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Abstract
Let G = (V,E) be a graph. The non-adjacent vertex sum polynomial of the graph G = (V,E) is defined as
NAV SP(G,x) = ∑

4(G)
j=0 n(4(G)− j)x

α4(G)− j where n4(G)− j is the sum of the number of non-adjacent vertices of all the
vertices of degree 4(G)− j and α4(G)− j is the sum of the degree of non-adjacent vertices of the vertices of
degree 4(G)− j. In this paper we derived the non-adjacent vertex sum polynomial for Umbrella graph, Jahangir
graph, Tadpole graph and Lollipop graph.
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1. Introduction
In a graph G = (V,E) we mean a finite undirected, non-trivial
graph without loops and multiple edges. The vertex set is
denoted by V and the edge set by E, for v ∈ V , d(v) is the
number of edges incident with v, the maximum degree of G
is defined as4(G) = max{d(v)/v ∈V} for terms not defined
here, we refer to Frank Harary [3]. An Umbrella graph Um,n
is the graph obtained by joining a path Pn with a central vertex
of a fan Fm.[7]. Jahangir graph Js,m for m ≥ 3 is a graph
on sm+ 1 vertices that is a graph consisting of a cycle Csm
with one additional vertex which is adjacent to m vertices
of Csm at a distance ′s′ to each other an Csm [6]. A Tadpole
Tn,k is the graph obtained by appending a path Pk to cycle Cn
[7]. A Lollipop graph denoted by Lm,n is a graph which is
constructed by appending a complete graph Km, m ≥ 3 to a
pendent vertex of path graph Pn.

2. Main Results

Theorem 2.1. Let Um,n be a Umbrella graph with m+n ver-
tices. Then the non-adjacent vertex sum polynomial of Um,n is
NAV SP(Um,n,x) =

(2n−2)x6n−7 +(2n−3)x6n−9 +(2n2−11n+12)x6n−10

+(2n−3)x5n−9 +(4n−6)x5n−10 +(4n−8)x5n−13+

(2n2−12n+16)x5n−14 +(n−2)x2n−5

i f m,n(m≥ 5,n≥ 5) are odd and
i f m,n(m≥ 6,n≥ 6) are even
(m+n−2)x6m−5 +(m+n−3)x6m−7+

(2n2−12n+16)x6m−8 +(m+n−3)x5m−7

+(4n−8)x5m−8 +(4n−10)x5m−11+

(2n2−15n+25)x5m−12 +(n−2)x2m−3

i f m(m≥ 6) is even and i f n(n≥ 7) is odd
(m+n−2)x6m−9 +(m+n−3)x6m−11+

(2n2−10n+8)x6m−12 +(m+n−3)x5m−11

+(4n−4)x5m−12 +(4n−6)x5m−15+

(2n2−9n+9)x5m−16 +(n−2)x2m−7

i f m(m≥ 7) is odd and i f n(n≥ 6) is even

Proof. Let V = {{ui,v j/1≤ i≤ m,1≤ j ≤ n} be the vertex
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set and E = {uiui+1,v jv j+1/1≤ i≤ m−1,1≤ j ≤ n−1}∪
{v1ui/1 ≤ i ≤ m} be the edge set of the graph Um,n. Then
Um,n has m+n vertices and 2m+n−2 edges.

Case(i) Both m (m≥ 5) and n (n≥ 5) are odd.

The total number of non-adjacent vertices of vn is 2n−2, vn−1
is 2n−3,v3,v4, ...,vn−2 is 2n2-11n+12, v2 is 2n−3, u1,um is
4n−6, u2, um−1 is 4n-8,u3,u4, ...,um−2 is 2n2−12n+16 and
v1 is n−2 and sum of degree of these non-adjacent vertices is
6n− 7,6n− 9,6n− 10,5n− 9,5n− 10,5n− 13,5n− 14 and
2n−5 respectively.

Case (ii) Both m (m≥ 6) and n (n≥ 6) are even.

The result is similar to case (i).

Case (iii) m (m≥ 6) is even and n (n≥ 7) is odd.

The total number of non-adjacent vertices of vn is m+ n−
2, vn−1 is m+ n− 3,v3,v4, ...,vn−2 is 2n2− 12n+ 16, v2 is
m+n−3,u1,um is 4n−8,u2,um−1 is 4n−10,u3,u4, ...,um−2
is 2n2− 15+ 25 and v1 is n− 2 and sum of degree of these
non-adjacent vertices is 6m−5,6m−7,6m−8,5m−7,5m−
8,5m−11,5m−12 and 2m−3 respectively.

Case (iv) m (m≥ 7) is odd and (n≥ 6) is even.

The total number of non-adjacent vertices of vn is m+ n−
2, vn−1 is m+ n− 3, v3,v4, ...,vn−2 is 2n2− 10n+ 8, v2 is
m+n−3,u1,um is 4n−4,u2um−1 is 4n−6,u3,u4, ...,um−2 is
2n2−9n+9 and v1 is n−2 and sum of degree of these non-
adjacent vertices is 6m−9,6m−11,6m−12,5m−11,5m−
12,5m−15,5m−16 and 2m−7 respectively. Combining all
these we get the required polynomial.

Here NAV SP(U5,5,x) =
8x23 +7x21 +7x20 +77x16 +14x15 +12x12 +6x11 +3x5.

Example 2.2. The non-adjacent vertex sum polynomial of the
Umbrella u5,5,u6,7 and u7,6 are given in Figure 1, Figure 2
and Figure 3 respectively.

Here NAV SP(U6,7,x) =
11x31 +10x29 +30x28 +10x23 +20x22 +18x19 +18x18 +5x9.

Here NAV SP(U7,6,x) =
11x33 +10x31 +20x30 +10x24 +20x23 +18x20 +27x19 +4x7.

Theorem 2.3. Let Jsm be a Jahangir graph with sm+1 ver-
tices. Then the non-adjacent vertex sum polynomial of Jsm
is
NAV SP(Jsm,x)) =

(s4−3s3−2s2 +6s)x2s2+2s−6 +(2s3−4s)x2s2+2s−7+

(s3−3s)x2s2+s−7 +(s2− s)x2(s2−s)i f s,m is even
(s≥ 4,m≥ 4) i f s,m is odd
(s≥ 5,m≥ 5)
(s4 +4s−37)(m2 +m−2)x2m2+4m−6+

(2s−2)(m2 +m−2)x2m2+4m−7 +(s2− s−3)mx2m2+3m−7

+(s2−2s+1)x2m2

i f s(s≥ 5) is odd and i f m(m≥ 4) is even
(s2−2s−3)(m2−m−2)x2m2−6

+(2s+2)(m2−m−2)x2m2−7

+(s2 + s−3)mx2m2−m−7 +(2s2−17)x2m2−4m

i f s(s≥ 4) is even and i f m (m≥ 5) is odd

Proof. Let Jsm be a Jahangir graph with sm+1 vertices namely
v1,v2, ...,vsm,vsm+1. In a Jahangir graph Jsm, m vertices have
degree 3, d(vsm+1) = m and the remaining vertices have de-
gree 2.
Case (i) Both s (s≥ 5) and m (m≤ 5) are odd.
The total number of non-adjacent vertices of degree 3 vertices
is s2−3s, those vertices adjacent to degree 3 vertices except
vsm+1 is 2s2−3s,vsm+1 is s2− s and the remaining vertices in
the cycle is (s4−3s3−2s2 +6s) and sum of degree of these
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non-adjacent vertices is 2s2 + s− 7, 2s2 + 2s− 7, 2(s2− s)
and 2s2 +2s−6 respectively.
Case (ii) Both s (s≥ 4) and m (m≥ 4) are even. This proof
is similar to case (i).
Case (iii) s(s≥ 5) is odd and m(m≥ 4) is even.
The total number of non-adjacent vertices of degree 3 vertices
is (s2− s−3)m, those vertices adjacent to degree 3 vertices
except vsm+1 is (2s−2)(m2 +m−2), vsm+1 is (s2−2s+1),
and the remaining inner vertices in the cycle is (s2 + 4s−
37) (m2 +m− 2) and sum of degree of these non-adjacent
vertices is 2m2+3m−7, 2m2+4m−7, 2m2 and 2m2+4m−6
respectively.
Case (iv) s (s≥ 4) is even and m (m≥ 5) is odd.
The total number of non-adjacent vertices of degree 3 vertices
is m(s2 + s−3), those vertices adjacent to degree 3 vertices
except vsm+1 is (2s+2)(m2−m−2),vsm+1 is (2s2−17) and
the remaining inner vertices in the cycle is (s2−2s−3) (m2−
m− 2) and sum of degree of these non-adjacent vertices is
2m2−m− 7, 2m2− 7, 2m2− 4m and 2m2− 6 respectively.

Example 2.4. Put s = 5,n = 4 in the above theorem we have
the graph.

Here NAV SP(J5,4,x) = 144x42 +144x41 +68x37 +16x32.

Theorem 2.5. Let Tn,k be a Tadpole graph with n+ k ver-
tices. Then the non-adjacent vertex sum polynomial of Tn,k is
NAV SP(Tn,k,x) =

(2n−4)x4k+1 +(2n−5)x4k−1 +(2n−8)(2k−1)x4k−2

+3(2n−5)x4k−3 +(2n−6)x4k−5

i f n(n≥ 6),k(k ≥ 4) are even
and i f n(n≥ 5),k(k ≥ 3) are odd
(2n−3)x4k−1 +(2n−4)x4k−3 +(2n−7)(2k−2)x4k−4

+3(2n−4)x4k−5 +(2n−5)x4k−7

i f n(n≥ 5 is odd and i f k(k ≥ 4) is even
(2n−5)x4k+3 +(2n−6)x4k+1 +(2n−9)2kx4k

+3(2n−6)x4k−1 +(2n−7)x4k−3

i f n(n≥ 6) is even and i f k(k ≥ 3) is odd

Proof. Let V = {{ui,v j/1 ≤ i ≤ n,1 ≤ j ≤ k} be the vertex
set and E = {uiui+1,v jv j+1/1 ≤ i ≤ n− 1,1 ≤ j ≤ k− 1}∪

{u1v1} be the edge set of the graph Tn,k. Then Tn,k has n+ k
vertices and n+ k edges.
Case (i) Both n (n≥ 6) and k (k ≥ 4) are even.
The total number of non-adjacent vertices of vk is (2n− 4),
vk−1 is (2n− 5),v2,v3, ...,vk−2 and u3,u4, ...,un−1 is (2n−
8)(2k− 1), u2,un and v1 is 3(2n− 5) and u1 is 2n− 6 and
sum of degree of these non-adjacent vertices is 4k+1,4k−
1,4k−2,4k−3 and 4k−5 respectively.
Case (ii) Both n(n≥ 5) and k(k ≥ 3) are even. The result is
similar to Case (i).
Case (iii) n(n≥ 5) is odd and k (k ≥ 4) is even.
The total number of non-adjacent vertices of vk is 2n−3,vk−1
is (2n−4),v2,v3, ...,vk−2 and u3,u4, ...,un−1 is (2n−7)(2k−
2),u2,un,v1 is 3(2n−4) and u1 is 2n−5 and sum of degree
of these non-adjacent vertices is 4k−1,4k−3,4k−4,4k−5
and 4k−7 respectively.
Case (iv) n (n ≥ 6) is even and k (k ≥ 3) is odd. The total
number of non-adjacent vertices of vk is (2n−5),vk−1 is 2n−
6,v2,v3, ...,vk−2 and u3,u4, ...,un−1 is 2k(2n− 9), u2,un,v1
is 3(2n− 6) and u1 is 2n− 7 and sum of degree of these
non-adjacent vertices is 4k+3,4k+1,4k,4k−1 and 4k−3
respectively.

Example 2.6. Take n= 6,k = 4 in the above theorem we have
the graph.

Here NAV SP(T6.4,x) = 8x17 +7x15 +28x14 +21x13 +6x11

Theorem 2.7. Let Lm,n be a Lollipop graph with m+n ver-
tices. Then the non-adjacent vertex sum polynomial of Lm,n is
NAV SP(Lm,n,x) =

(2m−4)xn2+5n−1 +(2m−5)xn2+5n−3 +(m−5)(2n−1)
xn2+5n−4 +(2m−5)xn2+4n−4 +(m−1)nx2n−1 +(m−3)x2n−3

i f m(m≥ 7),n(n≥ 5) are odd and
i f m(m≥ 6),n(n≥ 4) are even
(2m−5)xn2+7n+3 +(2m−6)xn2+7n+1 +2(m−6)nxn2+7n

+(2m−6)xn2+6n−1 +(m−1)nx2n−1 +(m−4)x2n−3

i f m(m≥ 8) is even and i f n(n≥ 5) is odd
(2m−3)xn2+3n−3 +(2m−4)xn2+3n−5

+(m−4)(2n−2)xn2+3n−6 +(2m−4)xn2+2n−5

+(m−1)nx2n−1 +(m−2)x2n−3

i f m(m≥ 7) is odd and i f n(n≥ 6) is even

Proof. Let V = {{ui,v j/1≤ i≤ m,1≤ j ≤ n} be the vertex
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set and E = {{uiui+1,v jv j+1/1≤ i≤m−1,1≤ j≤ n−1}∪
{u1v1} be the edge set of the graph Lm,n. Then Lm,n has m+n
vertices and

(m
2

)
+n edges.

Case (i) Both m (m≥ 6) and n(n≥ 4) are even.
The total number of non-adjacent vertices of vn is (2m−
4),vn−1 is 2m− 5,v2,v3, ...,vn−2 is (m− 5)(2n− 1), v1 is
(2m−5),u2,u3, ...,um is n(m−1) and u1 is (m−3) and sum
of degree of these non-adjacent vertices is n2 +5n−1, n2 +
5n−3, n2+5n−4, n2+4n−4, 2n−1 and 2n−3 respectively.
Case (ii) Both m(m≥ 7) and n(n≥ 5) are odd. The result is
similar to case(i).
Case (iii) m (m≥ 8) is even and n (n≥ 5) are odd.
The total number of non-adjacent vertices of vn is (2m−
5),vn−1 is 2m− 6,v2,v3, ...,vn−2 is 2n(m− 6),v1 is 2m−
5,u3,u4, ...,um is n(m− 1) and u1 is (m− 4) and sum of de-
gree of these non-adjacent vertices is n2 + 7n+ 3,n2 + 7n+
1,n2 +7n,n2 +6n−1,2n−1 and 2n−3 respectively.
Case (iv) m (m≥ 7) is odd and n (n≥ 6) is even.
The total number of non-adjacent vertices of vn is (2m−
3),vn−1 is (2m− 4),v2,v3, ...,vn−2 is (m− 4)(2n− 2),v1 is
(2m−4),u2,u3, ...,um is n(m−1) and u1 is m−2 and sum of
degree of these non-adjacent vertices is n2+3n−3,n2+3n−
5,n2+3n−6,n2+2n−5,2n−1 and 2n−3 respectively.

Example 2.8. Take m=6,n=4 in the above theorem we have
the graph.

Here
NAV SP(L6,4,x) = 8x35 +7x33 +7x32 +7x28 +20x7 +3x5
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