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Color class dominating sets in ladder and grid
graphs

A. E. Prabha' and A. Vijayalekshmi?®’

Abstract

Let G= (V,E) be a graph. A color class dominating set of G is a proper coloring ¢ of G with the extra property
that every color class in % is dominated by a vertex in G. A color class dominating set is said to be a minimal color
class dominating set if no proper subset of % is a color class dominating set of G. The color class domination
number of G is the minimum cardinality taken over all minimal color class dominating sets of G and is denoted by
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1(G). In this paper, we obtain y,(G) for Ladder graph and Grid graph.
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1. Introduction

All graphs considered in this paper are finite, undirected
graphs and we follow standard definitions of graph theory
as found in [3].

Let G = (V,E) be a graph of order p. The open neigh-
borhood of a vertex v € V(G) is N(v) = {u € V(G) /uv €
E(G)}... The closed neighborhood of vi;sy[v] = N(v) U {v}.
For a set S C V, the open neighborhood N(S) is defined to
be U,esN(v), and the closed neighborhood of S is N[S] =
N(S)US.

A subset S of V is called a dominating set if every vertex
in V — S is adjacent to some vertex in S. A dominating set is
minimal dominating set if no proper subset of S is a dominat-
ing set of G. The domination number ¥(G) is the minimum
cardinality taken over all minimal dominating sets of G. A y
-set is any minimal dominating set with cardinality 7.

A proper coloring of G is an assignment of colors to the
vertices of G, such that adjacent vertices have different colors.

The smallest number of colors for which there exists a proper
coloring of G is called chromatic number of G and is denoted
by x(G).A color class dominating set of G is a proper coloring
¢ of G with the extra property that every color classes in ¢’
is dominated by a vertex in G.A color class dominating set is
said to be a minimal color class dominating set if no proper
subset of C is a color class dominating set of G. The color
class domination number of G is the minimum cardinality
taken over all minimal color class dominating sets of G and
is denoted by 7,(G). This concept was introduced by A.
Vijayalekshmi et all [2].

A cartesian product of two subgraphs G and G is the
graph G| X G3 such that its vertex set is

V(G xG2) = {(x,y)/x €V (G1),y €V (Ga)}

and the edge setis E (G x G2) = {((x1,x2) , (y1,32)) /x1 =y
and ()Cz,yz) cE (Gz) or X =y2 and (xl,yl) cE (Gl)}.The
ladder graph is defined by Ly, = P> x P,, where P, is a path
graph with n vertices.A two dimensional grid graph GJ, is the

Cartesian product of path graphs P, and P,.

2. Main Results

Theorem 2.1. The ladder graph Ly, has Yy (L,) = | 5| +rif
p =r(mod3) where r =0,1,2.
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Proof. LetLy, = Ly, = P, X B, and let

V(Lp) = {ul,uz,...,u,,+1,...7u2n}

with deg(u;) = 2 for i = 1,n,(n+1),2n and deg(u;) = 3

for all j #i. We take N (u;) = {uj_1,uir1,uin} for i =

2,3,...,n—1 and N (u;)
2), (n+ 3),...,(2n—1). We consider three cases.

Case (1). p =0(mod 3).

Decompose L, into % copies of Lg. Assign new colors, say,

2i=1,2i (1 <i<E)tothe vertices N (u;) fori=2,5,...

1) andi=(n+2),(n+5),...,(2n—1), We get a y -coloring
of L,. Thus ¥ (L,) = &.
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Yy (L12) = [132J +0=4

Case (2). p = 1(mod3).

In this case L, is obtained by L,_4 followed by L4.Since
p—4=0(mod3) and by case (1),¥, (Ly—s) = ﬂ . Assign
) +1 and ( ) +2to the vertices
{ttn—1,u2, } and {uy, ur,_1 } respectively, we get a y,, -coloring
of L. So ¥y (Lp) =Yy (Lp—4)+2= P 4+2 p+2 L3]+1

two new colors, say, (

ug

Lo i3

Figure- 2.
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Case (3). p =2(mod?3).

In this case L, is obtained by L,_» followed by L,. Since
p—2=0(mod3) andbycase( )Yy (Lp—2) = 55
two new colors, say, 3 —|—1 and p 2 +2 to the vertices
{u, } and {uy,} respectively, we get a Yx -coloring of L,,. So

Yy (Lp) = Yx(p2)+2_p2+2 p+4 = [§] +2.
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Figure- 3.

= {uj—lyuj+lyuj—;1} for ] = (f’l+
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Theorem 2.2. The Grid graph G, = B, X P, has ¥, (G),) =
| 2] +r if mn = r(mod3) where r =0,1,2.

Proof. Let G},

V(Gy) =

We consider three cases.

Case (1). mn = 0(mod3).

We have two subcases.

Subcase (1.1). m = 0(mod3) and n = 0( mod 3).
Decompose Gy, into 5 copies of G3. Assign m — 2 distinct

=P, x P, and

{i/1<i<m1<j<n}.

colors, say, 1,3,4,...,m— 1 to the vertices {v’i,vg,vl+1} for
i=1,3,4,...,n—1 and assign colors 2 and m to the vertices
{vi,vi,v3,v3 tand {V},V4} respectively,we geta ¥, -coloring
of G3.. Similarly assign m distinct colors, say, m + 1,m +
2,...,2m to the identical vertices of second copy of G2, and
soon. So ¥, (Gy) =5 xm="3".

Subcase (1.2). m = 0(mod 3) and n = 1(mod 3).

In this case, G7, is obtained by G~ followed by G2 . Since
n—4 = 0(mod3), by subcase(1.1), 7, (G%) = ¥y (G*) x
Y (Gh) = "5 427, (Law) = 52 42 (%) = e,
Subcase (1.3). m = 0(mod 3) and n = 2(mod 3).

In this case, G7, is obtained by G2 followed by G2, Since
_ ny _ n—2
n—2=0(mod3), by subcase (1.1),7, (Gr,) = v, (G7%) x
ny _ mn-2) _ m(n-2) 2m\ __ mn
e (Gh) = 57 41 (Lom) = =57+ (F1) = 5
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Case (2). mn = 1(mod3).

We have two subcases.

Subcase (2.1). m = 1(mod3) and n = 1(mod 3).

In this case G”, is obtained by G”,* followed by G2 .Since
Gy, 22 2(Lay), in the ¥y - coloring of first copy of Ly, two
unique vertices {v?,_;} and {v_, } have two distinct colors,
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say, | and ["%'] 41 respectively. In the ¥, -coloring of

second copy of Ly,, the same unique colors say, [
[%] + 1 are assigned to the identical vertices, say, {v3172}

and {vj,} respectively. Soy, (Gy) = 2{

2(n—1)

] + 2. Thus

7 (Gy) = |5 42 |2 ) o= [m] 41,
Subcase (2.2). m = 2(mod3)andn =2(mod3).
Since n—2 = 0( mod 3) by subcase (1.2), v, (G%) = ¥, (Gl 2) x

mn

and

2) = m(n—2) {Lm} _ mn
Y (Go) =52+ [ 2] +1="2+1.
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Case (3). mn =2(mod3).
‘We have two subcases.
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Subcase (3.1). m = 1(mod3) and n = 2(mod 3).

In this case G?, is obtained by G2 followed by G2,.Since
n—2 = 0(mod3) by subcase(1.2) ¥, (Gy,) = 1, (G72) x
1 (G) =224 ) 12— 242

Subcase (3.2). m =2(mod 3) and n = 1( mod 3). Interchang-
ing m and n in subcase(3.1) 7, (G),) = @ +|&]+2=
5 +2.

7
7 (GY) = Vi] +2=20
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