

https://doi.org/10.26637/MJM0901/0174

Color class dominating sets in ladder and grid graphs

A. E. Prabha¹ and A. Vijayalekshmi^{2*}

Abstract

Let G = (V, E) be a graph. A color class dominating set of *G* is a proper coloring \mathscr{C} of *G* with the extra property that every color class in \mathscr{C} is dominated by a vertex in *G*. A color class dominating set is said to be a minimal color class dominating set if no proper subset of \mathscr{C} is a color class dominating set of *G*. The color class domination number of *G* is the minimum cardinality taken over all minimal color class dominating sets of *G* and is denoted by $\gamma_x(G)$. In this paper, we obtain $\gamma_x(G)$ for Ladder graph and Grid graph.

Keywords

Chromatic number, domination number, color class dominating set, color class domination number.

AMS Subject Classification 05C15, 05C69.

¹ Research Scholar, Reg. No. 12201, Department of Mathematics, S.T.Hindu College, Nagercoil-629002, Tamil Nadu, India.

² Department of Mathematics, S.T.Hindu College, Nagercoil-629002, Tamil Nadu, India.

^{1,2} Affliated to Manonmaniam Sundaranar University, Tirunelveli-627012, Tamil Nadu, India.

*Corresponding author: ¹vijimath.a@gmail.com

Article History: Received 24 November 2020; Accepted 18 February 2021

©2021 MJM.

Contents

1	Introduction9	93
2	Main Results9	93
	References9	95

1. Introduction

All graphs considered in this paper are finite, undirected graphs and we follow standard definitions of graph theory as found in [3].

Let G = (V, E) be a graph of order p. The open neighborhood of a vertex $v \in V(G)$ is $N(v) = \{u \in V(G) / uv \in E(G)\}$... The closed neighborhood of $vi_i s_N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighborhood N(S) is defined to be $\bigcup_{v \in S} N(v)$, and the closed neighborhood of S is $N[S] = N(S) \cup S$.

A subset *S* of *V* is called a dominating set if every vertex in *V* – *S* is adjacent to some vertex in *S*. A dominating set is minimal dominating set if no proper subset of *S* is a dominating set of G. The domination number $\gamma(G)$ is the minimum cardinality taken over all minimal dominating sets of G. A γ -set is any minimal dominating set with cardinality γ .

A proper coloring of G is an assignment of colors to the vertices of G, such that adjacent vertices have different colors.

The smallest number of colors for which there exists a proper coloring of G is called chromatic number of G and is denoted by $\chi(G)$. A color class dominating set of G is a proper coloring \mathscr{C} of G with the extra property that every color classes in \mathscr{C} is dominated by a vertex in G.A color class dominating set is said to be a minimal color class dominating set if no proper subset of *C* is a color class dominating set of G. The color class domination number of *G* is the minimum cardinality taken over all minimal color class dominating sets of *G* and is denoted by $\gamma_{\chi}(G)$. This concept was introduced by A. Vijayalekshmi et all [2].

A cartesian product of two subgraphs G_1 and G_2 is the graph $G_1 \times G_2$ such that its vertex set is

$$V(G_1 \times G_2) = \{(x, y) | x \in V(G_1), y \in V(G_2)\}$$

and the edge set is $E(G_1 \times G_2) = \{((x_1, x_2), (y_1, y_2)) | x_1 = y_1 \text{ and } (x_2, y_2) \in E(G_2) \text{ or } x_2 = y_2 \text{ and } (x_1, y_1) \in E(G_1)\}$. The ladder graph is defined by $L_{2n} = P_2 \times P_n$, where P_n is a path graph with n vertices. A two dimensional grid graph G_m^n is the Cartesian product of path graphs P_m and P_n .

2. Main Results

Theorem 2.1. The ladder graph L_p has $\gamma_{\chi}(L_p) = \lfloor \frac{p}{3} \rfloor + r$ if $p \equiv r \pmod{3}$ where r = 0, 1, 2.

Proof. Let $L_p = L_{2n} = P_2 \times P_n$ and let

$$V(L_p) = \{u_1, u_2, \dots, u_{n+1}, \dots, u_{2n}\}$$

with deg $(u_i) = 2$ for i = 1, n, (n + 1), 2n and deg $(u_j) = 3$ for all $j \neq i$. We take $N(u_i) = \{u_{i-1}, u_{i+1}, u_{i+n}\}$ for i = 2, 3, ..., n - 1 and $N(u_j) = \{u_{j-1}, u_{j+1}, u_{j-n}\}$ for j = (n + 2), (n + 3), ..., (2n - 1). We consider three cases. **Case (1).** $p \equiv 0 \pmod{3}$.

Decompose L_p into $\frac{p}{3}$ copies of L_6 . Assign new colors, say, $2i = 1, 2i \left(1 \le i \le \frac{p}{3}\right)$ to the vertices $N(u_i)$ for i = 2, 5, ..., (n-1) and i = (n+2), (n+5), ..., (2n-1), We get a γ_{χ} -coloring of L_p . Thus $\gamma_{\chi}(L_p) = \frac{p}{3}$.

Figure-1.

$$\gamma_{\chi}\left(L_{12}\right) = \left[\frac{12}{3}\right] + 0 = 4$$

Case (2). $p \equiv 1 \pmod{3}$.

In this case L_p is obtained by L_{p-4} followed by L_4 .Since $p-4 \equiv 0 \pmod{3}$ and by case $(1), \gamma_{\chi} (L_{p-4}) = \frac{p-4}{3}$. Assign two new colors, say, $\left(\frac{p-4}{3}\right) + 1$ and $\left(\frac{p-4}{3}\right) + 2$ to the vertices $\{u_{n-1}, u_{2n}\}$ and $\{u_n, u_{2n-1}\}$ respectively, we get a γ_{χ} -coloring of L_p . So $\gamma_{\chi} (L_p) = \gamma_{\chi} (L_{p-4}) + 2 = \frac{p-4}{3} + 2 = \frac{p+2}{3} = \lfloor \frac{p}{3} \rfloor + 1$

$$\gamma_{\chi}\left(L_{16}\right) = \left|\frac{16}{3}\right| + 1 = 6$$

Case (3). $p \equiv 2 \pmod{3}$.

In this case L_p is obtained by L_{p-2} followed by L_2 . Since $p-2 \equiv 0 \pmod{3}$ and by case $(1), \gamma_{\chi} (L_{p-2}) = \frac{p-2}{3}$. Assign two new colors, say, $\frac{p-2}{3} + 1$ and $\frac{p-2}{3} + 2$ to the vertices $\{u_n\}$ and $\{u_{2n}\}$ respectively, we get a γ_{χ} -coloring of L_p . So $\gamma_{\chi} (L_p) = \gamma_{\chi} (L_{p-2}) + 2 = \frac{p-2}{3} + 2 = \frac{p+4}{3} = \left[\frac{p}{3}\right] + 2$.

$$\gamma_{\chi}\left(L_{14}\right) = \left\lfloor \frac{14}{3} \right\rfloor + 1 = 6$$

Theorem 2.2. The Grid graph $G_m^n = P_m \times P_n$ has $\gamma_{\chi}(G_m^n) = \lfloor \frac{mn}{3} \rfloor + r$ if $mn \equiv r \pmod{3}$ where r = 0, 1, 2.

Proof. Let $G_m^n = P_m \times P_n$ and

$$V(G_m^n) = \left\{ v_j^i / 1 \le i \le m, 1 \le j \le n \right\}$$

We consider three cases.

Case (1). $mn \equiv 0 \pmod{3}$. We have two subcases.

Subcase (1.1). $m \equiv 0 \pmod{3}$ and $n \equiv 0 \pmod{3}$.

Decompose G_m^n into $\frac{n}{3}$ copies of G_m^3 . Assign m - 2 distinct colors, say, 1, 3, 4, ..., m - 1 to the vertices $\{v_1^i, v_3^i, v_2^{i+1}\}$ for i = 1, 3, 4, ..., n - 1 and assign colors 2 and m to the vertices $\{v_2^1, v_1^2, v_3^2, v_2^3\}$ and $\{v_1^n, v_3^n\}$ respectively, we get a γ_{χ} -coloring of G_m^3 . Similarly assign m distinct colors, say, m + 1, m + 2, ..., 2m to the identical vertices of second copy of G_m^3 and so on. So $\gamma_{\chi}(G_m^n) = \frac{n}{3} \times m = \frac{mm}{3}$.

Subcase (1.2). $m \equiv 0 \pmod{3}$ and $n \equiv 1 \pmod{3}$. In this case, G_m^n is obtained by G_m^{n-4} followed by G_m^4 . Since $n-4 \equiv 0 \pmod{3}$, by subcase(1.1), $\gamma_{\chi} (G_m^n) = \gamma_{\chi} (G_m^{n-4}) \times \gamma_{\chi} (G_m^4) = \frac{m(n-4)}{3} + 2\gamma_{\chi} (L_{2m}) = \frac{m(n-4)}{3} + 2 \times (\frac{2m}{3}) = \frac{mn}{3}$. **Subcase (1.3).** $m \equiv 0 \pmod{3}$ and $n \equiv 2 \pmod{3}$.

In this case, G_m^n is obtained by G_m^{n-2} followed by G_m^2 . Since $n-2 \equiv 0 \pmod{3}$, by subcase $(1.1), \gamma_{\chi} (G_m^n) = \gamma_{\chi} (G_m^{n-2}) \times \gamma_{\chi} (G_m^n) = \frac{m(n-2)}{3} + \gamma_{\chi} (L_{2m}) = \frac{m(n-2)}{3} + (\frac{2m}{3}) = \frac{mn}{3}$.

$$\gamma_{\chi}\left(G_{9}^{6}\right) = \left[\frac{9\times 6}{3}\right] + 0 = 18$$

Case (2). $mn \equiv 1 \pmod{3}$.

We have two subcases.

Subcase (2.1). $m \equiv 1 \pmod{3}$ and $n \equiv 1 \pmod{3}$.

In this case G_m^n is obtained by G_m^{n-4} followed by G_m^4 . Since $G_m^4 \cong 2(L_{2n})$, in the γ_{χ} - coloring of first copy of L_{2n} two unique vertices $\{v_{m-3}^n\}$ and $\{v_{m-1}^n\}$ have two distinct colors,

say, $\lfloor \frac{mn}{3}$ and $\lfloor \frac{mn}{3} \rfloor + 1$ respectively. In the γ_{χ} -coloring of second copy of L_{2n} , the same unique colors say, $\lfloor \frac{mn}{3}$ and $\lfloor \frac{mn}{3} \rfloor + 1$ are assigned to the identical vertices, say, $\{v_{m-2}^n\}$ and $\{v_m^n\}$ respectively. So $\gamma_{\chi} \left(G_m^4\right) = 2 \left\lfloor \frac{2(n-1)}{3} \right\rfloor + 2$. Thus $\gamma_{\chi} \left(G_m^n\right) = \left\lfloor \frac{(m-4)n}{3} \right\rfloor + 2 \left\lfloor \frac{2(n-1)}{3} \right\rfloor + 2 = \left\lfloor \frac{mn}{3} \right\rfloor + 1$. **Subcase (2.2).** $m \equiv 2 \pmod{3}$ and $n \equiv 2 \pmod{3}$. Since $n-2 \equiv 0 \pmod{3}$ by subcase (1.2), $\gamma_{\chi} \left(G_m^n\right) = \gamma_{\chi} \left(G_m^{n-2}\right) \times \gamma_{\chi} \left(G_m^2\right) = \frac{m(n-2)}{3} + \lfloor \frac{2m}{3} \rfloor + 1 = \frac{mn}{3} + 1$.

$$\gamma_{\chi}\left(G_{10}^{7}\right) = \left\lfloor\frac{10\times7}{3}\right\rfloor + 1 = 24$$

Case (3). $mn \equiv 2 \pmod{3}$. We have two subcases.

Subcase (3.1). $m \equiv 1 \pmod{3}$ and $n \equiv 2 \pmod{3}$. In this case G_m^n is obtained by G_m^{n-2} followed by G_m^2 .Since $n-2 \equiv 0 \pmod{3}$ by subcase(1.2) $\gamma_{\chi} (G_m^n) = \gamma_{\chi} (G_m^{n-2}) \times \gamma_{\chi} (G_m^2) = \frac{m(n-2)}{3} + \lfloor \frac{2m}{3} \rfloor + 2 = \frac{mn}{3} + 2$. **Subcase (3.2).** $m \equiv 2 \pmod{3}$ and $n \equiv 1 \pmod{3}$. Interchanging m and n in subcase(3.1) $\gamma_{\chi} (G_m^n) = \frac{(m-2)n}{3} + \lfloor \frac{2n}{3} \rfloor + 2 = \frac{mn}{3} + 2$.

$$\gamma_{\chi}\left(G_{8}^{7}\right) = \left\lfloor\frac{8\times7}{3}\right\rfloor + 2 = 20$$

References

- A.Vijayalekshmi, Total Dominator Colorings in Graphs; International Journal of Advancements in Research & Technology, 1(4)(2012).
- [2] A.Vijayalekshmi, A.E.Prabha, Introduction of ColorClass Dominating Sets in Graphs, *Malaya Journal of Matematik*, 8(4)(2020), 2186-2189.
- [3] F. Harrary, *Graph Theory*, Addition –Wesley Reading Mass, 1969.
- [4] Terasa W. Haynes, Stephen T. Hedetniemi, Peter J Slater, Domination in Graphs, Marcel Dekker, New york, 1998.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******