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Abstract
In this paper, we extend and generalises the results by Ahmadullah et al. to self mappings on the S-metric space
under a binary relation via implicit contractive condition with an application to an integral equation. We also
provided an illustrative example.
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1. Introduction
In 1992, Bapure Dhage [5] in his PhD thesis introduced

a new class of generalised metric space called the D-metric
space. In this work, he defined topological properties, com-
pleteness and compactness for D-metric spaces.

The study of fixed point theorems on S-metric space was
initiated by Sedghi et al. [17]. They gave an interesting gener-
alization of D-metric space to S-metric space by formulating
its properties as follows:

Definition 1.1. [17] Let X be a non empty set. A S-metric
on X is a function S : X3→ [0,∞) that satisfies the following
conditions for all x,y,z,a ∈ X.

(S1) S(x,y,z)≥ 0;

(S2) S(x,y,z) = 0 if and only if x = y = z; and

(S3) S(x,y,z)≤ S(x,x,a)+S(y,y,a)+S(z,z,a).

The pair (X ,S) is called the S-metric space.

Some of the examples which satisfies the above character-
istics are:

(1) Let X = Rn and ‖.‖ a norm on X , then,

S(x,y,z) = ‖y+ z−2x‖+‖y− z‖,

is an S-metric on X .

(2) Let X = Rn and ‖.‖ a norm on X , then,

S(x,y,z) = ‖x− z‖+‖y− z‖,

is an S-metric on X .

(3) Let X be a non empty set, d is ordinary metric on X , then

S(x,y,z) = d(x,z)+d(y,z),

is an S-metric on X .

Sedghi et al. [17] proved that the D-metric is the S-metric,
but in general the converse is not true.

We give some vivid illustrative examples on S-metric
spaces as follows:

Example 1.2. [17] Let X =R2, d is an ordinary metric on X,
therefore,

S(x,y,z) = d(x,y)+d(x,z)+d(y,z),
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is a S-metric on X. If we connect the points x,y,z by a line
we have a triangle and if we choose a point a mediating this
triangle then the inequality

S(x,y,z) = S(x,x,a)+S(y,y,a)+S(z,z,a),

holds.

Example 1.3. [17] Let X = R, then

S(x,y,z) = ‖x− z‖+‖y− z‖,

is a metric space on X. Define a self map F on X by:
Fx = 1

2 sinx. We have

S(Fx,Fx,Fy) = |1
2
(sinx− siny)|+ |1

2
(sinx− siny)|,

≤ |1
2
(x− y)|+ |1

2
(x− y)|

≤ 1
2
(|(x− y)|+ |(x− y)|),

=
1
2

S(x,x,y),

for every x,y ∈ X.

Also, [17] proved the following lemma to satisfy S-metric

Lemma 1.4. [17] In an S-metric space, we have

S(x,x,y) = S(y,y,x).

Lemma 1.5. [17] Let (X ,S) be an S-metric space. If lim
n→∞

xn→
x and lim

n→∞
yn→ y, then

lim
n→∞

S(xn,xn,yn) = S(x,x,y).

Lemma 1.6. [18] Let (X ,S) be a S-metric space. If there ex-
ists two sequences {xn} and {yn} such that lim

n→∞
S(xn,xn,yn) =

0, whenever {xn} is a sequence in X such that lim
n→∞

xn = t for

some t ∈ X, then lim
n→∞

yn = t.

Definition 1.7. [17] Let (X ,S) be the S-metric space. For
r > 0 and x ∈ X, we define the open ball BS(x,r) and closed
ball BS[x,r] with center x and radius r as follows:

(B1) BS(x,r) = {y ∈ X : S(y,y,x)< r};

(B2) BS[x,r] = {y ∈ X : S(y,y,x)≤ r}.

The topology induced by the S-metric is the topology
generated by all open balls’ base in X .

Definition 1.8. [17] Let (X ,S) be an S-metric space.

(i) A sequence {xn} ∈ X converges to x if and only if
S(xn,xn,x)→ 0 as n→∞. That is for each ε > 0, there
exists n0 ∈ N such that for all n ≥ n0, S(xn,xn,x) < ε

and we denote this by lim
n→∞

xn→ x.

(ii) A sequence {xn} in X is called Cauchy sequence if for
each ε > 0, there exists n0 ∈N such that S(xn,xn,xm)<
ε for each n,m≥ 0.

(iii) The S-metric space (X ,S) is complete if every Cauchy
sequence is a convergent sequence.

Since then, several researchers have been working in this
direction to generalise the results in different spaces using the
S-metric space. For more details, one can see [6, 9, 16] and
the references therein.

2. Preliminaries

2.1 Implicit relation
In 2018, Popa and Patriciu [14] gave the concept of implicit
functions in S-metric space which includes most of the exist-
ing literature’s well-known contractions besides several new
ones. Popa and Patriciu [14] proved a generalised fixed point
theorem for two pairs of compatible mappings in S - metric
spaces. They considered the family FCS be the set of all real
continuous functions.

F : R6
+→ R satisfying the following conditions:

(F1) F is non-increasing in variable t5 and t6;

(F2) there exists h ∈ [0,1) such that for all u,v≥ 0,

(F2a) F(u,v,v,u,0,2u+ v)≤ 0, or

(F2b) F(u,v,u,v,2u+ v,0)≤ 0, implies u≤ hv,

(F3) F(t, t,0,0, t, t)≤ 0, ∀ t > 0.

Popa and Patriciu [14] used it to unify and extend various
findings in the literature. Fore more details, one can see paper
by Imdad et al. [8].

These are some examples of implicit functions which
satisfies the above implicit relations.

Example 2.1 The function of F ∈FCS satisfies the prop-
erties ( F1) - (F3) (see, Popa and Patriciu [14] ).

(1) F(t1, t2, t3, t4, t5, t6)= t1−k max{t2, t3, t4, t5, t6}, where k∈[
0,

1
3

)
.

(2) F(t1, t2, t3, t4, t5, t6)= t1−at2−bt3−ct4−dt5−et6, where
a,b,c,d,e≥ 0 and a+b+ c+3d +3e≤ 1.

(3) F(t1, t2, t3, t4, t5, t6) = t1−at2−bmax{t3, t4, t5, t6}, where
a,b≥ 0 and a+3b < 1.

(4) F(t1, t2, t3, t4, t5, t6) = t1− at2− bt3− ct4− d max{t5, t6},
where a,b,c,d ≥ 0 and a+b+ c+3d < 1.

(5) F(t1, t2, t3, t4, t5, t6) = t1− at2− d max{t3, t4}− bt5− ct6,
where a,b,c,d ≥ 0 and a+d +3(b+ c)< 1.

(6) F(t1, t2, t3, t4, t5, t6) = t1−a(t5 + t6)−bt2− cmax{t3, t4},
where a,b,c≥ 0 and 3a+b+ c < 1.
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(7) F(t1, t2, t3, t4, t5, t6) = t1−a(t3 + t4)−bt2− cmax{t5, t6},
where a,b,c≥ 0 and 2a+b+3c < 1.

(8) F(t1, t2, t3, t4, t5, t6) = t1−amax{t4 + t5, t3 + t6}−bt2,
where a,b≥ 0 and 4a+b < 1.

(9) F(t1, t2, t3, t4, t5, t6)= t2
1−t1(at2+bt3+ct4)−dt5t6, where

a,b,c,d ≥ 0,a+b+ c < 1 and a+d < 1.

(10) F(t1, t2, t3, t4, t5, t6) = t2
1 −at1t2−bt3t4− ct5t6,

where a,b,c≥ 0,a+b < 1 and a+ c < 1.

(11) F(t1, t2, t3, t4, t5, t6)= t1−k max
{

t2, t3, t4,
t5 + t6

3

}
, where

k ∈ [0,1).

2.2 Relation theoretic in S-metric space
In this section, we recall some definitions of binary relations
relevant to relation-theoretical variants and some metrical
concepts such as completeness and continuity. They will be
useful in developing our main results.

Definition 2.1. [11] A binary relation on X is a non-empty
subset R of X ×X. R is called transitive binary relation if
(x,z)∈R for all x,y,z∈ X such that (x,y)∈R and (y,z)∈R.
If (x,y) ∈ R, we also denote it by xRy, and we say ”x is
related to y”.

Definition 2.2. [10] Let X be a non-empty set and R be a
binary relation on X. Let l be a natural number, a path length
in R from x to y is a finite sequence {z0,z1,z2, ...,zl} ∈ X
beginning with x ending with y, such that

z0Rz1,z1Rz2,z2Rz3,z3Rz4, . . .zn−1Rzl ,

which satisfies the following conditions: z0 = x,zl = y and
[zi,zi,zi+1]∈R for each i∈ {0,1,2,3, ...l−1}, then this finite
sequence is called a path of length l (where l ∈ N) joining x
to y in R. We denote the family of all paths in R from x to y
by γ(x,y,R).

Note that, a path of length l involves (l +1) elements of
X that need not be distinct in general.

Definition 2.3. [19] A metric space (X ,d) endowed with a
binary relation R is R-non decreasing regular if for any
sequence {xn} ∈ X,

(xn,xxn+1) ∈R,∀n ∈ N,
xn→ x∗ ∈ X ,

⇒ (xn,x∗) ∈R,∀n ∈ N.

We denote by X(F,R) the set of all points x ∈ X satisfying
(x,Fx) ∈R, where R be a binary relation on a non-empty
set X and F : X → X a self mapping.

Motivated by definition given by Roldan and Lopez [19],
we extend it to S-metric space notion.

Definition 2.4. A S-metric space (X ,S) endowed with a bi-
nary relation R is R-non decreasing if for any sequence
{xn} ∈ X,

(i) (xn,xn, ,xxn+1) ∈R,∀n ∈ N,

(ii) xn→ x ∈ X ,

(iii) ⇒ (xn,xn,x) ∈R,∀n ∈ N.

We denote by X(T,R) the set of all points x ∈ X satisfying
(x,x,T x) ∈R, where R be a binary relation on a non-empty
set X and T : X → X a self mapping.

Definition 2.5. Let (X ,S) be the S- metric space. A binary
relation R defined on X is called S-self closed if whenever
{xn} is a R-preserving sequence and xn

S−→ x, then there is
a sub sequence {xnk} of {xn} with [xnk ,xnk ,x] ∈ R for all
k ∈ N0.

Definition 2.6. Let (X ,S,R) be the S- metric space equipped
with a binary relation R defined on X. Then a subset D of X
is called R-directed if for every pair of points x,y ∈ D, there
is z in X such that (x,x,z) ∈R and (y,y,z) ∈R.

Several scholars worked along this line, proved and gen-
eralized a binary relation notion in different spaces. One can
see [1, 3, 4, 7, 12, 15] and the references therein.

Furthermore, Ahmadullah et al. [2] gave an interesting
result on metric spaces equipped with binary relation as fol-
lows:

Theorem 2.7. [2] Let (X ,d,R) be a metric space equipped
with a binary relation R defined on X and T a self-mapping
on X. Assume that the following conditions holds:

(a) (X ,d) is R-complete,

(b) X(T ;R) is non-empty,

(c) R is T -closed,

(d) either T is R continuous or R is d-self-closed,

(e) There exists an implicit function F ∈F with

F(d(T x,Ty),d(x,y),S(x,T x),d(y,Ty),d(x,Ty),d(y,T x))≤ 0,

for all x,y ∈ X such that x,y ∈R.
Then T has a fixed point.

Theorem 2.8. [2] In addition to the hypothesis (a)− (e) of
Theorem 2.7, suppose that the following condition hold:

(f) γT (x,y,Rs) is non-empty for each x,y ∈ X, wherein F
also enjoys (F3). Then T has a unique fixed point.

The purpose of this paper is to study the existence of
a fixed point employing an arbitrary binary relation under
self-mappings in S-metric spaces via implicit contraction con-
dition. Our results improve and extend

Ahmadullah et al. result in [2] from metric space to S-
metric space notion.
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3. Main Results
In this section, we will extend the results due to Ahmadullah
et al. [2]. The extended theorem is as follows:

Theorem 3.1. Let (X ,S) be the S- metric space equipped with
a binary relation R on X and T a self-mapping on X. Assume
that the following condition holds:

(a) (X ,S) is R-complete,

(b) X(T,R) is non-empty,

(c) R is T -closed,

(d) either T is R continuous or R is S-self-closed,

(e) there exists an implicit function F ∈FCS with

F(S(T x,T x,Ty),S(x,x,y),S(T x,T x,x),

S(Ty,Ty,y),S(T x,T x,y),S(Ty,Ty,x))≤ 0, (3.1)

for all x,y ∈ X such that x,y ∈R.

(f) γT (x,x,y,Rs) is non-empty for each x,y ∈ X, where in F
also satisfies (F3). Then T has a fixed point.

Proof. Let x0 ∈ X(T,R) be non empty set, as from (a), we
construct a Picard sequence {xn} such that xn =T nx0, ∀n∈N0.
Since (x0,x0,T x0) ∈R and R is T -closed using (c) we have

S(T x0,T x0,T 2x0),S(T 2x0,T 2x0,T 3x0), . . .

S(T nx0,T nx0,T n+1x0), · · · ∈R.

From Definition 2.4, we have

(xn,xn,xn+1) ∈R,∀n ∈ N0.

Such that the sequence {xn} is R-preserving. By (3.1) for
x = xn and y = xn+1 we have

F(S(T xn,T xn,T xn+1),S(xn,xn,xn+1),S(T xn,T xn,xn),

S(T xn+1,T xn+1,xn+1),S(T xn,T xn,xn+1),

S(T xn+1,T xn+1,xn))≤ 0.

Equivalently to

F(S(xn+1,xn+1,xn+2),S(xn,xn,xn+1),S(xn+1,xn+1,xn),

S(xn+2,xn+2,xn+1),S(xn+1,xn+1,xn+1),S(xn+2,xn+2,xn))≤ 0.

Implies that

F(S(xn+1,xn+1,xn+2),S(xn,xn,xn+1),S(xn+1,xn+1,xn),

S(xn+2,xn+2,xn+1),0,S(xn+2,xn+2,xn))≤ 0.(3.2)

By Lemma 1.4,

S(xn+1,xn+1,xn+2) = S(xn+2,xn+2,xn+1)

S(xn,xn,xn+1) = S(xn+1,xn+1,xn).

By (S3) we have

S(xn+2,xn+2,xn) ≤ 2S(xn+2,xn+2,xn+1)+S(xn,xn,xn+1).

Then, by (3.2) we obtain

F(S(xn+1,xn+1,xn+2),S(xn,xn,xn+1),S(xn+1,xn+1,xn),

S(xn+2,xn+2,xn+1),0,2S(xn+2,xn+2,xn+1)

+S(xn,xn,xn+1))≤ 0.(3.3)

Letting

u = S(xn+1,xn+1,xn+2), (3.4)

and

v = S(xn,xn,xn+1), (3.5)

Applying (3.4) and (3.5) in (3.3), we get

F(u,v,v,u,0,2u+ v)≤ 0.

By (F1), F is non-decreasing in the sixth variable.

F(u,v,v,u,0,2u+ v) ≤ 0.

Implying thereby using (F1) there exists some h ∈ [0,1), such
that u≤ hv, which amounts to say

S(xn+1,xn+1,xn+2) ≤ hS(xn,xn,xn+1),

By induction, it gives rise to

S(xn+1,xn+1,xn+2)≤ hn+1S(x0,x0,x1), ∀n ∈ N0. (3.6)

Thus for all n < m, by S3, Lemma 1.4 and (3.6), we have

S(xn,xn,xm) ≤ 2S(xn,xn,xn+1)+S(xm,xm,xn+1).

= 2S(xn,xn,xn+1)+S(xn+1,xn+1,xm), . . .

≤ 2[hn +hn+1 +hn+2 · · ·+hm−1]S(x0,x0,x1)

≤ 2hnS(x0,x0,x1)[1+h+h2 + ...+hm−n−1]

≤ 2hnS(x0,x0,x1)[1+h+h2 + ...+hm−n−1]

≤ 2hn
m−n−1

∑
i=0

hiS(x0,x0,x1)

≤ 2hn

1−h
S(x0,x0,x1). (3.7)

If x = xn and y = xn−1, by (3.1) we obtain

F(S(T xn,T xn,T xn−1),S(xn,xn,xn−1),S(T xn,T xn,xn),

S(T xn−1,T xn−1,xn−1),S(T xn,T xn,xn−1),S(T xn−1,T xn−1,xn))≤ 0.

Equivalently to

F(S(xn+1,xn+1,xn),S(xn,xn,xn−1),S(xn+1,xn+1,xn),

S(xn,xn,xn−1),S(xn+1,xn+1,xn−1),S(xn,xn,xn))≤ 0.

Implies that

F(S(xn+1,xn+1,xn),S(xn,xn,xn−1),S(xn+1,xn+1,xn),

S(xn,xn,xn−1),S(xn+1,xn+1,xn−1),0)≤ 0.(3.8)
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By Lemma 1.4,

S(xn+1,xn+1,xn−1) = S(xn−1,xn−1,xn+1)

S(xn,xn,xn−1) = S(xn−1,xn−1,xn).

By (S3) and Lemma 1.4 we have

S(xn+1,xn+1,xn−1) ≤ 2S(xn+1,xn+1,xn)+S(xn−1,xn−1,xn)

S(xn+1,xn+1,xn−1) ≤ 2S(xn+1,xn+1,xn)+S(xn,xn,xn−1).

Then, by (3.8) we obtain

F(S(xn+1,xn+1,xn),S(xn,xn,xn−1),S(xn+1,xn+1,xn),

2S(xn+1,xn+1,xn)+S(xn,xn,xn−1),0)≤ 0.(3.9)

Letting

u = S(xn+1,xn+1,xn), (3.10)

and

v = S(xn,xn,xn−1), (3.11)

Applying (3.10) and (3.11) in (3.9), we get

F(u,v,v,u,2u+ v,0)≤ 0.

But from (F1), we have, function F non-decreasing in the
sixth variable. Thus by applying (F2b), there exists some
h ∈ [0,1), such that u≤ hv, i. e.

S(xn+1,xn+1,xn) ≤ hS(xn,xn,xn−1),

which inductively gives rise to

S(xn+1,xn+1,xn) ≤ hn+1S(x0,x0,x1),

∀n ∈ N0. (3.12)

We notice that (3.12) is identical to (3.6). So we follow a
similar proof for the condition (F2b) and conclude that a se-
quence {xn} is Cauchy sequence in X . Hence, {xn} is an
R-preserving Cauchy sequence in X .

From (d) assume that T -is R-continuous. Since X is
complete there exists x ∈ X with

lim
n→∞

T xn = x.

Since T is continuous, we have

x = lim
n→∞

T xn+1 = lim
n→∞

T (T xn) = T x.

Therefore, x is a fixed point of T .
Letting m→ ∞ in (3.7), we have

S(T xn,T xn,x) ≤ 2hn

1−h
S(x,x,x0).

Next, suppose that R is S-self closed and xn
S−→ x, there is

a subsequence {xnk} of {xn} with [xnk ,xnk ,x] ∈R, ∀k ∈ N0.
This implies that either (xnk ,xnk ,x) ∈R, ∀k ∈N0 or (x,x,xnk)
∈R, ∀k ∈ N0.

Applying condition (e) to (xnk ,xnk ,x) ∈R, ∀k ∈ N0, for
x = xnk , y = x and by Lemma 1.8, we have

F(S(T xnk ,T xnk ,T x),S(xnk ,xnk ,x),S(T xnk ,T xnk ,xnk),

S(T x,T x,x),S(T xnk ,T xnk ,x),S(T x,T x,xnk))≤ 0.

or

F(S(xnk+1 ,xnk+1 ,T x),S(xnk ,xnk ,x),S(xnk+1 ,xnk+1 ,xnk),

S(T x,T x,x),S(xnk+1 ,xnk+1 ,x),S(T x,T x,xnk))≤ 0.

Letting n→∞ by Lemma 1.4 and using xnk
S−→ x and continuity

of F and S, we obtain

F(S(x,x,T x),S(x,x,x),S(x,x,x),S(T x,T x,x),

S(x,x,x),S(T x,T x,x))≤ 0.
F(S(x,x,T x),0,0,S(T x,T x,x),0,S(T x,T x,x))≤ 0,

a contradiction to (F3). Hence, we obtain S(x,x,T x) = 0, so
that T x = x. x is a fixed point of T .

Again, if (x,x,xnk) ∈R, ∀k ∈N0. Then owing to (F1), we
obtain S(x,x,T x) = 0, so that T x = x. Hence x is a fixed point
of T .

By assumption ( f ), there exists a path say {z0,z1,z2, ...,zl}
of some finite length l in Rs from x to y so that z0 = x,zl =
y, [zi

n,z
i
n,z

i
n+1]∈R for each i(0≤ i≤ l−1). As R is T -closed,

we have [T nzi
n,T

nzi
n,T

nzi
n+1]∈R for each i(0≤ i≤ l−1) and

each n ∈ N0. Let

T x = x and Ty = y. (3.13)

We show that x= y. By ( f ), there exists a path ({z0,z1,z2, ...,zl})
of finite length l in Rs from x to y with

z0 = x and zl = y, [zi,zi,T zi+1]∈R, f or each i∈ {0,1,2, . . . l−1},
(3.14)

and

[zi,zi,T zi] ∈R, f or each i ∈ {1,2, . . . l−1}. (3.15)

We construct two sequences

z0
n = x and zl

n = y. (3.16)

By using (3.13), we get

T z0
n = T x = x ∀n ∈ N0, and T zl

n = Ty = y ∀n ∈ N0.

Setting, p

zi
0 = zi f or i ∈ {0,1,2,3, ..., l−1}, (3.17)

we construct a sequence {zi
n}, such that T izn = T izn+1 corre-

sponding to each zi. Since [zi
0,z

i
0,z

i
l ] ∈R and R is T -closed,

on using (3.6), we get

lim
n→∞

S(zi
n,z

i
n,z

i
n+1) = 0, ∀ i ∈ {0,1,2,3, ..., l−1}.
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By Using [zi
0,z

i
0,z

i+1
0 ] ∈R due to (3.14) and (3.15) and R is

T closed, we obtain

[T zi
0,T zi

0,T zi+1
0 ] ∈R, for each i ∈ {0,1,2, . . . l−1}

and for all n ∈ N0,

=⇒ [zi
0,z

i
0,z

i+1
0 ] ∈R, for each i ∈ {0,1,2, . . . l−1}

and for all n ∈ N0.

Define Si
n = S(zi

n,z
i
n,z

i+1
n ), f or all n ∈ N0 and f or each i ∈

{0,1,2, . . . l−1}. Equivalently to

lim
n→∞

Si
n = 0.

By Lemma 1.6, assume that lim
n→∞

Si
n = t > 0. Since [zi

n,z
i
n,z

i+1
n ]

∈ R, either [zi
n,z

i
n,z

i+1
n ] ∈ R or [zi+1

n ,zi+1
n ,zi

n] ∈ R, now on
applying condition (e) to it, we obtain

F(S(T zi+1
n ,T zi+1

n ,T zi
n),S(z

i+1
n ,zi+1

n ,zi
n),S(T zi+1

n ,T zi+1
n ,zi+1

n ),

S(T zi
n,T zi

n,z
i
n),S(T zi+1

n ,T zi+1
n ,zi

n),S(T zi
n,T zi

n,z
i+1
n ))≤ 0.

or

F(S(zi+1
n+1,z

i+1
n+1,z

i
n+1),S(z

i+1
n ,zi+1

n ,zi
n),S(z

i+1
n+1,z

i+1
n+1,z

i+1
n ),

S(zi
n+1,z

i
n+1,z

i
n),S(z

i+1
n+1,z

i+1
n+1,z

i
n),S(z

i
n+1,z

i
n+1,z

i+1
n ))≤ 0.

Taking n→ ∞ and using lim
n→∞

Si
n = t in the above inequality,

we get

F(t, t,0,0, t, t)≤ 0,

which is a contradiction by (F3) and hence

lim
n→∞

Si
n = t = 0.

Similarly, if (zi
n,z

i
n,z

i+1
n ) ∈R, then, from above

lim
n→∞

Si
n = t = 0.

Therefore,

lim
n→∞

Si
n = lim

n→∞
S(zi

n,z
i
n,z

i+1
n ) = 0,

for each i ∈ {0,1,2, . . . l−1}. (3.18)

Using (S3) and Lemma 1.4, we obtain

S(x,x,y) = S(z0
n,z

0
n,z

l
n) ≤

l−1

∑
i=0

S(zi
n,z

i
n,z

i+1
n )

=
l−1

∑
i=0

Si
n,

→ 0 as n→ ∞.

From Theorem 3.1, we can deduce a number of corollaries
which appeared as given below:

Corollary 3.2. The results of Theorem 3.1 remain true for all
x,y ∈ X with (x,x,y) ∈ R, the implicit relation (e) is replaced
by one of the following:

(i)

S(T x,T x,Ty)

≤ k max{S(x,x,y),S(T x,T x,x),S(Ty,Ty,y),

S(T x,T x,y),S(Ty,Ty,x)}, (3.19)

where k ∈
[
0,

1
3

)
.

(ii)

S(T x,T x,Ty)

≤ aS(x,x,y)+bS(T x,T x,x)+ cS(Ty,Ty,y)

+ dS(T x,T x,y)+ eS(Ty,Ty,x), (3.20)

where a,b,c,d,e≥ 0 and a+b+ c+3d +3e≤ 1.

(iii)

S(T x,T x,Ty)

≤ k max{S(x,x,y),S(T x,T x,x),S(Ty,Ty,y),

S(T x,T x,y),S(Ty,Ty,x)}, (3.21)

where k ∈
[
0,

1
3

)
.

(iii)

S(T x,T x,Ty)

≤ aS(x,x,y)+bmax{S(T x,T x,x),S(Ty,Ty,y),

S(T x,T x,y),S(Ty,Ty,x)}, (3.22)

where a,b≥ 0 and a+3b < 1.

(iv)

S(T x,T x,Ty)

≤ aS(x,x,y)+bS(T x,T x,x)+

cS(Ty,Ty,y)+

d max{S(T x,T x,y),S(Ty,Ty,x)} ,
(3.23)

where a,b,c,d ≥ 0 and a+b+ c+3d < 1.

(v)

S(T x,T x,Ty)

≤ aS(x,x,y)+d max{S(T x,T x,x),

S(Ty,Ty,y)}+bS(T x,T x,y)+

cS(Ty,Ty,x), (3.24)

where a,b,c,d ≥ 0 and a+d +3(b+ c)< 1.
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(vi)

S(T x,T x,Ty) ≤ a(S(T x,T x,y)+S(Ty,Ty,x))+

bS(x,x,y)+

cmax{S(T x,T x,x),S(Ty,Ty,y)} ,
(3.25)

where a,b,c≥ 0 and 3a+b+ c < 1.

(vii)

S(T x,T x,Ty) ≤ a(S(T x,T x,x)+S(Ty,Ty,y))

+bS(x,x,y)+ cmax{S(T x,T x,y),

S(Ty,Ty,x)}, (3.26)

where a,b,c≥ 0 and 2a+b+3c < 1.

(viii)

S(T x,T x,Ty) ≤ amax{S(Ty,Ty,y)+S(T x,T x,y),

S(T x,T x,x)+S(Ty,Ty,x)}
+bS(x,x,y), (3.27)

where a,b≥ 0 and 4a+b < 1.

(ix)

S(T x,T x,Ty)2 ≤ S(T x,T x,Ty){aS(x,x,y)+

bS(T x,T x,x)+ cS(Ty,Ty,y)}
−dS(T x,T x,y)S(Ty,Ty,x),

(3.28)

where a,b,c,d ≥ 0,a+b+ c < 1 and a+d < 1.

(x)

S(T x,T x,Ty)2 ≤ aS(T x,T x,Ty)S(x,x,y)+

bS(T x,T x,x)S(Ty,Ty,y)+

cS(T x,T x,y)S(Ty,Ty,x),

(3.29)

where a,b,c≥ 0,a+b < 1 and a+ c < 1.

(xi)

S(T x,T x,Ty) ≤ k max{S(x,x,y),S(T x,T x,x),S(Ty,Ty,y),
S(T x,T x,y)+S(Ty,Ty,x)

3
},

(3.30)

where k ∈ [0,1).

Example 3.3. Let X = [1,2]. Define the usual S-metric as
S(x,y,z) = ‖x− z‖+‖y− z‖ for all x,y,z ∈ X . Then (X ,S) is
a complete S- metric space. Let T be a self mapping defined
on X as:

T x =
{

0, for ∈ [0,1],
1, for x ∈ (1,2].

Now, R can be a set of binary relation.

R = {(0,0)(0,1),(0,2),(1,1),(1,2),(2,2)},

on X. Obviously, R is T -closed but T is not continuous. We
choose R - preserving sequence {xn} with xn

S−→ x such that
(xn,xn,xn+1) ∈R, for all n ∈ N0.

Here, one may notice that (xn,xn,xn+1)∈R, for all n∈N0
and there exists an integer N ∈N0 such that xn = x ∈ {0,1,2}
for n≤N. So, we can take subsequence {xnk} of the sequence
{xn} such that xnk = x for all k ∈ N0. For which it amounts
saying that [xnk ,xnk ,x] ∈ R, for all k ∈ N0. Therefore R is
S-closed.

Define a continuous function F : R6
+→ R by

F(t1, t2, t3, t4, t5, t6) = t1−
99

100
t5−

9
10

t6.

i.e.,

S(T x,T x,Ty) ≤ 99
100

S(T x,T x,y)+
9
10

S(Ty,Ty,x).

For

(x,y) ∈ {(0,0)(0,1),(0,2),(1,1),(1,2),(2,2)},∀x,y ∈R.

S(T x,T x,Ty) = 0,

hence obvious.
For (x,y) ∈ (0,2)

S(T x,T x,Ty) = S(T 0,T 0,T 2) = 2.
S(T x,T x,y) = S(T 0,T 0,2) = 2.
S(Ty,Ty,x) = S(T 2,T 2,0) = 2.

S(T 0,T 0,T 2) ≤ 99
100

S(T 0,T 0,2)+
9

10
S(T 2,T 2,0).

2 ≤ 99
100
×2+

9
10
×2.

2 ≤ 198
100

+
18
10

.

2 ≤ 378
100

.

For (x,y) ∈ (1,2)

S(T x,T x,Ty) = S(T 1,T 1,T 2) = 2.
S(T x,T x,y) = S(T 1,T 1,2) = 4.
S(Ty,Ty,x) = S(T 2,T 2,1) = 0.
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S(T 1,T 1,T 2) ≤ 99
100

S(T 1,T 1,2)+
9
10

S(T 2,T 2,1).

2 ≤ 99
100
×4+

9
10
×0.

2 ≤ 396
100

+0.

2 ≤ 396
100

.

Which shows that all assertion of Theorem 3.1 are satisfied.
Hence x = 0 is a fixed point of T .

4. An application
In this section, we provide an application of Theorem 3.1 in
the form of the existence of a solution for an integral equation.

In 2018, Özgür and Taş [13] gave a generalization of
completeness of S∞-space by using the metric S∞ defined as
S∞-metric generated by d∞.

Let F = R or F = C and

C[a,b] = { f : [a,b]→ F}

where F is a continuous function.
The function

S∞ : C[a,b]×C[a,b]×C[a,b]→ [0,∞)

defined as

S∞( f ,g,h) = d∞( f ,h)+d∞(g,h)

= sup
x∈[a,b]

| f (x)−h(x)|+ sup
x∈[a,b]

|g(x)−h(x)|,

for all f ,g,h ∈ [a,b] is the S-metric on [a,b] and (C[a,b],S∞)
is the S-metric space.

Definition 4.1. [13] Assume that r = min{a, b
K } and

X = {y ∈C[x0− r,x0 + r] : S(y(x),y(x),y0) ≤ b

f or x ∈ [x0− r,x0 + r]}

where S is the S-metric spaces defined in Definition 1.7.
Hence, (X ,S∞) is a complete S-metric space.

Definition 4.2. [13] The function f is bounded if there exists

K = sup{| f (x,y)| : (x,y) ∈ I}.

We notice that (x,x,y) ∈ I for S(x,x,x0)≤ r and y ∈ X .

Proposition 4.3. [13] (C[a,b],S∞) is a complete S-metric
space.

Consider the following integral equation{
y
′
(x) = f (x,y(x)),

y(x0) = y0.
(4.1)

The solution of this problem can be written in the follow-
ing form

y(x) = y(x0)+
∫ x

x0

f (t,y(t))dt,∀ t ∈ [a,b], (4.2)

where y(x) is an unknown function on I = [a,b], y(x0) known
continuous function on I and F a kernel defined on D =
{(x,y) : x ∈ I} for all (x,y1),(x,y2) ∈ D.

Definition 4.4. A lower solution for (4.2) is a function α ∈
C([a,b],R)

α(x)≤ y(x0)+
∫ x

x0

f (t,y1(t))dt,∀ t ∈ [a,b].

Definition 4.5. An upper solution for (4.2) is a function β ∈
C([a,b],R)

β (x)≤ y(x0)+
∫ x

x0

f (t,y2(t))dt,∀ t ∈ [a,b].

Theorem 4.6. Assume that f : [a,b]× [a,b]× [a,b]→ R is
continuous for all x,y ∈ C([a,b],R)and there exists a real
number M > 0 such that

0≤ f (t,y(t))≤M,

for all t ∈ [a,b] and x,y ∈ R. Then the boundary valued prob-
lem (4.1) has a lower solution which ensures the existence of
a unique solution of (4.2).

Proof: We start by formulating (4.1) as a fixed point
equation

Ty = y.

Ty ∈ X and T : X −→ X defined by

Ty(x) = y(x0)+
∫ x

x0

f (t,y(t))dt, t ∈ [a,b], (4.3)

and an S- binary relation

R = {(x,x,y) ∈C([a,b],R)|x(t)≤ y(t),∀ t ∈ [a,b]}.

(i) Assume that X =C([a,b]3,R) is the space of all continu-
ous functions and define a S-metric space on X endowed
with S∞- metric.

S∞(x,x,y) = sup
t∈[a,b]

|x(t)− y(t)|+ sup
t∈[a,b]

|x(t)− y(t)|,

for all x,y ∈ X is a complete S-metric space and hence
C((I,R),S∞) is R-complete.

(ii) Choosing an R-preserving sequence {yn} such that yn
S−→

y, we get for all t ∈ I,

y0(t)≤ y1(t)≤ y2(t)≤ ·· · ≤ yn(t)≤ yn+1(t) . . .

and it converges to y(t) implying that yn(t)≤ y(t) for
all t ∈ I,n ∈ N0, which is equivalent to [yn,yn,y] ∈R,
for all n ∈ N0. Hence, R is S- self-closed.
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(iii) We prove that a mapping T defined in (4.3) is a con-
traction for two continuous functions y1 and y2 on
C([a,b],R). For any (y1,y1,y2) ∈R, y1(t)≤ y2(t) for
all t ∈ [a,b], λ > 0 and f (t,y(t))≥ 0, we obtain

Ty1(t) = y(x0)+
∫ x

x0

f (t,y0(t))dt

≤ y(x0)+
∫ x

x0

f (t,y1(t))dt

≤ Ty2(t),

which shows that (Ty1,Ty1,Ty2) ∈ R, thus R-is T -
closed.

(iv) For all (y1,y1,y2) ∈R, we have

S(Ty1(x),Ty1(x),Ty2(x)) = 2|Ty1(x)−Ty2(x)|

≤
∫ x

x0

| f (t,y1(t))− f (t,y2(t))|dt

≤ 2M
∫ x

x0

|y1(t)− y2(t)|dt

≤ 2M |y1(t)− y2(t)|
(∫ x

x0

dt
)

≤MS∞(y1,y1,y2)
(∫ x

x0

dt
)

≤M(x− x0)S∞(y1,y1,y2).

≤MS∞(y1,y1,y2).

where M > 0 and x > x0. This shows that T satisfies
assertion (e) of Theorem 3.1.

(v) Next, a lower solution for (4.2), by Definition 4.4 is a
function α(x), let α(x) = y1(x) ∈ C([a,b],R) for all
t ∈ I,

y1(x) ≤ y(x0)+
∫ x

x0

f (t,y1(t))dt,∀ t ∈ [a,b],

= Ty1(x),

which shows that the function y1 satisfies if and only if
a lower solution is bounded.

Using the definition of r and Definition 4.2, if S(x,x,x0)≤
r then we have

S(Ty1(x),Ty1(x),y0) = 2|Ty1(x)− y0|

≤ 2|
∫ x

x0

f (t,y1(t))|dt

≤ 2
∫ x

x0

| f (t,y1(t))|dt

≤ 2 | f (t,y1(t))|
(∫ x

x0

dt
)

≤ 2K|x− x0|= KS(x,x,x0).

= Kr ≤ b,

which shows that a lower solution exists and is bounded.
Implies that (y1,y1,Ty1) ∈R therefore X(T,R) is non
empty.

(vi) For the uniqueness of a fixed point, let y and y2 be the
arbitrary element of C(I,R) and choose y1 such that
y(t)≤ y1(t) and y2(t)≤ y1(t) for all t ∈ I. This implies
(y,y,y1) ∈R and (y2,y2,y1) ∈R. Therefore, the finite
sequence {y,y1,y2} describe a path which join y to y2
in R.

Operator T satisfies condition of Equation 3.1. Hence by
Theorem 4.6 we have shown that the operator T has a fixed
point y(x) ∈ X , which is a solution of (4.1).

5. Conclusions
We extended and generalized the results by Ahmadullah et al.
[2] to self mappings on S-metric space under a binary relation
via implicit contractive condition. In doing so, we corollaries
several results in the existing literature (see Corollary 4.1).
Illustrative example and an application to the integral equation
provided to support Theorem 3.1.
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