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Abstract
In this paper, we study the stability of a generalized quadratic functional equation in sense of Ulam, Hyers and
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1. Introduction and Preliminaries
In 1940 Ulam [50] proposed the general Ulam stability prob-
lem: When is it true that by slightly changing the hypotheses
of a theorem one can still assert that the thesis of the theo-
rem remains true or approximately true? In 1941, Hyers [23]
gave the first affirmative answer to the question of Ulam for
additive functional equations on Banach spaces. Hyers result
has since then seen many significant generalizations, both in

terms of the control condition used to define the concept of
approximate solution were established in [3, 22, 38, 41, 43].

The general solution and generalized Ulam-Hyers stability
of the following quadratic functional equations

q(x+ y)+q(x− y) = 2q(x)+2q(y) (1.1)
f (x+ y+ z)+ f (x)+ f (y)+ f (z)

= f (x+ y)+ f (y+ z)+ f (x+ z), (1.2)
f (x− y− z)+ f (x)+ f (y)+ f (z)

= f (x− y)+ f (y+ z)+ f (z− x), (1.3)
f (x+ y+ z)+ f (x− y)+ f (y− z)+ f (z− x)

= 3 f (x)+3 f (y)+3 f (z), (1.4)

were investigated in [1, 7, 28, 29, 32]. Moreover, the stability
of several other quadratic functional equations in the sense of
Hyers, Ulam, Rassias were discussed in [13–15, 17, 18, 30,
42, 49].

In this paper, the authors introduce and establish the gen-
eralized Ulam-Hyers stability of a generalized quadratic func-
tional equation

q(v+ηw)−2q(v+(η−1)w)+q(v+(η−2)w)= 2! q(w)

(1.5)

where η ≥ 1 in Banach spaces, Quasi-β -2-Banach spaces
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and intuitionistic fuzzy-2-Banach spaces via two alternate
methods.

Here, we provide the solution of the functional equation
(1.5).

Theorem 1.1. Assume A and B are real vector spaces. Sup-
pose q : A→ B is a function satisfying functional equation
(1.5). Then the following assertions hold.

(i) q(0) = 0;

(ii) q(−w) = q(w), that is q is even;

(iii) q(2w) = 4q(w).

Proof. Given q : A→ B is a function satisfying equation (1.5).
The proof of (i) follows by replacing (v,w) by (0,0) in (1.5).
Changing (v,w) by (−ηw,w) in (1.5), we have

q(−2w) = 2 q(w)+2q(−w) , ∀ w ∈ A. (1.6)

Replacing w by −w in (1.6), we arrive

q(2w) = 2 q(−w)+2q(w) , ∀ w ∈ A. (1.7)

The proof of (ii) follows by comparing (1.6) and (1.7) with
replacing w by w/2. The proof of (iii) follows by using (ii) in
(1.6).

Theorem 1.2. Let A and B be real vector spaces. Suppose
q : A→ B is a function satisfying the functional equation
(1.1) for all x,y ∈ A. Then q : A→ B is a function satisfying
equation (1.5), for all v,w ∈ A.

Proof. Given q : A→ B which is a function satisfying func-
tional equation (1.1). Replacing (x,y) by (0,0) in (1.1), we
get q(0) = 0. Changing (x,y) by (−0,w) in (1.1), we have
q(−w) = q(w) for all w ∈ A. In addition, switching (x,y)
by (w,w) and (2w,w) in (1.1), we arrive q(2w) = 4q(w) and
q(3w) = 9q(w) for all w ∈ A. In general, for any positive inte-
ger a, we have q(aw) = a2q(w) for all w ∈ A. Interchanging
(x,y) by (w,v+(η−1)w) in (1.1), we get

q(w+(v+(η−1)w))+q(w− (v+(η−1)w))
= 2q(w)+2q(v+(η−1)w) , (1.8)

for all v,w ∈ A. Using evenness of q, the above equation can
be rewritten as

q(v+ηw)+q(v+(η−2)w)= 2q(w)+2q(v+(η−1)w) ,
(1.9)

for all v,w ∈ A. Rearrange the above equation we arrive our
desired result.

2. Stability Results In Banach Space
In this section, the generalized Ulam-Hyers stability of e

functional equation (1.5) is discussed in Banach space using
direct and fixed point methods.

2.1 Direct Method
Theorem 2.1. Let δ ∈ {−1,1}. Assume A is a normed space
and B is a Banach space. Suppose ϖ : A2→ [0,∞) and q : A→
B are functions satisfying the condition and the inequality

lim
α→∞

ϖ
(
2αδ v,2αδ w

)
4αδ

= 0 (2.1)

and ∥∥∥q(v+ηw)−2q(v+(η−1)w)+q(v+(η−2)w)

−2! q(w)
∥∥∥≤ ϖ (v,w) (2.2)

for all v,w ∈ A. Then there exists a unique quadratic mapping
Q : A→ B satisfying the functional equation (1.5) and the
inequality

‖q(w)−Q(w)‖ ≤ 1
4

∞

∑
i= 1−δ

2

ϖ(−η ·2iδ w,2iδ w)
4iδ (2.3)

for all w ∈ A.

Proof. First, we give proof for δ = 1. Interchanging (v,w) by
(−ηw,w) in (2.2) and using evenness of q, one can find that

‖q(2w)−4 q(w)‖ ≤ ϖ (−ηw,w) (2.4)∥∥∥∥q(2w)
4
−q(w)

∥∥∥∥≤ ϖ (−ηw,w)
4

(2.5)

for all w ∈ A. Again, changing w by 2w and dividing by 4 in
(2.5), one can observe that∥∥∥∥q(22w)

42 − q(2w)
4

∥∥∥∥≤ ϖ (−η ·2w,2w)
42 (2.6)

for all w ∈ A. Combining (2.5) and (2.6), one can arrive∥∥∥∥q(22w)
42 −q(w)

∥∥∥∥≤ 1
4

[
ϖ (−ηw,w)+

ϖ (−η ·2w,2w)
4

]
(2.7)

for all w ∈ A. In general for any positive integer α , one can
verify that∥∥∥∥q(2α w)

4α
−q(w)

∥∥∥∥≤ 1
4

α−1

∑
i=0

ϖ
(
−η ·2iw,2iw

)
4i (2.8)

for all w∈ A. Replacing w by 2β w and dividing by 4β in (2.8),
for any β ,α > 0 and letting β tends to infinity we obtain

the sequence
{

q(2α w)
4α

}
is a Cauchy sequence. Since B is

complete, there exists a mapping Q : A→ B such that

Q(w) = lim
α→∞

q(2nw)
4α

, ∀ w ∈ A.

Letting α → ∞ in (2.8), we see that (2.3) holds for all w ∈ A
for δ = 1. If we changing (v,w) by (2α v,2α w) and dividing
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by 4α in (2.2), letting α→∞ and using the definition of Q(w)
one can see that Q satisfies (1.5) for all v,w ∈ A. In order
to show Q is unique, let R be another quadratic mapping
satisfying (1.5) and (2.3). Thus,

‖Q(w)−R(w)‖

=
1

4β

∥∥∥Q(2β w)−R(2β w)
∥∥∥

≤ 1
4β

{∥∥∥Q(2β w)−q(2β w)
∥∥∥+∥∥∥q(2β w)−R(2β w)

∥∥∥}
≤

∞

∑
i=0

2ϖ
(
−η ·2i+β w,2i+β w

)
4i+β

→ 0 as β → ∞

for all w ∈ A. Hence, Q is unique. Thus the theorem holds
for δ = 1. Now, we give proof for δ =−1. Replacing w by
w/2 in (2.4), we get∥∥∥q(w)−4 q

(w
2

)∥∥∥≤ ϖ

(
−η

w
2
,

w
2

)
(2.9)

for all w ∈ A. Again replacing w by w/2 and multiply by 4 in
(2.9), we obtain∥∥∥4 q

(w
2

)
−42 q

( w
22

)∥∥∥≤ 4ϖ

(
−η

w
22 ,

w
22

)
(2.10)

for all w ∈ A. Combining (2.9) and (2.10) one can arrive∥∥∥q(w)−42 f
( w

22

)∥∥∥
≤ ϖ

(
−η

w
2
,

w
2

)
+4 ϖ

(
−η

w
22 ,

w
22

)
(2.11)

for all w ∈ A. In general for any positive integer α one can
find that∥∥∥q(w)−4α f

( x
2α

)∥∥∥≤ n

∑
i=1

4i−1
ϖ

(
−η

w
2i ,

w
2i

)
=

1
4

n

∑
i=1

4i
ϖ

(
−η

w
2i ,

w
2i

)
(2.12)

for all w ∈ A. This completes the proof of the theorem.

The following corollary is an immediate consequence of
Theorem 2.1 concerning the some stabilities for the functional
equation (1.5).

Corollary 2.2. Let m and d be nonnegative real numbers. Let
a function q : A→ B satisfies the inequality∥∥∥q(v+ηw)−2q(v+(η−1)w)+q(v+(η−2)w)

−2! q(w)
∥∥∥≤


m,
m
(
||v||d + ||w||d

)
,

m
(
||v||d1 + ||w||d2

)
,

m ||v||d ||w||d ,
m ||v||d1 ||w||d2 ,

(2.13)

for all v,w ∈ A. Then there exists a unique quadratic function
Q : A→ B satisfying the functional equation (1.5) and

‖q(w)−Q(w)‖≤



m
|3|

,

m (ηd +1) ||w||d

|2d−4|
, d 6= 2;

m ηd1 ||w||d1

|2d1 −4|
+

m ||w||d2

|2d2 −4|
, d1,d2 6= 2;

m ηd ||w||2d

|22d−4|
, 2d 6= 1;

m ηd1 ||w||d1+d2

|2d1+d2 −4|
, d1 +d2 6= 2;

(2.14)

for all w ∈ A.

2.2 Fixed Point Method
We firstly recall the fundamental results in fixed point the-

ory.

Theorem 2.3. [39] (The alternative of fixed point) Suppose
that for a complete generalized metric space (X ,d) and a
strictly contractive mapping T : X → X with Lipschitz con-
stant L. Then, for each given element x ∈ X , either
(F1) d(T nx,T n+1x) = ∞ ∀ n≥ 0,
or
(F2) there exists a natural number n0 such that:
(FPC1) d(T nx,T n+1x)< ∞ for all n≥ n0 ;
(FPC2)The sequence (T nx) is convergent to a fixed point y∗

of T
(FPC3) y∗ is the unique fixed point of T in the set Y = {y ∈
X : d(T n0x,y)< ∞};
(FPC4) d(y∗,y)≤ 1

1−L d(y,Ty) for all y ∈ Y.

For some applications of Theorem 2.3 in the stability of
various functional equations in miscellaneous spaces, we refer
to [8], [10] and [19].

Theorem 2.4. Let A be a normed space and B be a Banach
space. Suppose that q : A→ B and ϖ : A2→ [0,∞) are func-
tions satisfying the inequality (2.2) and the condition

lim
α→∞

1
θ 2α

j
ϖ
(
θ

α
j v,θ α

j w
)
= 0 (2.15)

for all v,w ∈ A, where

θ j =

{
2 j = 0;
1
2 j = 1.

(2.16)

If there exists L = L( j) such that the function

W (w,w) = ϖ

(
−ηw

2
,

w
2

)
,

has the property

1
θ 2

j
W (θ jw,θ jw) = L W (w,w), (2.17)
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then there exists a unique quadratic mapping Q : A → B
satisfying functional equation (1.5) and

‖q(w)−Q(w)‖ ≤
(

L1− j

1−L

)
W (w,w) (2.18)

for all w ∈ A.

Proof. Define a set X = {r/r : A→ B, r(0) = 0} and intro-
duce the generalized metric on the X by, d(r,s) = inf{K ∈
(0,∞) : ‖r(w)− s(w)‖ ≤ K W (w,w),w ∈ A}. It is easy to
see that (X ,d) is complete. Furthermore, define a function
T : X →X by Tr(w) = 1

θ 2
j
r(θ jw), for all w ∈ A. This im-

plies d(Tr,T s)≤ Ld(r,s), for all r,s ∈X . i.e., T is a strictly
contractive mapping on X with Lipschitz constant L (see
[39]). Using (2.17), it follows from (2.5) for the case j = 0
that ∥∥∥∥q(2w)

4
−q(w)

∥∥∥∥≤ ϖ (−ηw,w)
4

⇒
∥∥∥∥q(2w)

4
−q(w)

∥∥∥∥≤ W (w,w)
4

⇒ d(T q,q)≤ L < ∞. (2.19)

for all w ∈ A. Helping (2.17), it follows from (2.9) for the
case j = 1 it reduces to∥∥∥q(w)−4 q

(w
2

)∥∥∥≤ ϖ

(
−ηw

2
,

w
2

)
⇒
∥∥∥q(w)−4q

(w
2

)∥∥∥≤ W (w,w)

⇒ d(q,T q)≤ 1 < ∞. (2.20)

for all w ∈ A. Combining the above two cases, we arrive

d(q,T q)≤ L1− j.

Therefore (FPC1) of Theorem 2.3 holds. By (FPC2) of Theo-
rem 2.3, it follows that there exists a fixed point Q of T in X
such that

Q(w) = lim
α→∞

q(θ α
j w)

θ 2α
j

, ∀ w ∈ A. (2.21)

To order to prove Q : A→ B is quadratic the proof is similar
ideas to that of Theorem 2.1. Again by (FPC3) of Theo-
rem 2.3, Q is the unique fixed point of T in the set Y =
{A ∈X : d(q,Q) < ∞},Q is the unique function such that
‖q(w)−Q(w)‖≤K W (w,w) for all w∈A and K > 0. Finally
by (FPC4) of Theorem 2.3, we obtain d(q,Q)≤ 1

1−L d(q,T q)

this implies d(q,Q) ≤ L1− j

1−L which yields our desired result.

The next corollary is a consequence of Theorem 2.4 con-
cerning the stability of (1.5).

Corollary 2.5. Let q : A→ B be a mapping and there exists
real numbers m and d such that∥∥∥q(v+ηw)−2q(v+(η−1)w)+q(v+(η−2)w)

−2! q(w)
∥∥∥≤


m,
m
(
||v||d + ||w||d

)
,

m ||v||d ||w||d ,
(2.22)

for all v,w ∈ A. Then there exists a unique quadratic function
Q : A→ B satisfying the functional equation (1.5) and

‖q(w)−Q(w)‖ ≤



m
|3|

,

m (ηd +1) ||w||d

|2d−4|
, d 6= 2;

m ηd ||w||2d

|22d−4|
, 2d 6= 1;

(2.23)

for all w ∈ A.

Proof. Take

ϖ(v,w) =


m,
m
(
||v||d + ||w||d

)
,

m ||v||d ||w||d ,
(2.24)

for all v,w ∈ A in Theorem 2.4 for three cases. Replacing
(v,w) by (θ α

j v,θ α
j w) and dividing by θ 2α

j in (2.24) one can
see that (2.15) holds. Now, by definition of W (w,w) and its
property, we have

W (w,w) = ϖ

(
−ηw

2
,

w
2

)
=


m
m (ηd +1)

2d ||w||d ,
m ηd

22d ||w||
2d ,

and

1
θ 2

j
W (θ jw,θ jw) =



m
θ 2

j
m(ηd +1)

2dθ 2
j
||θ j w||d ,

mηd

22dθ 2
j
||θ j w||2d ,

=


θ
−2
j W (w,w),

θ
d−2
j W (w,w),

θ
2d−2
j W (w,w),

for all w ∈ A. Hence, the property (2.17) and the inequality
(2.18) holds for the following cases.

L = θ
−2
j = 2−2 f or j = 0
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‖q(w)−Q(w)‖ ≤
(

L1− j

1−L

)
W (w,w)

=

(
2−2

1−2−2

)
m =

m
3

L = θ
−2
j =

1
2−2 = 22 f or j = 1

‖q(w)−Q(w)‖ ≤
(

L1− j

1−L

)
W (w,w)

=

(
1

1−22

)
m =

m
−3

L = θ
d−2
j = 2d−2 f or j = 0

‖q(w)−Q(w)‖ ≤
(

L1− j

1−L

)
W (w,w)

=

(
2d−2

1−2d−2

)
m (ηd +1)

2d ||w||d

=
m (ηd +1)

4−2d ||w||d

L = θ
d−2
j =

1
2d−2 = 22−d f or j = 1

‖q(w)−Q(w)‖ ≤
(

L1− j

1−L

)
W (w,w)

=

(
1

1−22−d

)
m (ηd +1)

2d ||w||d

=
m (ηd +1)

2d−4
||w||d

L = θ
2d−2
j = 22d−2 f or j = 0

‖q(w)−Q(w)‖ ≤
(

L1− j

1−L

)
W (w,w)

=

(
22d−2

1−22d−2

)
m ηd

22d ||w||
2d

=
m ηd

4−22d ||w||
2d

L = θ
2d−2
j =

1
22d−2 = 22−2d f or j = 1

‖q(w)−Q(w)‖ ≤
(

L1− j

1−L

)
W (w,w)

=

(
1

1−22−2d

)
m ηd

22d ||w||
2d

=
m ηd

22d−4
||w||2d

Therefore, the proof is complete.

3. Stability Results In Quasi-β -2-Banach
Space

In this section, the generalized Ulam-Hyers stability of
functional equation (1.5) is established in quasi-β -2-Banach
space using direct and fixed point methods. Here, we give
basic definitions and notations in quasi-β -2-Banach space
[20, 21, 51, 52]; see also [35–37].

Definition 3.1. Let X be a linear space of dimension greater
than or equal to 2. Suppose ||(•,•)|| is a real-valued function
on X×X satisfying the following conditions:

(QB2N1) ||(x,y)|| = 0 if and only if x,y are linearly dependent
vectors,

(QB2N2) ||(x,y)||= ||(y,x)|| for all x,y ∈ X,

(QB2N3) ||(λx,y)||= |λ |β ||(x,y)|| for all λ ∈ R and for all x,y∈
X where β is a a real number with 0 < β ≤ 1

(QB2N4) If exists a constant K ≥ 1 such that ||(x + y,z)|| ≤
K(||(x,z)||+ ||(y,z)||) for all x,y,z ∈ X.

The pair (X , ||(•,•)||) is called quasi-β -normed space if
||(•,•)|| is a quasi-β -2-norm on X. The smallest possible K
is called the modulus of concavity of ‖ · ‖.

Definition 3.2. A quasi-β -2-Banach space is a complete
quasi-β -normed space.

3.1 Direct Method
Theorem 3.3. Let δ ∈ {−1,1}. Let A be a quasi-β -2-normed
space and B be a quasi-β -2-Banach space. Suppose ϖ : A2→
[0,∞) and q : A→ B are functions satisfying the condition and
the inequality

lim
α→∞

ϖ
(
2αδ v,2αδ w

)
4αδ

= 0 (3.1)

and ∥∥∥q(v+ηw)−2q(v+(η−1)w)+q(v+(η−2)w)

−2! q(w) ,z
∥∥∥≤ ϖ (v,w) (3.2)

for all v,w ∈ A and all z ∈ B. Then there exists a unique
quadratic mapping Q : A→ B satisfying functional equation
(1.5) and the inequality

‖(q(w)−Q(w)),z‖≤ Kα−1

4β

∞

∑
i= 1−δ

2

ϖ(−η ·2iδ w,2iδ w)
4iδ (3.3)

for all w ∈ A and all z ∈ B.

Proof. First, we give proof for δ = 1. Interchanging (v,w) by
(−ηw,w) in (3.2), using evenness of q and (QB2N3), one can
find that

‖(q(2w)−4 q(w)),z‖ ≤ ϖ (−ηw,w) (3.4)∥∥∥∥(q(2w)
4
−q(w)

)
,z
∥∥∥∥≤ ϖ (−ηw,w)

4β
(3.5)
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for all w ∈ A and all z ∈ B. Again, changing w by 2w and
dividing by 4 in (3.5), one can observe that∥∥∥∥(q(22w)

42 − q(2w)
4

)
,z
∥∥∥∥≤ ϖ (−η ·2w,2w)

4β ·4
(3.6)

for all w ∈ A and all z ∈ B. Combining (3.5) and (3.6), one
can arrive∥∥∥∥(q(22w)

42 −q(w)
)
,z
∥∥∥∥

≤ K
4β

[
ϖ (−ηw,w)+

ϖ (−η ·2w,2w)
4

]
(3.7)

for all w ∈ A and all z ∈ B. In general for any positive integer
α , one can verify that∥∥∥∥(q(2α w)

4α
−q(w)

)
,z
∥∥∥∥≤ Kα−1

4β

α−1

∑
i=0

ϖ
(
−η ·2iw,2iw

)
4i

(3.8)

for all w ∈ A and all z ∈ B. The rest of the proof is similar
lines to that of Theorem 2.1. This finishes the proof.

Now, we have the upcoming corollary of Theorem 3.3
concerning the stability for functional equation (1.5).

Corollary 3.4. Let λ and d be nonnegative real numbers. Let
a function q : A→ B satisfies the inequality∥∥∥q(v+ηw)−2q(v+(η−1)w)+q(v+(η−2)w)

−2! q(w) ,z
∥∥∥≤


m,
m
(
||v||d + ||w||d

)
,

m
(
||v||d1 + ||w||d2

)
,

m ||v||d ||w||d ,
m ||v||d1 ||w||d2 ,

(3.9)

for all v,w ∈ A and all z ∈ B. Then there exists a unique
quadratic function Q : A→ B satisfying the functional equa-
tion (1.5) and

‖q(w)−Q(w)‖

≤



4 m Kα−1

4β |3|
,

Kα−1 m (ηβd +1) ||w||d

4β |2βd−4|
,d 6= 2;

Kα−1 m ηβd1 ||w||d1

4β |2βd1 −4|
+

Kα−1 m ||w||d2

4β |2βd2 −4|
,d1,d2 6= 2;

Kα−1 m ηβd ||w||2d

4β |2β2d−4|
,2d 6= 1;

Kα−1 m ηβd1 ||w||d1+d2

4β |2β (d1+d2)−4|
,d1 +d2 6= 2;

(3.10)

for all w ∈ A and all z ∈ B.

Theorem 3.5. Let A be a quasi-β -2-normed space and B
be a quasi-β -2-Banach space. Suppose that q : A→ B and
ϖ : A2→ [0,∞) are functions satisfying the inequality (3.2)
and the condition

lim
α→∞

1
θ 2α

j
ϖ
(
θ

α
j v,θ α

j w
)
= 0 (3.11)

for all v,w ∈ A, where

θ j =

{
2 j = 0;
1
2 j = 1.

(3.12)

If there exists L = L( j) such that the function

W (w,w) = ϖ

(
−ηw

2
,

w
2

)
,

has the property

1
θ 2

j
W (θ jw,θ jw) = L W (w,w). (3.13)

Then there exists a unique quadratic mapping Q : A→ B
satisfying functional equation (1.5) and

‖(q(w)−Q(w)),z‖ ≤
(

L1− j

1−L

)
W (w,w) (3.14)

for all w ∈ A and for all z ∈ B.

Proof. Define a set X = {r/r : A→ B, r(0) = 0} and intro-
duce the generalized metric on the X by, d(r,s) = inf{K ∈
(0,∞) : ‖(r(w)− s(w)),z‖ ≤ KW (w,w),w ∈ A,z ∈ B}. It is
easy to see that (X ,d) is complete. In addition, define a
function T : X →X by Tr(w) = 1

θ j
r(θ jw), for all w ∈ A.

This implies d(Tr,T s)≤ Ld(r,s), for all r,s ∈X . i.e., T is a
strictly contractive mapping on X with Lipschitz constant L
(see [39]).

With the help of (3.13), it follows from (3.5) for the case
j = 0 it reduces to∥∥∥∥(q(2w)

4
−q(w)

)
,z
∥∥∥∥≤ ϖ (−ηw,w)

4β

⇒
∥∥∥∥(q(2w)

4
−q(w)

)
,z
∥∥∥∥≤ W (w,w)

4β

⇒ d(T q,q)≤ L < ∞. (3.15)

for all w ∈ A and for all z ∈ B. Helping (3.13), it follows from
(2.9) for the case j = 1 it reduces to∥∥∥(q(w)−4 q

(w
2

))
,z
∥∥∥≤ ϖ

(
−ηw

2
,

w
2

)
⇒
∥∥∥(q(w)−4q

( x
2

))
,z
∥∥∥≤ W (w,w)

⇒ d(q,T q)≤ 1 < ∞. (3.16)

for all w ∈ A and for all z ∈ B. Combining the above two
cases, we arrive

d(q,T q)≤ L1− j.

The rest of the proof is similar to that of Theorem 2.4.
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The following corollary is an immediate consequence of
Theorem 3.5 concerning the some stabilities of (1.5). Since
the proof is routine, is omitted.

Corollary 3.6. Let q : A→ B be a mapping and there exists
real numbers m and d such that∥∥∥q(v+ηw)−2q(v+(η−1)w)+q(v+(η−2)w)

−2! q(w) ,z
∥∥∥≤


m,
m
(
||v||d + ||w||d

)
,

m ||v||d ||w||d ,
(3.17)

for all v,w ∈ A and for all z ∈ B. Then there exists a unique
quadratic function Q : A→ B satisfying the functional equa-
tion (1.5) and

‖(q(w)−Q(w)),z‖

≤



m
|3|

,

m (ηβd +1) ||w||d

|2βd−4|
, d 6= 2;

m ηβd ||w||2d

|2β2d−4|
, 2d 6= 1;

(3.18)

for all w ∈ A and for all z ∈ B.

4. Stability Results In Intuitionistic Fuzzy
-2-Banach Space

In this section, the generalized Ulam-Hyers stability of
the functional equation (1.5) is established in intuitionistic
fuzzy -2-Banach space using direct and fixed point methods.
For more stability of the functional equation in intuitionistic
fuzzy spaces, we refer to [9] and [11]. Here, we give basic
definitions and notations in intuitionistic fuzzy -2-Banach
space.

The basic definitions and notations in the setting of intu-
itionistic fuzzy normed space was introduced by Saadati and
Park [47].

Definition 4.1. A binary operation ∗ : [0,1]× [0,1]−→ [0,1]
is said to be continuous t-norm if ∗ satisfies the following
conditions:

(1) ∗ is commutative and associative;

(2) ∗ is continuous;

(3) a∗1 = a for all a ∈ [0,1];

(4) a∗b≤ c∗d whenever a≤ c and b≤ d for all a,b,c,d ∈
[0,1] .

Definition 4.2. A binary operation � : [0,1]× [0,1]−→ [0,1]
is said to be continuous t-conorm if � satisfies the following
conditions:

(1)’ � is commutative and associative;

(2)’ � is continuous;

(3)’ a�0 = a for all a ∈ [0,1];

(4)’ a�b≤ c�d whenever a≤ c and b≤ d for all a,b,c,d ∈
[0,1] .

Definition 4.3. The five-tuple (X ,µ,ν ,∗,�) is said to be an
intuitionistic fuzzy -2- normed space (for short, IF2NS) if X
is a vector space, ∗ is a continuous t-norm, � is a continuous
t-conorm, and µ,ν are fuzzy sets on X×X× (0,∞) satisfying
the following conditions. For every x,y,z ∈ X and s, t > 0;
(IF2N1) µ(x,z, t)+ν(x,z, t)≤ 1,
(IF2N2) µ(x,z, t)> 0,
(IF2N3) µ(x,z, t) = 1, if and only if x = 0.
(IF2N4) µ(αx,z, t) = µ

(
x,z, t

α

)
for each α 6= 0,

(IF2N5) µ(x,z, t)∗µ(y,z,s)≤ µ(x+ y,z, t + s),
(IF2N6) µ(x,z, ·) : (0,∞)→ [0,1] is continuous,
(IF2N7)] lim

t→∞
µ(x,z, t) = 1 and lim

t→0
µ(x,z, t) = 0,

(IF2N8) ν(x,z, t)< 1,
(IF2N9) ν(x,z, t) = 0, if and only if x = 0.
(IF2N10) ν(αx,z, t) = ν

(
x,z, t

α

)
for each α 6= 0,

(IF2N11) ν(x,z, t)�ν(y,z,s)≥ ν(x+ y,z, t + s),
(IF2N12) ν(x,z, ·) : (0,∞)→ [0,1] is continuous,
(IF2N13) lim

t→∞
ν(x,z, t) = 0 and lim

t→0
ν(x,z, t) = 1. In this case,

(µ,ν) is called an intuitionistic fuzzy -2- norm.

Example 4.4. Let (X ,‖·‖) be a normed space. Let a∗b = ab
and a�b = min{a+b,1} for all a,b ∈ [0,1]. For all x,z ∈ X
and every t > 0, consider

µ(x,z, t) =
{ t

t+‖x,z‖ i f t > 0;
0 i f t ≤ 0;

and

ν(x,z, t) =

{
‖x,z‖

t+‖x,z‖ i f t > 0;
0 i f t ≤ 0.

Then (X ,µ,ν ,∗,�) is an IF2N-space.

Definition 4.5. Let (X ,µ,ν ,∗,�) be an IF2NS. Then, a se-
quence x= {xk} is said to be intuitionistic fuzzy -2- convergent
to a point L ∈ X if

lim µ(xk−L,z, t) = 1 and lim ν(xk−L,z, t) = 0

for all t > 0. In this case, we write

xk
IF−→ L as k→ ∞

Definition 4.6. Let (X ,µ,ν ,∗,�) be an IF2NS. Then, x =
{xk} is said to be intuitionistic fuzzy -2- Cauchy sequence if

µ
(
xk+p− xk,z, t

)
= 1 and ν

(
xk+p− xk,z, t

)
= 0

for all t > 0, and p = 1,2 · · · .

Definition 4.7. Let (X ,µ,ν ,∗,�) be an IF2NS. Then (X ,µ,ν ,∗,�)
is said to be complete if every intuitionistic fuzzy -2- Cauchy
sequence in (X ,µ,ν ,∗,�) is intuitionistic fuzzy -2- convergent
(X ,µ,ν ,∗,�).
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4.1 Direct Method
Theorem 4.8. Let δ ∈ {1,−1}. Let A be a a linear space,
(B,µ ′,ν ′) be a intuitionistic fuzzy -2-Banach space and (C,µ ′,ν ′)
intuitionistic fuzzy -2-normed space. Let ω : X×X −→ B and
q : A→ B are mappings satisfying the conditions and the
inequality

µ ′
(
ω
(
2αδ v,2αδ w

)
,z, t
)

≥ µ ′
(
γαδ ω (v,w) ,z, t

)
ν ′
(
ω
(
2αδ v,2αδ y

)
,z, t
)

≤ ν ′
(
γαδ ω (v,w) ,z, t

)

 (4.1)

lim
α→∞

µ ′
(
ω
(
2δnv,2δα w

)
,z,22δα t

)
= 1

lim
α→∞

ν ′
(
ω
(
2δnv,2δα w

)
,z,22δα t

)
= 0

 (4.2)

and

µ

(
q(v+ηw)−2q(v+(η−1)w)

+q(v+(η−2)w)−2! q(w) ,z, t
)

≥ µ ′ (ω (v,w) ,z, t)

ν

(
q(v+ηw)−2q(v+(η−1)w)

+q(v+(η−2)w)−2! q(w) ,z, t
)

≤ ν ′ (ω (v,w) ,z, t)


(4.3)

for all v,w ∈ A all z ∈ B and all t > 0 with 0 <
(

γ

a

)δ

< 1.

Then there exists a unique quadratic mapping Q : A −→ B
satisfying (1.5) and

µ (q(w)−Q(w),z, t)
≥ µ ′ (ω (−ηw,w) ,z, |4− p|t)

ν (q(w)−Q(w),z, t)
≤ ν ′ (ω (−ηw,w) ,z, |4− p|t)

 (4.4)

for all w ∈ A all z ∈ B and all t > 0.

Proof. Case (i) Let δ = 1.
Substituting (v,w) by (−ηw,w) in (4.3) and using even-

ness of q, one can find that

µ (q(2w)−4q(w) ,z, t)≥ µ ′ (ω (−ηw,w) ,z, t)

ν (q(2w)−4q(w) ,z, t)≤ ν ′ (ω (−ηw,w) ,z, t)


(4.5)

for all w ∈ A all z ∈ B and all t > 0. Applying (IF2N4) and
(IF2N10) in (4.5), we have

µ

(q(2w)
4
−q(w),z,

t
4

)
≥ µ

′ (ω(−ηw,w),z, t)

ν

(q(2w)
4
−q(w),z,

t
4

)
≤ ν

′ (ω(−ηw,w),z, t)


(4.6)

for all w ∈ A all z ∈ B and all t > 0. Setting w by 2α w in (4.6),
we obtain

µ

(q(2α+1w)
4

−q(2α w),z,
t
4

)
≥ µ ′ (ω(−η2α w,2α w),z, t)

ν

(q(2α+1w)
4

−q(2α w),z,
t
4

)
≤ ν ′ (ω(−η2α w,2α w),z, t)


(4.7)

for all w ∈ A all z ∈ B and all t > 0. Using (4.1), (IF2N4),
(IF2N10) in (4.7), we get

µ

(q(2α+1w)
4(α+1) −

q(2α w)
4α

,z,
t

4 ·4α

)
≥ µ ′

(
ω(−ηw,w),z, t

γα

)
ν

(q(2α+1w)
4(α+1) −

q(2α w)
4α

,z,
t

4 ·4α

)
≤ ν ′

(
ω(−ηw,w),z, t

γα

)


(4.8)

for all w ∈ A all z ∈ B and all t > 0. Changing t into γα t in
(4.8), we get

µ

(q(2α+1w)
4(α+1) −

q(2α w)
4α

,z,
t · γα

4 ·4α

)
≥ µ ′ (ω(−ηw,w),z, t)

ν

(q(2α+1w)
4(α+1) −

q(2α w)
4α

,z,
t · γα

4 ·4α

)
≤ ν ′ (ω(−ηw,w),z, t)


(4.9)

for all w ∈ A all z ∈ B and all t > 0. Relations (IF2N4),
(IF2N10) and equation (4.9) imply that

µ

(
q(2α w)

4α −q(w),z,∑α−1
i=0

γ it
4·4i

)
≥∏

α−1
i=0 µ

(
q(2i+1w)

4(i+1) −
q(2iw)

4i ,z, γ i tr
4·4i

)
ν

(
q(2α w)

4α −q(w),z,∑α−1
i=0

γ it
4·4i

)
≤∏

α−1
i=0 ν

(
q(2i+1w)

4(i+1) −
q(2iw)

4i ,z, γ i t
4·4i

)


(4.10)

where
α−1

∏
i=0

c j = c1 ∗ c2 ∗ · · · ∗ cn

and
α−1

∏
i=0

d j = d1 �d2 � · · · �dn

for all w ∈ A all z ∈ B and all t > 0. Hence, from (4.8) and
(4.10), we find

µ

(
q(2α w)

4α −q(w),z,∑α−1
i=0

γ i t
4·4i

)
≥∏

α−1
i=0 µ ′ (ω(−ηw,w),z, t)

= µ ′ (ω(−ηw,w),z, t)

ν

(
q(2α w)

4α −q(w),z,∑α−1
i=0

γ i t
4·4i

)
≤∏

α−1
i=0 ν ′ (ω(−ηw,w),z, t)

= ν ′ (ω(−ηw,w),z, t)


(4.11)
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for all w ∈ A all z ∈ B and all t > 0. Switching w by 2mw in
(4.11) and using (4.1), (IF2N4), (IF2N10), we obtain

µ

(
q(2α+mw)

4(n+m) −
q(2mw)

4m ,z,∑α−1
i=0

γ i t
4·4(i+m)

)
≥ µ ′ (ω(2mw),z, t) = µ ′

(
ω(−ηw,w),z, t

γm

)
ν

(
q(2α+mw)

4(n+m) −
q(2mw)

4m ,z,∑α−1
i=0

γ i t
4·4(i+m)

)
≤ ν ′ (ω(2mw),z, t) = ν ′

(
ω(−ηw,w),z, t

γm

)


(4.12)

for all w∈ A all z∈ B and all t > 0 and all m,n≥ 0. Replacing
t by γmt in (4.12), we get

µ

(
q(2α+mw)

4(n+m) −
q(2mw)

4m ,z,∑α−1
i=0

γ i+m t
4·4(i+m)

)
≥ µ ′ (ω(−ηw,w),z, t)

ν

(
q(2α+mw)

4(n+m) −
q(2mw)

4m ,z,∑α−1
i=0

γ i+m t
4·4(i+m)

)
≤ ν ′ (ω(−ηw,w),z, t)


(4.13)

for all w ∈ A all z ∈ B and all t > 0 and all m,n ≥ 0. The
relation (4.12) implies that

µ

(
q(2α+mw)

4(n+m) −
q(2mw)

4m ,z, t
)

≥ µ ′

(
ω(−ηw,w),z, t

∑
α−1
i=m

γi

4·4i

)

ν

(
q(2α+mw)

4(n+m) −
q(2mw)

4m ,z, t
)

≤ ν ′

(
ω(−ηw,w),z, t

∑
α−1
i=m

γi

4·4i

)


(4.14)

holds for all w ∈ A all z ∈ B and all t > 0 and all m,n ≥ 0.

Since 0 < p < 4 and
α

∑
i=0

( p
4

)i
<∞, the Cauchy criterion for the

convergence in IF2NS shows that the sequence
{

q(2α w)
4α

}
is Cauchy in (B,µ,ν). Since (B,µ,ν) is a complete IF2NS
this sequence converges to some point Q (w) ∈ B. So, one
can define the mapping Q : A−→ B

lim
α→∞

µ

(
q(2α w)

4α
−Q(w),z, t

)
= 1,

lim
α→∞

ν

(
q(2α w)

4α
−Q(w),z, t

)
= 0

for all w ∈ A all z ∈ B and all t > 0. Hence
q(2α w)

4α

IF−→Q(w), as n→ ∞.

Letting m = 0 in (4.14), we arrive

µ

(
q(2α w)

4α −q(w),z, t
)
≥ µ ′

(
ω(−ηw,w),z, t

∑
α−1
i=0

γi

4·4i

)

ν

(
q(2α w)

4α −q(w),z, t
)
≤ ν ′

(
ω(−ηw,w),z, t

∑
α−1
i=0

γi

4·4i

)


(4.15)

for all w ∈ A all z ∈ B and all t > 0. Taking α tend to infinity
in (4.15), we have

µ

(
Q(w)−q(w),z, t

)
≥ µ ′ (ω(−ηw,w),z, t(4− p))

ν

(
Q(w)−q(w),z, t

)
≤ ν ′ (ω(−ηw,w),z, t(4− p))


(4.16)

for all w ∈ A all z ∈ B and all t > 0. To prove Q satisfies (1.5),
Interchiging (v,w) into (2α v,2α w) in (4.3) respectively, we
obtain

µ

(
1

22α q(2α(v+ηw))−2q(2α(v+(η−1)w))

+q(2α(v+(η−2)w))−2! q(2α w) ,z, t
)

≥ µ ′
(
ω(2α v,2α w),z,22α t

)
ν

(
1

22α q(2α(v+ηw))−2q(2α(v+(η−1)w))

+q(2α(v+(η−2)w))−2! q(2α w) ,z, t
)

≤ ν ′
(
ω(2α v,2α w),z,22α t

)


(4.17)

for all w ∈ A all z ∈ B and all t > 0. Now,

µ

(
Q (v+ηw)−2Q (v+(η−1)w)

+Q (v+(η−2)w)−2! Q (w) ,z, t
)

≥ µ

(
Q (v+ηw)− 1

22α
q(v+ηw) ,z,

t
5

)
∗

µ

(
−2Q (v+(η−1)w)+

2
22α

q(v+(η−1)w) ,z,
t
5

)
∗

µ

(
Q (v+(η−2)w)− 1

22α
q(v+(η−2)w) ,z,

t
5

)
∗

µ

(
−2! Q (w)+

2!
22α

q(w) ,z,
t
5

)
∗

µ

( 1
22α

q(v+ηw)− 2
22α

q(v+(η−1)w)

+
1

22α
q(v+(η−2)w)− 2!

22α
q(w) ,z,

t
5

)
(4.18)

ν

(
Q (v+ηw)−2Q (v+(η−1)w)

+Q (v+(η−2)w)−2! Q (w) ,z, t
)

≥ ν

(
Q (v+ηw)− 1

22α
q(v+ηw) ,z,

t
5

)
�

ν

(
−2Q (v+(η−1)w)+

2
22α

q(v+(η−1)w) ,z,
t
5

)
�

ν

(
Q (v+(η−2)w)− 1

22α
q(v+(η−2)w) ,z,

t
5

)
�

ν

(
−2! Q (w)+

2!
22α

q(w) ,z,
t
5

)
�

ν

( 1
22α

q(v+ηw)− 2
22α

q(v+(η−1)w)

+
1

22α
q(v+(η−2)w)− 2!

22α
q(w) ,z,

t
5

)
(4.19)
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for all w ∈ A all z ∈ B and all t > 0. Moreover,

lim
α→∞

µ

(
1

22α q(2α(v+ηw))−2q(2α(v+(η−1)w))

+q(2α(v+(η−2)w))−2! q(2α w) ,z, t
)
= 1

lim
α→∞

ν

(
1

22α q(2α(v+ηw))−2q(2α(v+(η−1)w))

+q(2α(v+(η−2)w))−2! q(2α w) ,z, t
)
= 0


(4.20)

for all w ∈ A all z ∈ B and all t > 0. Letting n→ ∞ in (4.18),
(4.19) and using (4.20), we observe that Q fulfills (1.5). There-
fore, Q is a quadratic mapping. In order to prove Q(w) is
unique, let Q′(w) be another quadratic functional equation
satisfying (1.5) and (4.4). Hence,

µ(Q(w)−Q′(w),z, t)

≥ µ

(
Q(2α w)−q(2α w),z,

t.2α

2

)
∗

µ

(
q(2α w)−Q′(2α w),z,

t.2α

2

)
≥ µ

′
(

ω(2α w),z,
t 2α(4− p)

2

)
≥ µ

′
(

ω(−ηw,w),z,
t 2α(4− p)

2 · γα

)
ν(Q(w)−Q′(w),z, t)

≤ ν

(
Q(2α w)−q(2α w),z,

t.2α

2

)
�

ν

(
q(2α w)−Q′(2α w),z,

t.2α

2

)
≤ ν

′
(

ω(2α w),z,
t 2α(4− p)

2

)
≤ ν

′
(

ω(−ηw,w),z,
t 2α(4− p)

2 · γα

)

for all w∈A all z∈B and all t > 0. Since lim
α→∞

t 2α(4− p)
2 γα

= ∞,

we obtain

lim
α→∞

µ ′
(

ω(−ηw,w),z, t 2α (4−p)
2·γα

)
= 1

lim
α→∞

ν ′
(

ω(−ηw,w),z, t 2α (4−p)
2·γα

)
= 0


for all w ∈ A all z ∈ B and all t > 0. Thus

µ(Q(w)−Q′(w),z, t) = 1
ν(Q(w)−Q′(w),z, t) = 0

}
for all w ∈ A all z ∈ B and all t > 0. Hence, Q(w) = Q′(w).
Therefore, Q(w) is unique.
Case 2: For δ =−1. Putting w by w

2 in (4.5), we get

µ
(
q(w)−4 f

(w
2

)
,z, t
)
≥ µ ′

(
ω
(−ηw

2 , w
2

)
,z, t
)

ν
(
q(w)−4 f

(w
2

)
,z, t
)
≤ ν ′

(
ω
(−ηw

2 , w
2

)
,z, t
)


(4.21)

for all v,y ∈ A all z ∈ B and all t > 0. The rest of the proof is
similar to that of Case 1. This completes the proof.

The following corollary is an immediate consequence of
Theorem 4.8, regarding the stability of (1.5).

Corollary 4.9. Suppose that a function q : A−→ B satisfies
the double inequality

µ

(
q(v+ηw)−2q(v+(η−1)w)+q(v+(η−2)w)

−2! q(w) ,z, t
)
≥


µ ′ (m,z, t) ,
µ ′
(
m,z

(
||v||d + ||w||d

)
, t
)
,

µ ′
(
m,z

(
||v||d1 + ||w||d2

)
, t
)
,

µ ′
(
m,z||v||d ||w||d , t

)
,

µ ′
(
m,z||v||d1 ||w||d2 , t

)
,

ν

(
q(v+ηw)−2q(v+(η−1)w)+q(v+(η−2)w)

−2! q(w) ,z, t
)
≤


ν ′ (m,z, t) ,
ν ′
(
m,z,

(
||v||d + ||w||d

)
, t
)
,

ν ′
(
m,z,

(
||v||d1 + ||w||d2

)
, t
)
,

ν ′
(
m,z, ||v||d ||w||d , t

)
,

ν ′
(
m,z, ||v||d1 ||w||d2 , t

)
,


(4.22)

for all v,w ∈ A all z ∈ B and all t > 0 , where m,d,d1,d2 are
constants with m > 0. Then there exists a unique quadratic
mapping Q : X −→ B such that

µ (q(w)−Q(w),z, t)

≥



µ ′ (m, |4− p|t) ,
µ ′
(
m||w||d(|η |d +1),z, |4− p|t

)
,

µ ′
(

mηd1 ||w||d1 +m||w||d2 ,

z, |4− p|t + |4− p|t
)
,

µ ′
(
m||w||2dηd ,z, |4− p|t

)
µ ′
(
m||w||d1+d2ηd1 ,z, |4− p|t

)
ν (q(w)−Q(w),z, t)

≤



ν ′ (m, |4− p|t) ,
ν ′
(
m||w||d(|η |d +1),z, |4− p|t

)
,

ν ′
(

mηd1 ||w||d1 +m||w||d2 ,

z, |4− p|t + |4− p|t
)
,

ν ′
(
m||w||2dηd ,z, |4− p|t

)
ν ′
(
m||w||d1+d2ηd1 ,z, |4− p|t

)


(4.23)

for all w ∈ A all z ∈ B and all t > 0.

4.2 Fixed Point Method
Theorem 4.10. Let A be a a linear space, (B,µ ′,ν ′) be a
intuitionistic fuzzy -2-Banach space and (C,µ ′,ν ′) intuition-
istic fuzzy -2-normed space. Suppose that q : A→ B and
ϖ : A2→ [0,∞) are functions satisfying inequality (4.3) and
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the condition

lim
n→∞

µ ′
(

ω

(
θ α

j x,θ α
j y
)
,z,θ α

j t
)
= 1

lim
n→∞

ν ′
(

ω

(
θ α

j x,θ α
j y
)
,z,θ α

j t
)
= 0

 (4.24)

for all v,w ∈ A all z ∈ B and all t > 0 where

θ j =

{
2 i f j = 0
1
2 i f j = 1.

(4.25)

If there exists L = L( j) such that the functions

µ
′ (W (w,w),z, t) = µ

′
(

ω

(
−ηw

2
,

w
2

)
,z, t
)
,

ν
′ (W (w,w),z, t) = ν

′
(

ω

(
−ηw

2
,

w
2

)
,z, t
)

has properties

Lµ ′
(

1
θ 2

j
W (θ jw,θ jw) ,z, t

)
= µ ′ (W (w,w),z,Lt)

ν ′
(

1
θ 2

j
W (θ jw,θ jw) ,z, t

)
= ν ′ (W (w,w),z,Lt)


(4.26)

for all w ∈ A all z ∈ B and all t > 0, then there exists a unique
quadratic function Q : A−→ B satisfying the functional equa-
tion (1.5) and

µ (q(w)−Q(w),z, t)≥ µ ′
(
W (w,w),z, L1−i

1−L t
)

ν (q(w)−Q(w),z, t)≤ ν ′
(
W (w,w),z, L1−i

1−L t
) 

(4.27)

for all w ∈ A all z ∈ B and all t > 0.

Proof. Define a set X = {r/r : A→ B, r(0) = 0} and intro-
duce the generalized metric on the X by,

d(r,s)

= inf

M ∈ (0,∞) :


µ(r(w)− s(w),z, t)
≥ µ ′(W (w,w),z,Mt),
ν(r(w)− s(w),z, t)
≤ ν ′(W (w,w),z,Mt),


 .

(4.28)

for all w∈A. It is easy to see that (X ,d) is complete. Besides,
define a function T : X →X by Tr(w) = 1

θ 2
j
r(θ jw), for all

w ∈ A. This implies d(Tr,T s) ≤ Ld(r,s), for all r,s ∈ X .
i.e., T is a strictly contractive mapping on X with Lipschitz
constant L (see [39]).

With the help of (4.26), (4.28), it follows from (4.6) for
the case j = 0 it reduces to

µ

(q(2w)
4
−q(w),z, t

)
≥ µ

′ (ω(−ηw,w),z,4t)

ν

(q(2w)
4
−q(w),z, t

)
≤ ν

′ (ω(−ηw,w),z,4t)


µ

(
T q(w)−q(w),z, t

)
≥ µ ′ (W (w,w),z,Lt)

ν

(
T q(w)−q(w),z, t

)
≤ ν ′ (W (w,w),z,Lt)


⇒ d(T q,q)≤ L < ∞. (4.29)

for all w ∈ A all z ∈ B and all t > 0. Using (4.26), (4.28), it
follows from (4.21) for the case j = 1 that

µ
(
q(w)−4 f

(w
2

)
,z, t
)
≥ µ ′

(
ω
(−ηw

2 , w
2

)
,z, t
)

ν
(
q(w)−4 f

(w
2

)
,z, t
)
≤ ν ′

(
ω
(−ηw

2 , w
2

)
,z, t
)


µ

(
q(w)−T q(w),z, t

)
≥ µ ′ (W (w,w),z, t)

ν

(
q(w)−T q(w),z, t

)
≤ ν ′ (W (w,w),z, t)


⇒ d(q,T q)≤ 1 < ∞. (4.30)

Thus, from (4.29) and (4.30), we arrive

d(J f , f )

= inf

L1−i ∈ (0,∞) :


µ(Jq(w)−q(w),z, t)
≥ µ ′(W (w,w),z,L1−it),
ν(Jq(w)−q(w),z, t)
≤ ν ′(W (w,w),z,L1−it),




for all w ∈ A all z ∈ B . Therefore, (FPC1) of Theorem 2.3
holds. By (FPC2) of Theorem 2.3, it follows that there exists
a fixed point Q of T in X such that

lim
α→∞

µ

(
q(θ α

j x)

θ α
j
−Q(w),z, t

)
= 1,

lim
α→∞

ν

(
q(θ α

j x)

θ α
j
−Q(w),z, t

)
= 0

for all w ∈ A and all t > 0. To order to prove Q : A→ B is
quadratic the proof is similar ideas to that of Theorem 4.8.
Again by (FPC3) of Theorem 2.3, Q is the unique fixed point
of T in the set Y = {Q ∈X : d(q,Q)< ∞},Q is the unique
function such that

µ(q(w)−Q(w),z, t)≥ µ ′(W (w,w),z,L1−it),w ∈ A
ν(q(w)−Q(w),z, t)≤ ν ′(W (w,w),z,L1−it),w ∈ A

}
for all w ∈ A all z ∈ B and all t > 0. Finally by (FP4), we
obtain

µ (q(w)−Q(w),z, t)≥ µ ′
(
W (w,w),z, L1−i

1−L t
)

ν (q(w)−Q(w),z, t)≤ ν ′
(
W (w,w),z, L1−i

1−L t
) 
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for all w ∈ A all z ∈ B and all t > 0. Hence the proof is
complete.

Corollary 4.11. Suppose that a function q : A−→ B satisfies
the double inequality

µ

(
q(v+ηw)−2q(v+(η−1)w)

+q(v+(η−2)w)−2! q(w) ,z, t
)

≥


µ ′ (m,z, t) ,
µ ′
(
m
(
||x||d + ||y||d

)
,z, t
)
,

µ ′
(
m||x||d ||y||d ,z, t

)
,

ν

(
q(v+ηw)−2q(v+(η−1)w)

+q(v+(η−2)w)−2! q(w) ,z, t
)

≤


ν ′ (m,z, t) ,
ν ′
(
m
(
||x||d + ||y||d

)
,z, t
)
,

ν ′
(
m||x||d ||y||d ,z, t

)
,



(4.31)

for all w,y ∈ A and all t > 0 , where m,a are constants with
m > 0. Then there exists a unique quadratic mapping Q :
X −→ B such that the double inequality

µ (q(w)−Q(w),z, t)

≥


µ ′
(

m,z, t
|3|

)
,

µ ′
(

m||w||d(|η |d +1),z, t
|4−2d |

)
,

µ ′
(

m||w||2dηd ,z, t
|4−22d |

)
ν (q(w)−Q(w),z, t)

≤


ν ′
(

m,z, t
|3|

)
,

ν ′
(

m||w||d(|η |d +1),z, t
|4−2d |

)
,

ν ′
(

m||w||2dηd ,z, t
|4−22d |

)


(4.32)

holds for all w ∈ A and all t > 0.

Proof. Set

ω(v,w) =


m,
m
(
||v||d + ||w||d

)
,

m ||v||d ||w||d ,
(4.33)

for all v,w∈A in Theorem 4.8. Replacing (v,w) by (θ α
j v,θ α

j w)
and dividing by θ 2α

j in (4.33) and taking α tends to infinity,
one can see that (4.24) holds. Now, by definition of W (w,w)
and its property, we have

µ
′ (W (w,w),z, t)

= µ
′
(

ω

(
−ηw

2
,

w
2

)
,z, t
)

=


µ ′ (m,z, t)

µ ′
(

m (ηd +1)
2d ||w||d ,z, t

)
µ ′
(

m ηd

22d ||w||
2d ,z, t

)

and

ν
′ (W (w,w),z, t) = ν

′
(

ω

(
−ηw

2
,

w
2

)
,z, t
)

=


ν ′ (m,z, t)

ν ′
(

m (ηd +1)
2d ||w||d ,z, t

)
ν ′
(

m ηd

22d ||w||
2d ,z, t

)

for all w ∈ A all z ∈ B and all t > 0. In addition, from (4.26),
we have

µ
′

(
1

θ 2
j
W (θ jw,θ jw),z, t

)

=



µ ′

(
m
θ 2

j
,z, t

)

µ ′

(
m (ηd +1)

2dθ 2
j

||θ jw||d ,z, t

)

µ ′

(
m ηd

22dθ 2
j
||θ jw||2d ,z, t

)

=



µ ′
(
W (w,w),z,θ−2

j t
)

µ ′
(
W (w,w),z,θ d−2

j t
)

µ ′
(
W (w,w),z,θ 2d−2

j t
)

and

ν
′

(
1

θ 2
j
W (θ jw,θ jw),z, t

)

=



ν ′

(
m
θ 2

j
,z, t

)

ν ′

(
m (ηd +1)

2dθ 2
j

||θ jw||d ,z, t

)

ν ′

(
m ηd

22dθ 2
j
||θ jw||2d ,z, t

)

=



ν ′
(
W (w,w),z,θ−2

j t
)

ν ′
(
W (w,w),z,θ d−2

j t
)

ν ′
(
W (w,w),z,θ 2d−2

j t
)

for all w ∈ A all z ∈ B and all t > 0. Hence, inequality (4.27)
is true for following:

L = θ
−2
j = 2−2 f or j = 0
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µ (q(w)−Q(w),z, t)

≥ µ ′
(
W (w,w),z, 2−2

1−2−2 t
)

= µ ′
(
m,z, t

3

)
ν (q(w)−Q(w),z, t)

≤ ν ′
(
W (w,w),z, 2−2

1−2−2 t
)

= ν ′
(
m,z, t

3

)


L = θ

−2
j =

1
2−2 = 22 f or j = 1

µ (q(w)−Q(w),z, t)

≥ µ ′
(
W (w,w),z, 1

1−22 t
)

= µ ′
(
m,z, t

−3

)
ν (q(w)−Q(w),z, t)

≤ ν ′
(
W (w,w),z, 1

1−22 t
)

= ν ′
(
m,z, t

−3

)


L = θ

d−2
j = 2d−2 f or j = 0

µ (q(w)−Q(w),z, t)

≥ µ ′
(
W (w,w),z, 2d−2

1−2d−2
1

2d t
)

= µ ′
(

m (ηd +1)||w||d ,z, 1
4−2d t

)
ν (q(w)−Q(w),z, t)

≤ ν ′
(
W (w,w),z, 2d−2

1−2d−2
1

2d t
)

= ν ′
(

m (ηd +1)||w||d ,z, 1
4−2d t

)


L = θ

d−2
j =

1
2d−2 = 22−d f or j = 1

µ (q(w)−Q(w),z, t)

≥ µ ′
(
W (w,w),z, 1

1−22−d
1

2d t
)

= µ ′
(

m (ηd +1)||w||d ,z, t
2d−4

)
ν (q(w)−Q(w),z, t)

≤ ν ′
(
W (w,w),z, 1

1−22−d
1

2d t
)

ν ′
(

m (ηd +1)||w||d ,z, t
2d−4

)


L = θ

2d−2
j = 22d−2 f or j = 0

µ (q(w)−Q(w),z, t)

≥ µ ′
(
W (w,w),z, 22d−2

1−22d−2
1

22d t
)

= µ ′
(

m ηd ||w||2d ,z, 1
4−22d t

)
ν (q(w)−Q(w),z, t)

≤ ν ′
(
W (w,w),z, 22d−2

1−22d−2
1

22d t
)

= ν ′
(

m ηd ||w||2d ,z, 1
4−22d t

)



L = θ
2d−2
j =

1
22d−2 = 22−2d f or j = 1

µ (q(w)−Q(w),z, t)

≥ µ ′
(
W (w,w),z, 1

1−22−2d
1

22d t
)

= µ ′
(

mηd ||w||2d ,z, t
22d−4

)
ν (q(w)−Q(w),z, t)

≤ ν ′
(
W (w,w),z, 1

1−22−2d
1

22d t
)

= ν ′
(

mηd ||w||2d ,z, t
22d−4

)


The the proof is complete.
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