

https://doi.org/10.26637/MJM0901/0174

Color class dominating sets in ladder and grid graphs

A. E. Prabha¹ and A. Vijayalekshmi^{2*}

Abstract

Let $G = (V, E)$ be a graph. A color class dominating set of G is a proper coloring $\mathscr C$ of G with the extra property that every color class in $\mathscr C$ is dominated by a vertex in G . A color class dominating set is said to be a minimal color class dominating set if no proper subset of $\mathscr C$ is a color class dominating set of G. The color class domination number of G is the minimum cardinality taken over all minimal color class dominating sets of G and is denoted by $\gamma_x(G)$. In this paper, we obtain $\gamma_x(G)$ for Ladder graph and Grid graph.

Keywords

Chromatic number, domination number, color class dominating set, color class domination number.

AMS Subject Classification 05C15, 05C69.

¹*Research Scholar, Reg. No. 12201, Department of Mathematics, S.T.Hindu College, Nagercoil-629002, Tamil Nadu, India.*

²*Department of Mathematics, S.T.Hindu College, Nagercoil-629002, Tamil Nadu, India.*

1,2*Affliated to Manonmaniam Sundaranar University, Tirunelveli-627012, Tamil Nadu, India.*

***Corresponding author**: ¹vijimath.a@gmail.com

Article History: Received **24** November **2020**; Accepted **18** February **2021** c 2021 MJM.

Contents

1. Introduction

All graphs considered in this paper are finite, undirected graphs and we follow standard definitions of graph theory as found in [3].

Let $G = (V, E)$ be a graph of order p. The open neighborhood of a vertex $v \in V(G)$ is $N(v) = \{u \in V(G)/uv \in V(G)\}$ $E(G)$... The closed neighborhood of *vi_is*_{*N*}[*v*] = *N*(*v*)∪ {*v*}. For a set *S* \subseteq *V*, the open neighborhood *N*(*S*) is defined to be $\bigcup_{v \in S} N(v)$, and the closed neighborhood of S is $N[S] =$ *N*(*S*)∪*S*.

A subset *S* of *V* is called a dominating set if every vertex in *V* −*S* is adjacent to some vertex in *S*. A dominating set is minimal dominating set if no proper subset of *S* is a dominating set of G. The domination number $\gamma(G)$ is the minimum cardinality taken over all minimal dominating sets of G. A γ -set is any minimal dominating set with cardinality γ.

A proper coloring of G is an assignment of colors to the vertices of G, such that adjacent vertices have different colors. The smallest number of colors for which there exists a proper coloring of G is called chromatic number of G and is denoted by $\chi(G)$. A color class dominating set of G is a proper coloring $\mathscr C$ of G with the extra property that every color classes in $\mathscr C$ is dominated by a vertex in G.A color class dominating set is said to be a minimal color class dominating set if no proper subset of *C* is a color class dominating set of G. The color class domination number of *G* is the minimum cardinality taken over all minimal color class dominating sets of *G* and is denoted by $\gamma_{\chi}(G)$. This concept was introduced by A. Vijayalekshmi et all [2].

A cartesian product of two subgraphs G_1 and G_2 is the graph $G_1 \times G_2$ such that its vertex set is

$$
V(G_1 \times G_2) = \{(x, y)/x \in V(G_1), y \in V(G_2)\}\
$$

and the edge set is $E(G_1 \times G_2) = \{((x_1, x_2), (y_1, y_2)) | x_1 = y_1\}$ and $(x_2, y_2) \in E(G_2)$ or $x_2 = y_2$ and $(x_1, y_1) \in E(G_1)$. The ladder graph is defined by $L_{2n} = P_2 \times P_n$, where P_n is a path graph with n vertices. A two dimensional grid graph G_m^n is the Cartesian product of path graphs *P^m* and *Pn*.

2. Main Results

Theorem 2.1. *The ladder graph* L_p *has* $\gamma_{\chi}(L_p) = \frac{p}{3}$ $\frac{p}{3}$ | + *r if* $p \equiv r \pmod{3}$ *where* $r = 0, 1, 2$ *.*

Proof. Let $L_p = L_{2n} = P_2 \times P_n$ and let

$$
V(L_p) = \{u_1, u_2, \dots, u_{n+1}, \dots, u_{2n}\}\
$$

with deg(u_i) = 2 for $i = 1, n, (n + 1), 2n$ and deg(u_i) = 3 for all $j \neq i$. We take $N(u_i) = \{u_{i-1}, u_{i+1}, u_{i+n}\}\$ for $i =$ 2,3,...,*n* − 1 and $N(u_j) = \{u_{j-1}, u_{j+1}, u_{j-n}\}$ for $j = (n +$ $2), (n+3), \ldots, (2n-1)$. We consider three cases. **Case (1).** $p \equiv 0 \pmod{3}$.

Decompose L_p into $\frac{p}{3}$ copies of L_6 . Assign new colors, say, $2i = 1, 2i \left(1 \leq i \leq \frac{p}{3}\right)$ $\left(\frac{p}{3}\right)$ to the vertices *N* (*u_i*) for *i* = 2,5,..., (*n*− 1) and $i = (n+2), (n+5), \ldots, (2n-1)$, We get a γ_{χ} -coloring of L_p . Thus $\gamma_\chi(L_p) = \frac{p}{3}$.

$$
\gamma_{\chi}(L_{12}) = \left[\frac{12}{3}\right] + 0 = 4
$$

Case (2). $p \equiv 1 \pmod{3}$.

In this case L_p is obtained by L_{p-4} followed by L_4 . Since $p - 4 \equiv 0 \pmod{3}$ and by case $(1), \gamma_{\chi}(L_{p-4}) = \frac{p-4}{3}$. Assign two new colors, say, $\left(\frac{p-4}{3}\right)$ $\left(\frac{-4}{3}\right) + 1$ and $\left(\frac{p-4}{3}\right)$ $\left(\frac{-4}{3}\right)$ + 2 to the vertices $\{u_{n-1}, u_{2n}\}\$ and $\{u_n, u_{2n-1}\}\$ respectively, we get a γ_χ -coloring of *L*_{*p*}. So $\gamma_{\chi}(L_p) = \gamma_{\chi}(L_{p-4}) + 2 = \frac{p-4}{3} + 2 = \frac{p+2}{3} = \lfloor \frac{p}{3} \rfloor + 1$

$$
\gamma_{\chi}(L_{16}) = \left| \frac{16}{3} \right| + 1 = 6
$$

Case (3). $p \equiv 2 \pmod{3}$.

In this case L_p is obtained by L_{p-2} followed by L_2 . Since $p - 2 \equiv 0 \pmod{3}$ and by case $(1), \gamma_{\chi}(L_{p-2}) = \frac{p-2}{3}$. Assign two new colors, say, $\frac{p-2}{3} + 1$ and $\frac{p-2}{3} + 2$ to the vertices $\{u_n\}$ and $\{u_{2n}\}$ respectively, we get a γ_χ -coloring of L_p . So $\gamma_{\chi}(L_p) = \gamma_{\chi}(L_{p-2}) + 2 = \frac{p-2}{3} + 2 = \frac{p+4}{3} = \left[\frac{p}{3}\right]$ $\frac{p}{3}$ + 2.

$$
\gamma_{\chi}(L_{14}) = \left\lfloor \frac{14}{3} \right\rfloor + 1 = 6
$$

 \Box

Theorem 2.2. *The Grid* graph $G_m^n = P_m \times P_n$ *has* $\gamma_\chi(G_m^n) =$ $\lfloor \frac{mn}{3} \rfloor + r$ *if mn* $\equiv r \pmod{3}$ *where r* = 0, 1, 2*.*

Proof. Let $G_m^n = P_m \times P_n$ and

$$
V(G_m^n) = \left\{v_j^i/1 \leq i \leq m, 1 \leq j \leq n\right\}.
$$

We consider three cases.

Case (1). $mn \equiv 0 \pmod{3}$. We have two subcases.

Subcase (1.1). $m \equiv 0 \pmod{3}$ and $n \equiv 0 \pmod{3}$.

Decompose G_m^n into $\frac{n}{3}$ copies of G_m^3 . Assign $m-2$ distinct colors, say, $1, 3, 4, \ldots, m-1$ to the vertices $\{v_1^i, v_3^i, v_2^{i+1}\}$ for *i* = 1,3,4,...,*n*−1 and assign colors 2 and *m* to the vertices $\{v_1^1, v_1^2, v_2^2, v_2^3\}$ and $\{v_1^n, v_3^n\}$ respectively, we get a γ_χ -coloring of G_m^3 . Similarly assign m distinct colors, say, $m+1, m+1$ $2, \ldots, 2m$ to the identical vertices of second copy of G_m^3 and so on. So $\gamma_{\chi} (G_m^n) = \frac{n}{3} \times m = \frac{mn}{3}$.

Subcase (1.2). $m \equiv 0 \pmod{3}$ and $n \equiv 1 \pmod{3}$.

In this case, G_m^n is obtained by G_m^{n-4} followed by G_m^4 . Since $n - 4 \equiv 0 \pmod{3}$, by subcase(1.1), $\gamma_{\chi}(G_m^n) = \gamma_{\chi}(G_m^{n-4}) \times$ $\gamma_{\chi} (G_m^4) = \frac{m(n-4)}{3} + 2\gamma_{\chi} (L_{2m}) = \frac{m(n-4)}{3} + 2 \times (\frac{2m}{3}) = \frac{mn}{3}.$ **Subcase (1.3).** $m \equiv 0 \pmod{3}$ and $n \equiv 2 \pmod{3}$.

In this case, G_m^n is obtained by G_m^{n-2} followed by G_m^2 . Since $n-2 \equiv 0 \pmod{3}$, by subcase $(1.1), \gamma_{\chi}(G_m^n) = \gamma_{\chi}(G_m^{n-2}) \times$ $\gamma_{\chi} (G_m^n) = \frac{m(n-2)}{3} + \gamma_{\chi} (L_{2m}) = \frac{m(n-2)}{3} + (\frac{2m}{3}) = \frac{mn}{3}.$

$$
\gamma_{\chi}\left(G_9^6\right) = \left[\frac{9 \times 6}{3}\right] + 0 = 18
$$

Case (2). $mn \equiv 1 \pmod{3}$.

We have two subcases.

Subcase (2.1). $m \equiv 1 \pmod{3}$ and $n \equiv 1 \pmod{3}$.

In this case G_m^n is obtained by G_m^{n-4} followed by G_m^4 . Since $G_m^4 \cong 2(L_{2n})$, in the γ_χ - coloring of first copy of L_{2n} two unique vertices $\{v_{m-3}^n\}$ and $\{v_{m-1}^n\}$ have two distinct colors, say, $\lfloor \frac{mn}{3} \rfloor$ and $\lfloor \frac{mn}{3} \rfloor + 1$ respectively. In the γ_χ -coloring of second copy of L_{2n} , the same unique colors say, $\left[\frac{mn}{3}\right]$ and $\left[\frac{mn}{3}\right] + 1$ are assigned to the identical vertices, say, $\{v_{m-2}^n\}$ and $\{v_m^n\}$ respectively. So γ_χ $(G_m^4) = 2 \left[\frac{2(n-1)}{3}\right]$ $\frac{(-1)}{3}$ + 2. Thus $\gamma_\chi\left(G_m^n\right)=\left\lceil \frac{(m-4)n}{3}\right\rceil$ $\frac{(-4) n}{3}$ + 2 $\frac{2(n-1)}{3}$ $\left[\frac{n-1}{3}\right]+2=\left[\frac{mn}{3}\right]+1.$ **Subcase (2.2).** $m \equiv 2 \pmod{3}$ and $n \equiv 2 \pmod{3}$. Since $n-2 \equiv 0 \pmod{3}$ by subcase (1.2), $\gamma_\chi(G_m^n) = \gamma_\chi(G_m^{n-2}) \times$ $\gamma_{\chi} \left(G_m^2 \right) = \frac{m(n-2)}{3} + \left[\frac{2m}{3} \right] + 1 = \frac{mn}{3} + 1.$

$$
\gamma_{\chi}\left(G_{10}^{7}\right)=\left[\frac{10\times7}{3}\right]+1=24
$$

Case (3). $mn \equiv 2 \pmod{3}$. We have two subcases.

Subcase (3.1). $m \equiv 1 \pmod{3}$ and $n \equiv 2 \pmod{3}$. In this case G_m^n is obtained by G_m^{n-2} followed by G_m^2 . Since $n - 2 \equiv 0 \pmod{3}$ by subcase(1.2) $\gamma_{\chi}(G_m^n) = \gamma_{\chi}(G_m^{n-2}) \times$ γ_{χ} $(G_m^2) = \frac{m(n-2)}{3} + \left\lfloor \frac{2m}{3} \right\rfloor + 2 = \frac{mn}{3} + 2.$ **Subcase (3.2).** $m \equiv 2 \pmod{3}$ and $n \equiv 1 \pmod{3}$. Interchanging m and n in subcase(3.1) $\gamma_{\chi} (G_m^n) = \frac{(m-2)n}{3} + \left[\frac{2n}{3} \right] + 2 =$ $\frac{mn}{3} + 2.$

$$
\gamma_{\chi}\left(G_8^7\right) = \left\lfloor \frac{8 \times 7}{3} \right\rfloor + 2 = 20
$$

 \Box

References

- [1] A.Vijayalekshmi, Total Dominator Colorings in Graphs; *International Journal of Advancements in Research & Technology,* 1(4)(2012).
- [2] A.Vijayalekshmi, A.E.Prabha, Introduction of ColorClass Dominating Sets in Graphs, *Malaya Journal of Matematik*, 8(4)(2020), 2186-2189.
- [3] F. Harrary, *Graph Theory,* Addition –Wesley Reading Mass, 1969.
- [4] Terasa W. Haynes, Stephen T. Hedetniemi, Peter J Slater, *Domination in Graphs*, Marcel Dekker, New york, 1998.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

