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Color class dominating sets in ladder and grid
graphs
A. E. Prabha1 and A. Vijayalekshmi2*

Abstract
Let G = (V,E) be a graph. A color class dominating set of G is a proper coloring C of G with the extra property
that every color class in C is dominated by a vertex in G. A color class dominating set is said to be a minimal color
class dominating set if no proper subset of C is a color class dominating set of G. The color class domination
number of G is the minimum cardinality taken over all minimal color class dominating sets of G and is denoted by
γx(G). In this paper, we obtain γx(G) for Ladder graph and Grid graph.
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1. Introduction
All graphs considered in this paper are finite, undirected
graphs and we follow standard definitions of graph theory
as found in [3].

Let G = (V,E) be a graph of order p. The open neigh-
borhood of a vertex v ∈ V (G) is N(v) = {u ∈ V (G)/uv ∈
E(G)} . . . The closed neighborhood of viisN [v] = N(v)∪{v}.
For a set S ⊆ V , the open neighborhood N(S) is defined to
be
⋃

v∈S N(v), and the closed neighborhood of S is N[S] =
N(S)∪S.

A subset S of V is called a dominating set if every vertex
in V −S is adjacent to some vertex in S. A dominating set is
minimal dominating set if no proper subset of S is a dominat-
ing set of G. The domination number γ(G) is the minimum
cardinality taken over all minimal dominating sets of G. A γ

-set is any minimal dominating set with cardinality γ .
A proper coloring of G is an assignment of colors to the

vertices of G, such that adjacent vertices have different colors.

The smallest number of colors for which there exists a proper
coloring of G is called chromatic number of G and is denoted
by χ(G).A color class dominating set of G is a proper coloring
C of G with the extra property that every color classes in C
is dominated by a vertex in G.A color class dominating set is
said to be a minimal color class dominating set if no proper
subset of C is a color class dominating set of G. The color
class domination number of G is the minimum cardinality
taken over all minimal color class dominating sets of G and
is denoted by γχ(G). This concept was introduced by A.
Vijayalekshmi et all [2].

A cartesian product of two subgraphs G1 and G2 is the
graph G1×G2 such that its vertex set is

V (G1×G2) = {(x,y)/x ∈V (G1) ,y ∈V (G2)}

and the edge set is E (G1×G2)= {((x1,x2) ,(y1,y2))/x1 = y1
and (x2,y2) ∈ E (G2) or x2 = y2 and (x1,y1) ∈ E (G1)}.The
ladder graph is defined by L2n = P2×Pn, where Pn is a path
graph with n vertices.A two dimensional grid graph Gn

m is the
Cartesian product of path graphs Pm and Pn.

2. Main Results
Theorem 2.1. The ladder graph Lp has γχ (Lp) = b p

3 c+ r if
p≡ r(mod 3) where r = 0,1,2.
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Proof. Let Lp = L2n = P2×Pn and let

V (Lp) = {u1,u2, . . . ,un+1, . . . ,u2n}

with deg(ui) = 2 for i = 1,n,(n + 1),2n and deg(u j) = 3
for all j 6= i. We take N(ui) = {ui−1,ui+1,ui+n} for i =
2,3, . . . ,n− 1 and N(u j) =

{
u j−1,u j+1,u j−n

}
for j = (n+

2),(n+3), . . . ,(2n−1). We consider three cases.
Case (1). p≡ 0(mod 3).
Decompose Lp into p

3 copies of L6. Assign new colors, say,
2i= 1,2i

(
1≤ i≤ p

3

)
to the vertices N (ui) for i= 2,5, . . . ,(n−

1) and i = (n+2),(n+5) , . . . ,(2n−1), We get a γχ -coloring
of Lp. Thus γχ (Lp) =

p
3 .

Figure- 1.

γχ (L12) =

[
12
3

⌋
+0 = 4

Case (2). p≡ 1(mod 3).
In this case Lp is obtained by Lp−4 followed by L4.Since
p−4≡ 0(mod 3) and by case (1),γχ (Lp−4) =

p−4
3 . Assign

two new colors, say,
(

p−4
3

)
+1 and

(
p−4

3

)
+2 to the vertices

{un−1,u2n} and {un,u2n−1} respectively, we get a γχ -coloring
of Lp. So γχ (Lp) = γχ (Lp−4)+2= p−4

3 +2= p+2
3 =

⌊ p
3

]
+1

Figure- 2.

γχ (L16) =

∣∣∣∣16
3

∣∣∣∣+1 = 6

Case (3). p≡ 2(mod 3).
In this case Lp is obtained by Lp−2 followed by L2. Since
p−2≡ 0(mod 3) and by case (1),γχ (Lp−2) =

p−2
3 . Assign

two new colors, say, p−2
3 + 1 and p−2

3 + 2 to the vertices
{un} and {u2n} respectively, we get a γχ -coloring of Lp. So
γχ (Lp) = γχ (Lp−2)+2 = p−2

3 +2 = p+4
3 =

[ p
3

]
+2.

Figure- 3.

γχ (L14) =

⌊
14
3

⌋
+1 = 6

Theorem 2.2. The Grid graphGn
m = Pm×Pn has γχ (Gn

m) =⌊mn
3

]
+ r if mn≡ r(mod 3) where r = 0,1,2.

Proof. Let Gn
m = Pm×Pn and

V (Gn
m) =

{
vi

j/1≤ i≤ m,1≤ j ≤ n
}
.

We consider three cases.
Case (1). mn≡ 0(mod 3).
We have two subcases.
Subcase (1.1). m≡ 0(mod 3) and n≡ 0(mod 3).
Decompose Gn

m into n
3 copies of G3

m. Assign m− 2 distinct
colors, say, 1,3,4, . . . ,m−1 to the vertices

{
vi

1,v
i
3,v

i+1
2

}
for

i = 1,3,4, . . . ,n−1 and assign colors 2 and m to the vertices{
v1

2,v
2
1,v

2
3,v

3
2 }and

{
vn

1,v
n
3
}

respectively,we get a γχ -coloring
of G3

m. Similarly assign m distinct colors, say, m+ 1,m+
2, . . . ,2m to the identical vertices of second copy of G3

m and
so on. So γχ (Gn

m) =
n
3 ×m = mn

3 .
Subcase (1.2). m≡ 0(mod 3) and n≡ 1(mod 3).
In this case, Gn

m is obtained by Gn−4
m followed by G4

m. Since
n− 4 ≡ 0(mod3), by subcase(1.1), γχ (Gn

m) = γχ

(
Gn−4

m
)
×

γχ

(
G4

m
)
= m(n−4)

3 +2γχ (L2m) =
m(n−4)

3 +2×
( 2m

3

)
= mn

3 .
Subcase (1.3). m≡ 0(mod 3) and n≡ 2(mod 3).
In this case, Gn

m is obtained by Gn−2
m followed by G2

m. Since
n− 2 ≡ 0(mod 3), by subcase (1.1),γχ (Gn

m) = γχ

(
Gn−2

m
)
×

γχ (Gn
m) =

m(n−2)
3 + γχ (L2m) =

m(n−2)
3 +

( 2m
3

)
= mn

3 .

Figure- 4.

γχ

(
G6

9

)
=

[
9×6

3

]
+0 = 18

Case (2). mn≡ 1(mod 3).
We have two subcases.
Subcase (2.1). m≡ 1(mod 3) and n≡ 1(mod 3).
In this case Gn

m is obtained by Gn−4
m followed by G4

m.Since
G4

m
∼= 2(L2n), in the γχ - coloring of first copy of L2n two

unique vertices
{

vn
m−3
}

and
{

vn
m−1
}

have two distinct colors,

994
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say,
⌊mn

3 and
[mn

3

]
+ 1 respectively. In the γχ -coloring of

second copy of L2n, the same unique colors say,
[mn

3 and[mn
3

]
+1 are assigned to the identical vertices, say,

{
vn

m−2
}

and {vn
m} respectively. Soγχ

(
G4

m
)
= 2

[
2(n−1)

3

]
+ 2. Thus

γχ (Gn
m) =

[
(m−4)n

3

]
+2
[

2(n−1)
3

]
+2 =

[mn
3

]
+1.

Subcase (2.2). m≡ 2(mod 3)andn≡ 2(mod 3).
Since n−2≡ 0( mod 3) by subcase (1.2), γχ (Gn

m)= γχ

(
Gn−2

m
)
×

γχ

(
G2

m
)
= m(n−2)

3 +
⌊ 2m

3

]
+1 = mn

3 +1.

Figure- 5.

γχ

(
G7

10
)
=

⌊
10×7

3

]
+1 = 24

Case (3). mn≡ 2(mod 3).
We have two subcases.

Figure- 6.

Subcase (3.1). m≡ 1(mod 3) and n≡ 2(mod 3).
In this case Gn

m is obtained by Gn−2
m followed by G2

m.Since
n− 2 ≡ 0(mod3) by subcase(1.2) γχ (Gn

m) = γχ

(
Gn−2

m
)
×

γχ

(
G2

m
)
= m(n−2)

3 +
⌊ 2m

3

]
+2 = mn

3 +2.
Subcase (3.2). m≡ 2(mod 3) and n≡ 1(mod 3). Interchang-
ing m and n in subcase(3.1) γχ (Gn

m) =
(m−2)n

3 +
⌊ 2n

3

]
+2 =

mn
3 +2.

γχ

(
G7

8
)
=

⌊
8×7

3

]
+2 = 20
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