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Effect of mass transfer on unsteady
three-dimensional MHD dusty Couette flow
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Abstract
The unsteady three-dimensional Couette flow of a viscous incompressible fluid between two porous flat plates
with uniform injection and periodic suction in the presence of magnetic field and mass transfer has been
investigated. Perturbation technique has been used to obtain approximate solutions for the velocity, temperature
and concentration fields, skin friction, Nusselt number and Sherwood number. The velocity, temperature and
concentration profiles have been plotted to study the effect of diffusion parameter, Schmidt number and other
non-dimensional parameters on them. Furthermore, skin friction and Nusselt number have been tabulated for
different values of the non-dimensional parameters.
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1. Introduction

Dusty Couette flows in the presence of magnetic field
finds its application in many industrial process in the field
of aerodynamics, nuclear cooling and geophysics. Some of
their applications include investigation of underground water
resources, natural gas, and mineral oils [10–15].

The unsteady hydromagnetic generalized Couette flow
and heat transfer characteristics of a reactive variable viscos-
ity incompressible electrically conducting third grade fluid

in a channel with asymmetric convective cooling at the walls
in the presence of uniform transverse magnetic field are stud-
ied by Chinyoka and Makinde [2]. The chemical kinetics
in the flow system is assumed to be exothermic. Makinde
and Chinyoka [7] investigated the unsteady generalized Cou-
ette flow and heat transfer. The authors in [9] studied the
combined effects of free convective heat and mass transfer
on an unsteady MHD dusty viscoelastic fluid flow. The con-
clusions of unsteady flow of an electrically conducting and
incompressible viscoelastic liquid with simultaneous heat and
mass transfer near an oscillating porous plate in slip flow
regime under the presence of magnetic field is reported in
[8] in which equations are solved by perturbation method.
Ahmed et al. [1] reported the modeling of three-dimensional
channel flow in a chemically-reacting fluid between two long
vertical parallel flat plates in the presence of magnetic field, in
which the magnetic parameter is found to escalate the velocity
near the plate in motion. Das et al. [3] obtained a unsteady
hydromagnetic Couette flow and heat transfer of a reactive
viscous incompressible electrically conducting fluid between
two infinitely long horizontal parallel plates in the presence
of magnetic field. By Laplace transform technique, transient
equations are solved the unsteady hydromagnetic Couettee
flow and heat transfer of a reactive viscous incompressible
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fluid to obtain the velocity field and shear stresses in a unified
closed form. The main aim of this work is to extend the result
of Guria [6] for heat source and mass transfer function in the
presence of magnetic field.

2. Flow description and governing
equations

The flow under investigation is designed as an unsteady
three dimensional flow of a viscous, incompressible, dusty
fluid between two horizontal porous flat plates separated by
a distance “d” in a slip flow regime with uniform suction at
the stationary plate and periodic suction at the plate in motion.
A uniform magnetic field B0 is applied to the plate as shown
in Fig.1, more details one can refer [6]. The upper plate
is subjected to a constant injection −V0 and the lower plate
to a transverse sinusoidal time dependent suction velocity
distribution of the form

v∗ =−V0

[
1+ ε cos

(
πz∗

d∗
− ct∗

)]
, (1)

where ε(� 1) represents amplitude of the suction velocity.

Figure 1. Couette dusty flow with constant injection and
periodic suction at the porous plates.

Denoting dimensional velocity components as u∗, v∗ and
w∗ in the directions x∗, y∗ and z∗ axes respectively for the
fluid phase, u∗p, v∗p and w∗p in the directions x∗, y∗ and z∗

axes respectively for the particle phase, T ∗ and T ∗p for the
temperature of the fluid and particle phase respectively and C∗

for the dilute concentration of small particles, the governing
equations are mentioned as below:

For fluid phase:

∂v∗

∂y∗
+

∂w∗

∂ z∗
= 0 (2)

∂u∗

∂ t∗
+ v∗

∂u∗

∂y∗
+w∗

∂u∗

∂ z∗
= v

(
∂ 2u
∂y∗2

+
∂ 2u
∂ z∗2

)
+gβT (T ∗−T0)+gβC(C∗−C0)

−
σB2

0u∗

ρ
+

KN0

ρ
(u∗p−u∗) (3)

∂v∗

∂ t∗
+ v∗

∂v∗

∂y∗
+w∗

∂v∗

∂ z∗
= v
(

∂ 2v
∂y∗2

+
∂ 2v
∂ z∗2

)
+

∂ p∗

∂y∗
+

KN0

ρ
(v∗p− v∗) (4)

∂w∗

∂ t∗
+ v∗

∂w∗

∂ z∗
= v
(

∂ 2w
∂y∗2

+
∂ 2w
∂ z∗2

)
+

∂ p∗

∂ z∗

−
σB2

0
ρ

+
KN0

ρ
(w∗p−w∗) (5)

ρCp

(
∂T ∗

∂ t∗
+ v∗

∂T ∗

∂y∗
+w∗

∂T ∗

∂ z∗

)
= K

(
∂ 2T
∂y∗2

+
∂ 2T
∂ z∗2

)
+

ρpCs

ΓT
(T ∗p −T ∗)+Q(T ∗−T0) (6)

∂C∗

∂ t∗
+ v∗

∂C∗

∂y∗
+w∗

∂C∗

∂ z∗
= D

(
∂ 2C∗

∂y∗2
+

∂ 2C∗

∂ z∗2

)
+DT

(
∂ 2T ∗

∂y∗2
+

∂ 2T ∗

∂ z∗2

)
(7)

For particle phase:

∂v∗p
∂y∗

+
∂w∗p
∂ z∗

= 0 (8)

∂u∗p
∂ t∗

+ v∗p
∂u∗p
∂y∗

+w∗p
∂u∗p
∂ z∗

=
K
mp

(u∗−u∗p) (9)

∂v∗p
∂ t∗

+ v∗p
∂v∗p
∂y∗

+w∗p
∂v∗p
∂ z∗

=
K
mp

(v∗− v∗p) (10)

∂w∗p
∂ t∗

+ v∗p
∂w∗p
∂y∗

+w∗p
∂w∗p
∂ z∗

=
K
mp

(w∗−w∗p) (11)

∂T ∗p
∂ t∗

+ v∗p
∂T ∗p
∂y∗

+w∗p
∂T ∗p
∂ z∗

=
1

Γp
(T ∗−T ∗p ), (12)

in which all the symbols are usual meanings and are men-
tioned in the Appendix. Then boundary conditions are: u∗ =
L∗1

∂u∗
∂y∗ ; v∗=−SV0

[
1+ ε cos

(
πz∗
d∗ − ct∗

)]
; w∗=L∗1

∂w∗
∂y∗ ; T ∗=

T0 +L∗2
∂T ∗
∂y∗ ; C∗ = C0 +L∗1

∂C∗
∂y∗ ; u∗p = L∗1

∂u∗p
∂y∗ ; v∗p = −SV0

[
1+

ε cos
(

πz∗
d∗ − ct∗

)]
; w∗p = L∗1

∂w∗p
∂y∗ ;

T ∗p = T0 +L∗2
∂T ∗

∂y∗
at y = 0 (13)
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u∗ =U ; v∗p =−V0; w∗ = 0; T ∗ = T1; C∗ =C1; u∗p =U ; v∗p =
−V0;

w∗p = 0; T ∗p = T1 at y = d (14)

where L∗1 =
( 2−r

r

)
L, L∗2 =

( 2−r
r

)
L′ and L = µ

(
π

2Pρ

)1/2
is the

mean free path and r is the Maxwell’s reflection coefficient.
By introducing the following non-dimensional parameters:
y= y∗

d ; z= z∗
d ; t = ct∗; p= p∗

ρV 2
0

; u= u∗
U ; v= v∗

V0
; w= w8

V0
; up =

u∗p
U ; vp =

v∗p
V0

; wp =
w∗p
V0

; θ =
T ∗−T ∗d
T ∗0 −T ∗d

; Γp =
Λd
V0

; θ = T ∗−T0
T1−T0

; ϕ =

C∗−C0
C1−C0

; θp =
T ∗p−T0
T1−T0

; Soret number So = DT
D

T1−T0
C1−C0

; Reynolds

number Re= V0d
v ; Prandtl number Pr = µCp

K ; Schmidt number

Sc = v
D ; Hartmann number M =

σB2
0d

µ
; Mass concentration

parameter f = N0m
ρ

; Velocity slip parameter h1 =
L1
d ; Temper-

ature slip parameter h2 = L2
d ; Concentration slip parameter

h3 =
L3
d ; Grashof number for heat transfer Gr = gβT d(T1−T0)

UV0
;

Grashof number for mass transfer Gm = gβCd(C1−C0)
UV0

; Heat

parameter F = Qd2

µCp
; Frequency parameter λ = cd2

v ;

Relaxation time parameter Λ =
mpV0

dK
. (15)

The governing equations (2-14) can be rewritten as follows:

∂v
∂y

+
∂w
∂ z

= 0 (16)

λ
∂u
∂ t

+Re
(

v
∂u
∂y

+w
∂u
∂ z

)
=

(
∂ 2u
∂y2 +

∂ 2u
∂ z2

)
+ReGrθ

+ReGmϕ +Mu+
f Re
Λ

(up−u) λ
∂v
∂ t

+Re
(

v
∂v
∂y

+w
∂v
∂ z

)
=

(
∂ 2v
∂y2 +

∂ 2v
∂ z2

)
−Re

∂ p
∂y

(17)

+
f Re
Λ

(vp− v) (18)

λ
∂w
∂ t

+Re
(

v
∂w
∂y

+w
∂w
∂ z

)
=

(
∂ 2w
∂y2 +

∂ 2w
∂ z2

)
−Re

∂ p
∂ z

+Mw+
f Re
Λ

(wp−w) (19)

λPr
∂θ

∂ t
+RePr

(
v

∂θ

∂y
+w

∂θ

∂ z

)
=

(
∂ 2θ

∂y2 +
∂ 2θ

∂ z2

)
+RePrFθ

+
2
3

f Re
Λ

(θp−θ) (20)

λSc
∂ϕ

∂ t
+ReSc

(
v

∂ϕ

∂y
+w

∂ϕ

∂ z

)
=

(
∂ 2ϕ

∂y2 +
∂ 2ϕ

∂ z2

)
+ReScSo

(
∂ 2θ

∂y2 +
∂ 2θ

∂ z2

)
(21)

∂vp

∂y
+

∂wp

∂ z
= 0 (22)

λ
∂up

∂ t
+Re

(
vp

∂up

∂y
+wp

∂up

∂ z

)
=

Re
Λ
(u−up) (23)

λ
∂vp

∂ t
+Re

(
vp

∂vp

∂y
+wp

∂vp

∂ z

)
=

Re
Λ
(v− vp) (24)

λ
∂wp

∂ t
+Re

(
vp

∂wp

∂y
+wp

∂wp

∂ z

)
=

Re
Λ
(w−wp) (25)

λ
∂θp

∂ t
+Re

(
vp

∂θp

∂y
+wp

∂θp

∂ z

)
=

Re
Λ
(θ −θp) (26)

The corresponding boundary conditions are u = h1
∂u
∂y ; v =

−S[1+ ε cos(πz− t)]; w = h1
∂w
∂y ; θ = h2

∂θ

∂y ; ϕ = 0

up = h1
∂up

∂y
; vp =−S1[1+ ε cos(πz− t)]; wp = h1

∂wp

∂y
;

θp = h2
∂θp

∂y
at y = 0 (27)

u = 1; v =−S; w = 0; θ = 1 ϕ = 1; up = 1;
vp =−S; wp = 0; θp = 1 at y = 1 (28)

3. Result of the problem

When the amplitude of oscillation in the suction velocity
is small (ε � 1), we can take u, v, w, θ , up, vp, wp, θp and p
in the upcoming form to solve the equations (16)-(28).

u(y,z, t) = u0(y)+ εu1(y,z, t)+ · · ·
v(y,z, t) = v0(y)+ εv1(y,z, t)+ · · ·
w(y,z, t) = w0(y)+ εw1(y,z, t)+ · · ·
θ(y,z, t) = θ0(y)+ εθ1(y,z, t)+ · · ·
up(y,z, t) = up0(y)+ εup1(y,z, t)+ · · ·
vp(y,z, t) = vp0(y)+ εvp1(y,z, t)+ · · ·
wp(y,z, t) = wp0(y)+ εwp1(y,z, t)+ · · ·
θp(y,z, t) = θp0(y)+ εθp1(y,z, t)+ · · ·
p(y,z, t) = p0(y)+ ε p1(y,z, t)+ · · · (29)
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When ε = 0, the equations are attained as below:

v′0 = 0 (30)
u′′0−Rev0u′0 +ReGrθ0 +ReGmϕ0 +Mu0

+
f Re
Λ

(up0 −u0) = 0 (31)

p′0 =
f
Λ
(vp0 − v0) (32)

w′′0−Rev0w′0 +
f Re
Λ

(wp0 −w0)+Mw0 = 0 (33)

θ
′′
0 −RePrv0θ

′
0 +

2
3

f Re
Λ

(θp0 −θ0) = 0 (34)

ϕ
′′
0 −ReScv0ϕ

′
0−ReScSoϕ0 = 0 (35)

v′p0
= 0 (36)

v0u′p0
+

1
Λ
(up0 −u0) = 0 (37)

vp0 = v0 (38)

vp0w′p0
+

1
Λ
(wp0 −w0) = 0 (39)

vp0θ
′
p0
+

1
Λ
(θp0 −θ0) = 0 (40)

Subject to the boundary conditions

u0 = h1
∂u0

∂y
; v0 =−S; w0 = h1

∂w0

∂y
; θ0 = h2

∂θ0

∂y
;

ϕ0 = h3
∂C0

∂y
, ; up0 = h1

∂up0

∂y
; vp0 =−S;

wp0 = h1
∂wp0

∂y
; θp0 = h2

∂θp0

∂y
; at y = 0 (41)

u0 = 1; v0 =−S; w0 = 0; θ0 = 1; ϕ0 = 1;

up0 = 1; vp0 =−S; wp0 = 0; θp0 = 1; at y = 1 (42)

The solutions for the equations (30), (32), (36) and (38) are

v0 = vp0 =−S (43)
p′0 = 0 (44)

Substituting equations (43)-(44) in the remaining equations
and rearranging as done in Govindarajan et al. [5], we get

−ΛSu′′′0 +(1−ReΛS2)u′′0 +(ReS(1+ f )

+ΛMS)u′0−Mu0 =−ReGrθ0 +ΛReGrSθ
′
0

−ReGmϕ0 +ΛReGmSϕ
′
0 (45)

−ΛSw′′′0 +(1−ReΛS2)w′′0 +(ReS(1+ f )+ΛMS)w′0
−Mw0 = 0 (46)

−ΛSθ
′′′
0 +(1−RePrΛS2)θ ′′0 +

(
ReS
(
Pr+

2
3

f
)

+ΛSPrF
)
θ
′
0−PrFθ0 = 0 (47)

ϕ
′′
0 −ReScv0ϕ

′
0−ReScSoϕ0 = θ

′′
0 (48)

−ΛSu′p0
+up0 = u0 (49)

−ΛSw′p0
+wp0 = w0 (50)

ΛSθ
′
p0
+θp0 = θ0 (51)

The solution to the remaining equations are:

w0 = wp0 = 0 (52)

θ0 = A1eJ1y +A2eJ2y +A3eJ3y (53)

θp0 = A4eJ4y +
A1

(1−ΛJ1)
eJ1y

+
A2

(1−ΛJ2)
eJ2y+

A3

(1−ΛJ3)
eJ3y (54)

ϕ0 = A0eJ0y +A5 +A6eJ1y +A7eJ2y +A8eJ3y (55)

u0 = A9eJ5y +A10eJ6y +A11eJ7y +A12eJ1y +A13eJ2y

+A14eJ3y +A15eJ0y +A16 (56)

up0 = A17eJ4y +A18eJ5y +A19eJ6y +A20eJ7y +A21eJ1y

+A22eJ2y +A23eJ3y +A24eJ0y +A25 (57)

The unsteady state equations of first order are:

∂v1

∂y
+

∂w1

∂ z
= 0 (58)

λ
∂u1

∂ t
+Re

(
−S

∂u1

∂y
+ v1

∂u0

∂y

)
=

(
∂ 2u1

∂y2 +
∂ 2u1

∂ z2

)
+ReGrθ1 +ReGrϕ1−Mu1 +

f Re
Λ

(up1 −u1) (59)

λ
∂v1

∂ t
+Re

(
−S

∂v1

∂y

)
=

(
∂ 2v1

∂y2 +
∂ 2v1

∂ z2

)
−Re

∂ p1

∂y
+

f Re
Λ

(vp1 − v1) (60)

λ
∂w1

∂ t
+Re

(
−S

∂w1

∂y

)
=

(
∂ 2w1

∂y2 +
∂ 2w1

∂ z2

)
−Re

∂ p1

∂ z
−Mw1 +

f Re
Λ

(wp1 −w1) (61)

λPr
∂θ1

∂ t
+RePr

(
−S

∂θ1

∂y
+ v1

∂θ0

∂y

)
=(

∂ 2θ1

∂y2 +
∂ 2θ1

∂ z2

)
−PrFθ +

2
3

f Re
Λ

(θp1 −θ1) (62)

λSc
∂ϕ1

∂ t
+ReSc

(
−S

∂ϕ1

∂y
+ v1

∂ϕ0

∂y

)
=(

∂ 2ϕ1

∂y2 +
∂ 2ϕ1

∂ z2

)
+ReScSo

(
∂ 2θ1

∂y2 +
∂ 2θ1

∂ z2

)
(63)

∂vp1

∂y
+

∂wp1

∂ z
= 0 (64)

λ
∂up1

∂ t
+Re

(
−S

∂up1

∂y
+ vp1

∂up0

∂y

)
=

Re
Λ
(u1−up1)

(65)

λ
∂vp1

∂ t
+Re

(
−S

∂vp1

∂y

)
=

Re
Λ
(v1− vp1) (66)
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λ
∂wp1

∂ t
+Re

(
−S

∂wp1

∂y

)
=

Re
Λ
(w1−wp1) (67)

λ
∂θp1

∂ t
+Re

(
−S

∂θp1

∂y
+ vp1

∂θp0

∂y

)
=

Re
Λ
(θ1−θp1) (68)

The boundary conditions become

u1 = h1
∂u1

∂y
; v1 =−S(cos(πz− t)); w1 = h1

∂w1

∂y
;

θ1 = h2
∂θ1

∂y
; ϕ1 = h3

∂ϕ1

∂y
;

up1 = h1
∂up1

∂y
; vp1 =−S(cos(πz− t));

wp1 = h1
∂wp1

∂y
;θp1 = h2

∂θp1

∂y
; at y = 0 (69)

u1 = v1 = w1 = θ1 = ϕ1 = up1

= vp1 = wp1 = θp1 = 0 (70)

In order to solve these partial differential equations u1, v1,
w1, θ1, ϕ1, up1 , vp1 , wp1 , θp1 , and p1 are given to be of the
upcoming form:

u1(y,z, t) = u11(y)ei(πz−t)

v1(y,z, t) = v11(y)ei(πz−t)

w1(y,z, t) =
i
π

v′11(y)e
i(πz−t)

θ1(y,z, t) = θ11(y)ei(πz−t)

up1(y,z, t) = up11(y)e
i(πz−t)

vp1(y,z, t) = vp11(y)e
i(πz−t)

wp1(y,z, t) =
i
π

v′p11
(y)ei(πz−t)

θp1(y,z, t) = θp11(y)e
i(πz−t)

p1(y,z, t) = p11(y)ei(πz−t)

(71)

Now using (71) in equations (58)-(70) and rearranging as
before, we get

u′′11 +ReSu′11 +(−π
2 + iλ −M)u11 +

f Re
Λ

(up11 −u11)

=−ReGrθ11−ReGmϕ11 +Rev11u′0 (72)

v′′11 +ReSv′11 +(−π
2 + iλ )v11 +

f Re
Λ

(vp11 − v11) = Rep′11

(73)

v′′11 +ReSv′11 +(−π
2 + iλ −M)v′11 +

f Re
Λ

(v′p11
− v′11)

= π
2Rep′11 (74)

θ
′′
11 +RePrSθ

′
11 +(−π

2 + iλPr−PrF)θ ′11 +
2
3

f Re
Λ

(θ ′p11
−θ

′
11)

= RePrv11θ
′
0 (75)

ϕ
′′
11 +ReScSϕ

′
11 +(−π

2 + iλSc)ϕ11 = ReScv11ϕ
′
0

+ReScSo(θ ′′11−π
2
θ11) (76)

−Λu′p11
+

(
1− iλΛ

Re

)
up11 = u11−Λv11u′p0

(77)

−Λv′p11
+

(
1− iλΛ

Re

)
vp11 = v11 (78)

−Λv′′p11
+

(
1− iλΛ

Re

)
v′p11

= v′11 (79)

−Λθ
′
p11

+

(
1− iλΛ

Re

)
θp11 = θ11−Λvp11 θ

′
p0

(80)

u11 = h1
∂u11

∂y
; v11 =−S; w11 = h1

∂w11

∂y
; θ11 = h2

∂θ11

∂y
;

ϕ11 = h3
∂ϕ11

∂y
;up11 = h1

∂up11

∂y
; vp11 =−S;

;wp11 = h1
∂wp11

∂y
; θp11 = h2

∂θp11

∂y
; at y = 0 (81)

u11 = v11 = w11 = θ11 = up11 = vp11 = wp11

= θp11 = 0 at y = 1 (82)

The result of the equations (72)-(80) with respect to bound-
ary conditions (81)-(82) are

v11 = B1eJ8y +B2eJ9y +B3eJ10y +B4eJ11y +B5eJ12y

+B6eJ13y (83)

vp11 = B7eJ14y +B8eJ8y +B9eJ9y +B10eJ10y

+B11eJ11y +B12eJ12y +B13eJ13y (84)

w11 =
i
π
[B1J8eJ8y +B2J9eJ9y +B3J10eJ10y

+B4J11eJ11y +B5eJ12y +B6J13eJ13y] (85)

wp11 =
i
π
(B7J14eJ14y +B8J8eJ8y +B9J9eJ9y

+B10J10eJ10y +B11J11eJ11y +B12J12eJ12y

+B13J13eJ13y) (86)

θ11 =C1eJ15y +C2eJ16y +C3eJ17y +(C4eJ8y

+C5eJ9y +C6eJ10y +C7eJ11y +C8eJ12y +C9eJ13y

+C10eJ14y)eJ1y +(C11eJ8y +C12eJ9y +C13eJ10y

+C14eJ11y +C15eJ12y +C16eJ13y +C17eJ14y)eJ2y

+(C18eJ8y +C19eJ9y +C20eJ10y +C21eJ11y

+C22eJ12y +C23eJ13y +C24eJ14y)eJ3y +(C25eJ8y+

C26eJ9y +C27eJ10y +C28eJ11y +C29eJ12y

+C30eJ13y +C31eJ14y)eJ4y (87)
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θp11 =C32eJ14y +C33eJ15y +C34eJ16y +C35eJ17y

+(C36eJ8y +C37eJ9y +C38eJ10y +C39eJ11y +C40eJ12y

+C41eJ13y +C42eJ14y)eJ1y +(C43eJ8y +C44eJ9y

+C45eJ10y +C46eJ11y +C47eJ12y +C48eJ13y

+C49eJ14y)eJ12y +(C50eJ8y +C51eJ9y +C52eJ10y

+C53eJ11y +C54eJ12y +C55eJ13y +C56eJ14y)eJ13y

+(C57eJ8y +C58eJ9y +C59eJ10y +C60eJ11y

+C61eJ12y +C62eJ13y +C63eJ14y)eJ4y (88)

ϕp11 = E1eJ15y +E2eJ16y +E3eJ15y +E4eJ16y +E5eJ17y

+(E6eJ8y +E7eJ9y +E8eJ10y +E9eJ11y +E10eJ12y

+E11eJ13y +E12eJ14y)eJ1y +(E13eJ8y +E14eJ9y

+E15eJ10y +E16eJ11y +E17eJ12y +E18eJ13y

+E19eJ14y)eJ2y +(E20eJ8y +E21eJ9y +E22eJ10y

+E23eJ11y +E24eJ12y +E25eJ13y +E26eJ14y)eJ3y

+(E27eJ8y +E28eJ9y +E29eJ10y +E30eJ11y +E31eJ12y

+E32eJ13y +E33eJ14y)eJ4y +(E34eJ8y +E35eJ9y

+E36eJ10y +E37eJ11y +E38eJ12y +E39eJ13y)eJ0y (89)

u11 = D1eJ18y +D2eJ19y +D3eJ20y +D4eJ15y

+D5eJ16y +D6eJ17y +(D7eJ8y +D8eJ9y

+D9eJ10y +D10eJ11y +D11eJ12y +D12eJ13y

+D13eJ14y)eJ1y +(D14eJ8y +D15eJ9y +D16eJ10y

+D17eJ11y +D18eJ12y +D19eJ13y +D20eJ14y)eJ2y

+(D21eJ8y +D22eJ9y +D23eJ10y +D24eJ11y +D25eJ12y

+D26eJ13y +D27eJ14y)eJ3y +(D28eJ8y +D29eJ9y

+D30eJ10y +D31eJ11y +D32eJ12y +D33eJ13y

+D34eJ14y)eJ4y +(D35eJ8y +D36eJ9y

+D37eJ10y +D38eJ11y +D39eJ12y +D40eJ13y

+D41eJ14y)eJ5y +(D42eJ8y +D43eJ9y +D44eJ10y

+D45eJ11y +D46eJ12y +D47eJ13y +D48eJ14y)eJ6y

+(D49eJ8y +D50eJ9y +D51eJ10y

+D52eJ11y +D53eJ12y +D54eJ13y +D55eJ14y)eJ7y

+(H1eJ8y +H2eJ9y +H3eJ10y +H4eJ11y

+H5eJ12y +H6eJ13y +H7eJ14y)eJ0y

+H8eJ21y +H9eJ22y (90)

up11 = D56eJ14y +D57eJ18y +D58eJ19y +D59eJ20y

+D60eJ15y +D61eJ16y +D62eJ17y +(D63eJ8y

+D64eJ9y +D65eJ10y +D66eJ11y +D67eJ12y+

D68eJ13y +D69eJ14y)eJ1y +(D70eJ8y +D71eJ9y

+D72eJ10y +D73eJ11y +D74eJ12y +D75eJ13y

+D76eJ14y)eJ2y +(D77eJ8y +D78eJ9y +D79eJ10y+

D80eJ11y +D81eJ12y +D82eJ13y +D83eJ14y)eJ3y

+(D84eJ8y +D85eJ9y+

D86eJ10y +D87eJ11y

+D88eJ12y +D89eJ13y +D90eJ14y)eJ4y +(D91eJ8y+

D92eJ9y +D93eJ10y +D94eJ11y +D95eJ12y

+D96eJ13y +D97eJ14y)eJ5y +(D98eJ8y +D99eJ9y

+D100eJ10y +D101eJ11y +D102eJ12y +D103eJ13y+

D104eJ14y)eJ6y +(D105eJ8y +D106eJ9y +D107eJ10y

+D108eJ11y +D109eJ12y +D110eJ13y +D111eJ14y)eJ7y

+(H10eJ8y +H11eJ9y +H12eJ10y +H13eJ11y

+H14eJ12y +H15eJ13y +H16eJ14y)eJ0y +H17eJ21y

+H18eJ22y (91)

SKIN FRICTION
Due to the given primary flow, the skin friction at the wall

is represented by:

τx =

(
du
dy

)
y=0

=

(
du0

dy

)
y=0

+ ε

(
du11

dy

)
y=0

ei(φz−t)+O(ε2)

= τu0 + εRex cos(φz− t +φx) (92)

Due to the given cross flow, the skin friction at the wall is
represented by:

τz =

(
dw
dy

)
y=0

=

(
dw0

dy

)
y=0

+ ε

(
dw11

dy

)
y=0

ei(φz−t)

+O(ε2)

= εRez cos(φz− t +φz) (93)

NUSSELT NUMBER
The rate of heat transfer is estimated by the formula

qw =−
(

∂T
∂y

)
y=0

and can be written in non-dimensional form

as Nusselt number:

Nu =−
(

dθ

dy

)
y=0

=−
(

dθ0

dy

)
y=0

− ε

(
dθ11

dy

)
y=0

ei(φz−t)+O(ε2)

=−θ
′
0(0)+ εReT cos(φz− t +φT ) (94)

SHERWOOD NUMBER
The rate of mass transfer is estimated by the formula

mw =−
(

∂C
∂y

)
y=0

and can be written in non-dimensional form

as Sherwood number:

Sh =−
(

dϕ

dy

)
y=0

=−
(

dϕ0

dy

)
y=0
− ε

(
dϕ11

dy

)
y=0

ei(φz−t)

+O(ε2)

=−ϕ
′
0(0)+ εRem cos(φz− t +φm) (95)
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For the sake of brevity, the constants are given in Appendix.

4. Numerical Results
The velocity, temperature and concentration profiles are given
in Fig.2 to Fig.11 to report the effect of different non-dimensional
parameters on the profiles. Then, skin friction, Nusselt num-
ber and Sherwood number are tabulated (Table 1-4) for various
values of non-dimensional parameters such as Grashof num-
ber for mass transfer (Gm), Schmidt number (Sc) and Soret
number (So).

Increasing the Schmidt number (Sc) and Soret number
(So) results in an increase in the particle concentration in the
fluid (Fig.2-3). Increasing the Soret number results in an
increase in the main flow velocity for both fluid and particle
phase but it has no effect on the cross flow velocity (Fig 10-
11). Alternately, increasing the Schmidt number (Sc) results
in a decrease in the main flow velocity with no effect on the
cross flow velocity (Fig.8).

Increase in the Reynolds number (Re) results in a rise in
the amplitude of oscillations in the particle concentration (Fig
4). The particle concentration increases a little for increasing
Prandtl number, but becomes constant at higher values (Fig.5).
Higher values of slip mass parameter imply a larger particle
concentration as can be seen in Fig.6. Increasing the Grashof
number for mass transfer results in a decrease in the main flow
velocity similarly as earlier observed for Grashof number for
heat transfer (Fig.9). The particle concentration are found to
decrease with increasing heat source parameter accompanied
by a sharp change of profile as can be seen in Fig.7.

The amplitude of the shear stress and the tangent of phase
shift due to main flow decreases with the increasing Schmidt
number (Sc) while the amplitude of the shear stress increases
with increasing Soret number (So) (Table 1). Increasing the
magnitude of Grashof number for mass transfer results in an
increase in magnitudes of the shear stress and the tangent of
phase shift (Table 2).

Increasing the Soret number (So) results in an increase in
the amplitude of Sherwood number and the tangent of phase
shift (Table 3). There is no clear trend for the Sherwood num-
ber with increase in Schmidt number (Sc). The Sherwood
number is found to increase with increasing mass slip param-
eter at lower Reynolds number and decrease with increasing
mass slip parameter at higher Reynolds number (Table 4).Fur-
ther, the tangent of phase shift of Sherwood number is found
to generally increase with increasing mass slip parameter.

5. Conclusion

We extended the result of Guria [6] to study the effect of

mass transfer and with slip condition on the three dimensional

unsteady hydromagnetic couette flow of viscous incompress-

ible fluid between two horizontal porous flat plates. The

Figure 2. Particle concentration ϕ vs y for λ = 5, Re = 2,
Gr = .5, Gm =−.5, Pr = 0.71, So = 1.5, S = 1, F = 1,
M = 1, h1 = 0.5, h2 = 0.5, h3 = 0.5, f = 0.2, Λ = 0.2, z = 0.0,
t = 0.0, ε = 0.05

Figure 3. Particle concentration ϕ vs y for λ = 5, Re = 2,
Gr = .5, Gm =−.5, Pr = 0.71, Sc = .84, F = 1, M = 1,
h1 = 0.5, h2 = 0.5, h3 = 0.5, f = 0.2, Λ = 0.2, z = 0.0,
t = 0.0, ε = 0.05

Table 1. Shear stress due to main flow at y = 0

for λ = 5, Gr = .5, Gm =−.5, Re = 2,

Pr = 0.71, S = 1, M = 1, F = 1, h1 = 0.5,

h2 = 0.5, h3 = 0.5, f = 0.2, Λ = 0.2, z = 0.0,

t = 0.0, ε = 0.05

Sc Rex tanφx

So = 0.5 So = 1 So = 1.5 So = 0.5 So = 1

0.5 13.4225 18.1286 22.8347 -0.4003 -0.4007

1 4.7319 7.4123 10.0927 -0.0201 -0.0178

1.5 3.0550 5.3350 7.6153 1.2386 1.2646

conclusions of the study are:
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Figure 4. Particle concentration ϕ vs y for λ = 5, Gr = .5,
Gm =−.5, Pr = 0.71, Sc = .84, So = 0.5, S = 1, F = 1,
M = 1, h1 = 0.5, h2 = 0.5, h3 = 0.5, f = 0.2, Λ = 0.2, z = 0.0,
t = 0.0, ε = 0.05

Figure 5. Particle concentration ϕ vs y for λ = 5, Gr = .5,
Gm =−.5, Re = 2, Sc = .84, So = 0.5, F = 1, M = 1,
h1 = 0.5, h2 = 0.5, h3 = 0.5, f = 0.2, Λ = 0.2, z = 0.0,
t = 0.0, ε = 0.05

Table 2. Shear stress due to main flow at y = 0

for λ = 5, Gr = .5, Re = 2, Pr = 0.71,

Sc = 0.84, So = 1.5, S = 1, M = 1, F = 1,

h1 = 0.5, h2 = 0.5, h3 = 0.5, f = 0.2, Λ = 0.2,

z = 0.0, t = 0.0, ε = 0.05

Gm Rex tanφx

-0.5 11.9139 -0.2193

0 0.0911 -0.1535

0.5 11.7321 -0.2203

â Increasing the Schmidt number (Sc) and Soret number

(So) increases the particle concentration in the fluid.

Figure 6. Particle concentration ϕ vs y for λ = 5, Gr = .5,
Gm =−.5, Re = 2, Pr = 0.71, Sc = .84, So = 0.5, S = 1,
F = 1, M = 1, h1 = 0.5, h2 = 0.5, f = 0.2, Λ = 0.2, z = 0.0,
t = 0.0, ε = 0.05

Figure 7. Particle concentration ϕ vs y for λ = 5, Gr = .5,
Gm =−.5, Re = 2, Pr = 0.71, Sc = .84, So = 0.5, S = 1,
M = 1, h1 = 0.5, h2 = 0.5, h3 = 0.5, f = 0.2, Λ = 0.2, z = 0.0,
t = 0.0, ε = 0.05

Table 3. Sherwood number at y = 0 for λ = 5,

Gr = .5, Gm =−.5, Re = 2, Pr = 0.71, S = 1,

M = 1, F = 1, h1 = 0.5, h2 = 0.5, h3 = 0.5,

f = 0.2, Λ = 0.2, z = 0.0, t = 0.0, ε = 0.05

Sc ReC tanφC

So = 0.5 So = 1 So = 1.5 So = 0.5 So = 1

0.5 0.3744 0.7614 1.1542 -68.7623 -5.8637

1 1.8319 3.7211 5.6106 0.6583 0.6389

1.5 0.7411 1.4992 2.2608 -0.7731 -0.6479

â Increasing the Soret number increases the main flow

velocity for both fluid and particle phase with no effect

on cross-flow velocity.
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Figure 8. Main flow velocity u vs y for λ = 5, Gr = .5,
Gm =−.5, Re = 2, Pr = 0.71, So = 0.5, S = 1, M = 1, F = 1,
h1 = 0.5, h2 = 0.5, h3 = 0.5, f = 0.2, Λ = 0.2, z = 0.0,
t = 0.0, ε = 0.05

Figure 9. Main flow velocity u vs y for λ = 5, Gr = .5,
Gm =−.5, Re = 2, Pr = 0.71, So = 0.5, Sc = 0.84, S = 1,
M = 1, F = 1, h1 = 0.5, h2 = 0.5, h3 = 0.5, f = 0.2, Λ = 0.2,
z = 0.0, t = 0.0, ε = 0.05

Table 4. Sherwood number at y = 0 for λ = 5,

Gr = .5, Gm =−.5, Re = 2, Pr = 0.71,

Sc = 0.84, So = 1.5, S = 1, M = 1, F = 1,

h1 = 0.5, h2 = 0.5, h3 = 0.5, f = 0.2, Λ = 0.2,

z = 0.0, t = 0.0, ε = 0.05

Sc ReC tanφC

2 4.0758 5.2474 5.5394 3.1085 3.2574

3 6.7222 8.1581 8.5494 213.9872 -5.8403

4 5.9079 5.6431 5.6012 -10.9986 -2.3699

5 14.7582 13.5380 13.3314 -1.8125 -0.9572

â Increase in the Reynolds number (Re) results in a rise

in the amplitude of oscillations in the particle concen-

Figure 10. Main flow velocity u vs y for λ = 5, Gr = .5,
Gm =−.5, Re = 2, Pr = 0.71, Sc = 0.84, S = 1, M = 1,
F = 1, h1 = 0.5, h2 = 0.5, h3 = 0.5, f = 0.2, Λ = 0.2, z = 0.0,
t = 0.0, ε = 0.05

Figure 11. Main flow velocity up vs y for λ = 5, Gr = .5,
Gm =−.5, Re = 2, Pr = 0.71, Sc = 0.84, M = 1, F = 1,
h1 = 0.5, h2 = 0.5, h3 = 0.5, f = 0.2, Λ = 0.2, z = 0.0,
t = 0.0, ε = 0.05

tration.

â Higher values of slip mass parameter imply a larger

particle concentration.

â Increasing Schmidt number (Sc) decreases the ampli-

tude of the shear stress and the tangent of phase shift.

â Increasing the Soret number (So) results in an increase

in the amplitude of Sherwood number and the tangent

of phase shift.

â Sherwood number increases with increasing mass slip

parameter at lower Reynolds number and decreases

with increasing mass slip parameter at higher Reynolds

number.
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