griggs and Yeh [4] in connection with the
problem of assigning frequencies in a multihop radio network.

L(3,1)-labeling of a graph G = (V,E) is a mapping f
from the vertex set V to the set of positive integers such that
|ϑ(u)−ϑ(v)| ≥ 3 if d(u,v) = 1 and |ϑ(u)−ϑ(v)| ≥ 1 if
d(u,v) = 2, where d(u,v) represent the distance between the
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nodes u and v. The minimum span over all possible labeling
functions of L(3,1)-labeling is denoted by λ3,1(G) and is
called λ3,1 number of G. Surjective L(3,1)-labeling is an
extension of L(3,1)-labeling of graphs.

A surjective L(3,1)-labeling of a graph G = (V,E) is a
mapping f from the node set V to the set of positive integers
such that |ϑ(u)−ϑ(v)| ≥ 3 if d(u,v)= 1 and |ϑ(u)−ϑ(v)| ≥
1 if d(u,v) = 2, and every label 1,2, . . . ,n is used exactly once.
The largest label used in surjective L(3,1)-labeling is exactly
equal to n, the number of nodes of G.

s ss ss1 4 7 1 4

Figure 1. L(3,1)-labeling of a path with five nodes

s sss s7 4 1 5 2

Figure 2. Surjective L(3,1)-labeling of a path with five nodes

In Figure 1, we have shown an L(3,1)-labeling of a path
with 5 nodes and in Figure 2, surjective L(3,1)-labeling of a
path with 5 nodes. Note that in figure 1 the same label used
more than once but in figure 2 the labels 1 through 7 have
all been used exactly once. So, in surjective L(3,1)-labeling
there is a complicated task than L(3,1)-labeling.

Frequency assignment problem has been widely studied
in the past [3–11, 13–18]. An advanced label research is
going on [1, 2, 19, 20]. We focus our attention on surjective
L(3,1)-labeling of CAGs.

L(2,1)-labeling problem has been widely studied in the
last three decades due to its wide application, specially in
frequency assignment in (mobile) communication system, X-
ray crystallography, radar, coding theory, astronomy, circuit
design, etc. Surjective L(3,1)-labeling is an extension of
L(3,1)-labeling which is now becomes a well studied prob-
lem. Motivated from the L(3,1)-labeling problem and the im-
portance of surjective L(3,1)-labeling problem, we consider
surjective L(3,1)-labeling problem for CAG, where CAG is a
very important subclass of intersection graph.

In this paper, for any CAG G, we have shown λ3,1(G)≤
5∆−2 and also proved that a CAG can be surjectively labeled
using L(3,1)-labeling if n = 5∆−2, where n is the number of
nodes and ∆ > 2 is the maximum degree of the graph G. Also
an efficient algorithm is designed to label a CAG by surjective
L(3,1)-labeling.

The remaining part of the paper is organized as follows.
Some notations and definitions are presented in Section 2. In
Section 3, some lemmas related to our work and an algorithm
to surjective L(3,1)-label a CAGs are presented. In Section 4
conclusions are made.

2. Preliminaries and notations
The graphs used in this work are simple, finite with degree
∆ > 2. The class of CAGs is a very important subclass of in-
tersection graphs [7]. A graph is a CAG if there exists a family

A of arcs around a circle and a one-to-one correspondence be-
tween nodes of G and arcs A, such that two distinct nodes are
adjacent in G if and only if there corresponding arcs intersect
in A. Such a family of arcs is called an arc representation for
G. A CAG and its corresponding circular-arc representation
is shown in Figure 3.

A1

A2

A3A4

A5
A6

A7

A8A9

A10r rr rr
r rrr r

v1 v2 v5 v7 v9

v3 v4 v6 v8 v10

Figure 3. A circular arc graph and its corresponding
circular-arc representation

It is assumed that all arcs must cover the circle, otherwise
the CAG is nothing but an interval graph. The degree of the
node vk corresponding to the arc Ak is denoted by d(vk) and
is defined by the maximum number of arcs which are adja-
cent to Ak. The maximum degree or the degree of a CAG G,
denoted by ∆(G) or by ∆, is the maximum degree of all nodes
corresponding to the arcs of G. Let A = {A1,A2, . . . ,An} be a
set of arcs around a circle. Also, it is noted that an arc Ak of A
and a node vk of V are one and same thing.

For any CAG G with n nodes and corresponding arc set
A = {A1,A2, . . . ,An}, we define the following objects:

1. Ls(Ak): the set of used surjective L(3,1)-labels which
are used before labeling the arc Ak, for any arc Ak ∈ A.

2. Li(Ak): the set of used surjective L(3,1)-labels at dis-
tance i (i = 1,2) from the arc Ak, before labeling the arc
Ak, for any arc Ak ∈ A.

3. Lvl(1,Ak): the set of all valid labels to label the arc Ak
before labeling Ak, satisfying the adjacency condition
of L(3,1)-labeling, for any arc Ak ∈ A.

4. Lvl(2,Ak): the set of all valid labels to label the arc Ak
before labeling Ak, satisfying L(3,1)-labeling condition,
for any arc Ak ∈ A.

5. Lsvl(Ak): the set of valid surjective L(3,1)-labels to
label the arc Ak before labeling Ak, for any arc Ak ∈ A.

6. λ s
3,1(G): surjective L(3,1)-labeling number for the graph

G.

7. f s
j : the surjective L(3,1)-label of the arc A j, for any arc

A j ∈ A.

8. Ls: the label set after completion of surjective L(3,1)-
labeling of the graph G.
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3. Surjective L(3,1)-labeling of
circular-arc graphs

In this section, we present some lemmas related to the pro-
posed problem. Also, an algorithm is designed for surjective
L(3,1)-labeling of CAGs. The time complexity of the algo-
rithm is also calculated.

Lemma 3.1. For any CAG G, |L2(Ak)| ≤ 2∆−2, for any arc
Ak ∈ A.

Ak

Al1
1

Al1
2

Al1
3

Al2
4

Al2
5

Al3
6

Ar1
7

Ar1
8

Ar2
9

Ar3
10

A11
A12

A13

Figure 4. A CAG

Proof. Let G be a CAG and Ak be any arc of G. We consider
a situation in which some arcs are already labeled and some
arcs are unlabel. Ak is an unlabel arc of G and we want to
label the arc Ak by surjective L(2,1)-labeling. Then two cases
may arises.
Case 1: Let the arcs in the left side of Ak
(i.e., Al1

1 ,A
l1
2 ,A

l1
3 ,A

l2
4 ,A

l2
5 ,A

l3
6 ) are only labeled and the arcs

in the right hand side of Ak (i.e., Ar1
7 ,Ar1

8 ,Ar2
9 ,Ar3

10) are not
labeled. Since ∆ is the degree of the graph, so, Ak is adjacent
to at most ∆ arcs. In figure 4, among all labeled arcs, Ak is
adjacent to Al1

1 ,A
l1
2 ,A

l1
3 . Again, among the labeled adjacent

arcs of Ak, Al1
1 is the arc of maximum length. Since, G is a

CAG so every 2-neighborhood arcs of Ak must be adjacent to
Al1

1 . Since ∆ is the degree of the graph, so, except Ak, Al1
1 is

adjacent to at most ∆−1 arcs of G. Hence, the cardinality of
the 2-neighborhood arcs of Ak is at most ∆−1. Since Ak is
arbitrary so, |L2(Ak)| ≤ ∆−1.
Case 2: Let some arcs in the left hand side of Ak
(i.e., Al1

1 ,A
l1
2 ,A

l1
3 ,A

l2
4 ,A

l2
5 ,A

l3
6 ) as well as right hand side of Ak

(i.e., Ar1
7 ,Ar1

8 ,Ar2
9 ,Ar3

10) are labeled. Since, the degree of the
graph is ∆, so, Ak is adjacent to at most ∆ arcs. In Figure 4,
among all arcs which are already labeled, Ak is adjacent to
Al1

1 ,A
l1
2 ,A

l1
3 ,A

r1
7 ,Ar1

8 . Again, among the arcs which are already
labeled and also adjacent to the arc Ak, the largest length of
all the left sided adjacent arcs of Ak is Al1

1 and that of right
sided adjacent arcs of Ak is Ar1

7 . Since, G is a CAG so, every 2-
neighborhood arcs of Ak must be adjacent to either Al1

1 or Ar1
7

or both. Since, ∆ is the degree of the graph, so, except Ak, Al1
1

is adjacent to at most ∆−1 arcs of G. Similarly, except Ak, Ar1
7

is adjacent to at most ∆−1 arcs of G. Since Ak is arbitrary so,
|L2(Ak)| ≤ (∆−1)+(∆−1) = 2∆−2. i.e. |L2(Ak)| ≤ 2∆−2.
Combining all the cases we have |L2(Ak)| ≤ 2∆−2.

Observation 1: For any CAG G, Li(Ak)⊆ Ls(Ak), for any arc
Ak of G and i = 1,2.

Theorem 3.2. For any CAG G, λ3,1(G)≤ 5∆−2 and it can
be surjectively L(3,1)-labeled if n = 5∆−2, where ∆ is the
maximum degree of the graph and n is the number of nodes of
G.

Proof. Since the number of nodes of the graph G is n, so the
number of arcs in the circular-arc representation of the graph
is n. So, let A = {A1,A2, . . . ,An}. Since we label the arcs
of a CAG by surjective L(3,1)-labeling, so no label is used
more than once and also the labels are taken only from the set
{1,2, . . . ,n}. Therefore,

λ3,1(G) ≤ 3|L1(Ak)|+ |L2(Ak)|
≤ 3∆+(2∆−2), [byLemma1]
≤ 5∆−2

Again, since n is the number of nodes of the CAG G,
so, for surjective L(3,1)-labeling n distinct labels must be
required to label the whole graph. Also, λ3,1(G) ≤ 5∆− 2.
So at most 5∆−2 labels must be required to label the graph
G. Again, in surjective L(3,1)-labeling the largest label must
be less than or equal to n, the number of nodes of the graph
G. Hence, a CAG G can be surjectively label using L(3,1)-
labeling if n = 5∆−2.

3.1 Algorithm for surjective L(3,1)-labeling
In this section, we design an algorithm to compute the set
Lvl(k,A j) for j = 2,3, . . . ,n; k = 1,2 and also we design an
algorithm to surjective L(3,1)-label a CAG. We consider a
situation in which some arcs (the arcs Ak’s with index k < j)
are labeled by surjective L(3,1)-labeling and some arcs (the
arcs Ak’s with index k ≥ j) are not labeled.

Algorithm SLKV L
Input: Ak, k = 2,3, . . . ,n.
Output: Lvl(p,Ak) for p = 1,2; k = 2,3, . . . ,n.

Step 1: Compute L1(Ak),L2(Ak) and Ls(Ak)
for i = 1 to r, where r = max{Ls(Ak)}+3

for j = 1 to |L1(Ak)|
let l j be the jth element of L1(Ak)
if |i− l j| ≥ 2, then Lvl(1,Ak) = {i}

end for;
end for;

Step 2: for m = 1 to |Lvl(1,Ak)|
for n = 1 to |L2(Ak)|
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if |lm− pn| ≥ 1, then Lvl(2,Ak) = {lm}
//where lm ∈ Lvl(1,Ak), pn ∈ L2(Ak)//

end for;
end for;

end SLKV L.

Lemma 3.3. Algorithm SLKV L correctly compute Lvl(p,Ak)
for p = 1,2 and the running time for this algorithm is O(∆2).

Proof. According to the algorithm SLKV L each element i ∈
Lvl(1,A j) is differ from lr by at least 2 for each lr ∈ L1(Ak).
Therefore, |i− lr| ≥ 2 for all i ∈ Lvl(1,Ak) and for all lr ∈
L1(Ak). So, Lvl(1,Ak) is correctly computed by the algorithm
SLKV L for Ak ∈ A, k = 2,3, . . . ,n. Again, according to the
above algorithm every element lα of Lvl(2,Ak) is differ from
lβ by at least 1 for each lβ ∈ L2(Ak). Therefore, |lm− pn| ≥
2 for all lm ∈ Lvl(2,Ak) and for all pn ∈ L1(Ak), and |lm−
pn| ≥ 1 for all lm ∈ Lvl(2,Ak) and for all pn ∈ L2(Ak). Hence,
Lvl(p,Ak) is correctly computed by the algorithm SLKV L for
each k = 1,2.

Since, Ls is the label set and |Ls| be its cardinality, clearly
|Li(Ak)| ≤ |Ls| for i= 1,2 and for any Ak ∈ A, and also r≤ 5∆,
where r = max{Ls(Ak)}+ 3. So, Lvl(1,Ak) is computed by
using at most 5∆|Ls| times, i.e. using O(∆|Ls|) times. Again,
|Lvl(2,An)| ≤ 5∆, so, Lvl(2,Ak) is computed using at most
5∆|Ls| times, i.e. using O(∆|Ls|) times. Since, |Ls| ≤ 5∆

so, the over all running time for the algorithm SLKV L is
O(∆2).

Lemma 3.4. For any CAG G, Lvl(1,Ak) is the largest non
empty set of labels satisfying the adjacency condition of
L(2,1)-labeling, where l ≤ r for all l ∈ Lvl(1,Ak),
r = max{Ls(Ak)}+3, for any Ak ∈ A.

Proof. Since, r = max{Ls(Ak)}+3 and L1(Ak)⊆ Ls(Ak) (by
Observation 3.1), so |r− li| ≥ 3 for any li ∈ L1(Ak). Therefore,
r ∈ Lvl(1,Ak), so, Lvl(1,Ak) is a non empty set. Again, let
B be any set of labels satisfying the adjacency condition of
L(3,1)-labeling, where l ≤ r for all l ∈ B, r = max{Ls(Ak)}+
3. Also, let b ∈ B. Then |b− li| ≥ 2 for any li ∈ L1(Ak).
Thus, b ∈ Lvl(1,Ak). So, b ∈ B implies b ∈ Lvl(1,Ak). So,
B⊆ Lvl(1,Ak). Since B is arbitrary, so, Lvl(1,Ak) is the largest
non empty set of labels satisfying the adjacency condition
of L(3,1)-labeling such that l ≤ r for all l ∈ Lvl(1,Ak), r =
max{Ls(Ak)}+3, for any Ak ∈ A .

Lemma 3.5. For any CAG G, Lvl(2,Ak) is the largest non
empty set satisfying L(2,1)-labeling condition, where l ≤ r
for all l ∈ Lvl(1,Ak), r = max{Ls(Ak)}+3, for any Ak ∈ A.

Proof. Since, r = max{Ls(Ak)}+3 and Li(Ak)⊆ Ls(Ak), for
i = 1,2 (by Observation 3.1), so |r− lp| ≥ 3 for any lp ∈
Li(Ak), i = 1,2, i.e., |r− lp| ≥ 3 for all lp ∈ L1(Ak) and |r−
lp| ≥ 1 for all lp ∈ L2(Ak). Therefore, r is the valid L(3,1)-
label of Ak, so, r ∈ Lvl(2,Ak). This implies that Lvl(2,Ak) is
a non empty set. Again, let B be any set of labels satisfying

L(3,1)-labeling conditions, where l ≤ r for all l ∈ B, r =
max{Ls(Ak)}+ 3 . Also, let b ∈ B. Then |b− lp| ≥ 3 for
any lp ∈ L1(Ak) and |b− lq| ≥ 1 for any lq ∈ L2(Ak) . Thus,
b ∈ Lvl(2,Ak). Therefore, b ∈ B implies b ∈ Lvl(2,AK). So,
B ⊆ Lvl(2,Ak). Since B is arbitrary, Lvl(2,Ak) is the largest
non empty set of labels satisfying L(3,1)-labeling, l ≤ r for
all l ∈ Lvl(2,Ak), r = max{Ls(Ak)}+3, for any Ak ∈ A .

Algorithm SL31
Input: The set of arcs of a CAG A = {A1,A2, . . . ,An} and
Lvl(p,Ak) for k = 2,3, . . . ,n and p = 1,2 where n = 5∆−2.
Output: f s

k , the surjective L(3,1)-label of Ak, k = 1,2, . . . ,n.

Step 1: Rearrange the arcs as follows:
An = A2;
Ai+1 = A2i+1, for i = 1,2, . . . ,n/2−1;
Ai+n/2−1 = A2i, for i = 2,3, . . . ,n/2;
A1 remains the same;

Step 2: (Initialization)
f s
1 = 1;

Ls(A2) = {1};
Step 3: for k = 2 to n−1

Lsvl(Ak) = Lvl(2,Ak)−Ls(Ak);
f s
k = min{Lsvl(Ak)};

Ls(Ak+1) = Ls(Ak)
⋃
{ f s

k};
end for;

Step 4: Lsvl(An) = Lvl(2,An)−Ls(An);
f s
n = min{Lsvl(An)};

Step 5: Ls = Ls(An)
⋃
{ f s

n};
end SL31.

Theorem 3.6. The Algorithm SL31 correctly labels a CAG
by surjective L(3,1)-labeling, where n = 5∆−2.

Proof. Let G be a CAG with n nodes such that n = 5∆− 2,
where ∆ is the maximum degree of the graph. After rearrange-
ment of the arcs let A = {A1,A2, . . . ,An} be the set of arcs of
the CAG and let f s

1 = 1, Ls(A2) = {1}.
We consider a circumstances in which the arcs

A1,A2, . . . ,Ak−1 are already labeled for k = 2,3, . . . ,n and
the remaining arcs are unlabel. In this circumstances we want
to label the arc Ak by surjective L(3,1)-labeling. According
to lemma 4, Lvl(2,Ak) is the largest non-empty set of labels
satisfying L(3,1)-labeling, where l ≤ r for all l ∈ Lvl(2,Ak),
r = max{Ls(Ak)}+3 for any Ak ∈ A.

Again, Lsvl(Ak) = Lvl(2,Ak)−Ls(Ak), so, Lsvl(Ak) is the
largest non empty set of labels satisfying surjective L(3,1)-
labeling, because the label in the set Lsvl(Ak) do not used ear-
lier to label any arc and also satisfies L(3,1)-labeling. Since,
we want to label the arc by using least possible label, so,
f s
k = q, where q = min{Lsvl(2,Ak)}. Since, Lsvl(Ak) is the

largest set of labels satisfying surjective L(3,1)-labeling, so, q
is the least surjective label for the arc Ak. Again, by Theorem
1, λ3,1(G) = 5∆− 2, so the label of Ak must be less than or
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equal to 5∆−2. Again, since n = 5∆−2, Ak is label using the
label from the set {1,2, . . . ,n} which is not previously used
to label any arc. Since, Ak is arbitrary so, any CAG can be
surjectively label by L(3,1)-labeling by Algorithm SL31 and
λ3,1(G) = max{Ls(An)

⋃
{ f s

n}}= 5∆−2 = n.

Theorem 3.7. The time complexity of Algorithm SL31 is
O(n∆3), where n is the number of nodes of the graph and
∆ is the degree of the graph such that n = 5∆−2.

Proof. By our proposed algorithm f s
k , the surjective L(3,1)-

label of Ak can be computed if Lsvl(Ak) is computed. Now
by Lemma 2, algorithm SLKV L can compute Lvl(p,Ak), p =
1,2 using O(∆2) time. Using algorithm AdiffB, Lvl(2,Ak)−
Ls(Ak) can be computed in O(∆) time. So the total time
required to compute Lsvl(Ak) is O(∆3). Since we need to
find Lsvl(2,Ak) for k = 2,3, . . . ,n, so the running time for
Algorithm SL31 is O((n−1)∆3), i.e. O(n∆3).

4. Conclusion
Although, the L(3,1)-labeling problem has been widely stud-
ied in the last four decades, there are only a few classes of
graphs for which the result about surjective L(2,1)-labeling
is available. For other classes of graphs surjective L(3,1)-
labeling is clearly welcome. In this paper, we determine
the upper bound λ3,1 for a CAG G, and have shown that
λ3,1(G)≤ 5∆−2. Also, we have proved that a CAG G with
n nodes can be surjectively labeled using L(3,1)-labeling if
n = 5∆− 2. Also, we have presented an efficient algorithm
to label a CAG by surjective L(3,1)-labeling. This is the first
result for the problems on CAGs. The time complexity for
the algorithms is O(n∆3). But we are unable to prove that
whether surjective L(3,1)-labeling is possible or not for CAG,
when n 6= 5∆−2. It is an open problem to the researchers.
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