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Characterization of quadratic independence
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Abstract
We present a combinatorial approach to the independence polynomial of quadratic graphs and fractals in
this paper. This aids in overcoming the difficulties that mathematically rigorous self similar patterns present.
Explanatory results show the various properties of various graph classes, such as energy, Hausdorff dimension,
dynamics, and connectivity. The findings we obtained lay the groundwork for studying graphs from a fractal
perspective.
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1. Introduction
I. Gutman and F. Harary proposed the independence poly-

nomial [2].The independence polynomial was introduced as
an analog of the matching polynomial. The independence
polynomial has found applications in chemistry and physics
[1, 2]. Finding explicit and fairly simple theorems in terms
of independence polynomial of graphs, on the other hand, is

frequently difficult. The results obtained in this paper demon-
strate how this can be accomplished by employing various
polynomial manipulations.

Although independence polynomials can be found almost
everywhere, determining the independence polynomial of a
graph is an NP-complete problem. The independence poly-
nomial is defined as follows:[3] Let sk denote the number of
independent sets of size k , which are induced sub graphs of
G , then

I(G,x) =
α(G)

∑
k=0

skxk

where α(G) is the independence number of G .
The next result gives a recurrence relation which help us

to decompose the independence polynomial of a graph vertex
by vertex.

Theorem 1.1. [3] Let G be a simple graph .Let v∈V (G) and
N[v] is the closed neighborhood of v. Then

I(G;x) = I(G− v;x)+ xI(G−N[v];x).

Our work is structured as follows: In this section, we will
review some fundamental definitions and results of the inde-
pendence polynomial of cycle graphs, path graphs, and wheel



Characterization of quadratic independence polynomial of path graph, cycle graph and wheel graph — 1030/1034

graphs. The results for these graphs in terms of connectivity
and dynamics are obtained in the main results section.

2. Preliminaries
In this section, we recall some definitions and basic re-

sults of recurrence relations and independence polynomial
of Path graph, Cycle graph and Wheel graph which will be
used throughout the paper.The following three standard graph
lemmas are taken from the paper[3] and are relevant to our
study in this paper.

Lemma 2.1. For a Path graph of order n denoted by Pn, the
recurrence relation is

I(Pn;z) = I(Pn−1;z)+ zI(Pn−2;z)

and its independence polynomial is

1
2n+1 [(1+2z+ s)(1+ s)n +(s−1−2z)(1− s)n]

where s =
√

1+4z .

Lemma 2.2. For a Cycle graph of order n denoted by Cn, the
recurrence relation

I(Cn;z) = I(Pn−1;z)+ zI(Pn−3;z)

is and its independence polynomial is

1
2n+1 [(1+2z+ s)(1+ s)n−2 +(1+2z− s)(1− s)n−2]

where s =
√

1+4z

Lemma 2.3. For a Wheel graph of order n denoted by Wn,
the recurrence relation is

I(Wn;z) = I(Cn;z)+ z

and its independence polynomial is

1
2n+1 [(1+2z+ s)(1+ s)n−2 +(1+2z− s)(1− s)n−2]

where s =
√

1+4z.

In this study, we examine the dynamicity of graphs in
terms of their Julia set. The Julia set of a polynomial typically
has a complicated, self similar structure. The dimension of a
Julia set is Hausdorff dimension gives a reasonable way of
assigning appropriate non integer dimension to such sets.

Definition 2.4. [3] Julia set is defined on extended complex
plane. The filled in Julia set of the polynomial f is defined as

K( f ) = {z ∈C : f n(z)9 ∞}

.The Julia set is defined as the boundary of the filled in Julia
set ie J( f ) = ∂K( f ).

Reduced independence polynomial is an important term
associated with independence polynomial, and it is directly
related to polynomial conjugacy.

Definition 2.5. The reduced independence polynomial of G
is the function

R(G,z) = I(G,z)−1

, since every independence polynomial has constant term 1.

The energy of a term is another relevant term associated
with graphs, and we compare the energy with dimension in
our paper. To define energy, we must first define the graph’s
adjacency matrix.

Definition 2.6. Let G be a simple graph with n vertices and
m edges. Adjacency matrix A(G) of the graph G is given by ,

(ai, j) =

{
1, if vi is adjacent to v j

0, otherwise

. .

The zeros of the characteristic polynomial of the adjacency
matrix are given by λ1,λ2,λ3, ..... and are known as eigen
values of G.

Definition 2.7. [4]The Energy E(G) of G is defined as the
sum of the absolute values of the eigen values of an adjacency
matrix of a graph.

E(G) =
n

∑
i=1
|λi|

.

Definition 2.8. [5] The quadratic family is the family of
quadratic polynomials of the form f (z) = z2 + c, where c
is a complex constant called the parameter.

Definition 2.9. Two maps f : C→C and g : C→C are called
conjugate if there exists a homeomorphism h : C→ C such
that ho f = goh.

The term quadratic conjugacy will be defined next.The
independence polynomial of second degree can be reduced to
the Julia set of the form z2 + c using quadratic conjugacy.

Theorem 2.10. [5] Let f (z) = az2 + bz+ c be a quadratic
where a,b,c ∈ C with a 6= 0. Then f is conjugate to some
g(z) = z2 + k where k ∈C.

To understand how the dynamics of f (z) change as c varies
we have to solve the quadratic equation z2 + c = z. Then we
have the two roots namely ,

p+ =
1
2
(1+
√

1−4c), p− =
1
2
(1−
√

1−4c)

Definition 2.11. A fixed point x0 for F(x) is an attracting
fixed point if |F ′(x0)|< 1 , repelling fixed point if |F ′(x0)|> 1
and neutral or indifferent if |F ′(x0)|= 1.
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When the fixed or periodic point structure of a one parame-
ter family of functions changes as c passes through a particular
parameter value, bifurcation occurs, and the following results
occur:

Proposition 2.12. [5] The First Bifurcation.
For the family of quadratic map Qc(z) = z2 + c:

1. All orbits tend to infinity if c > 1
4 .

2. When c = 1
4 ,Qc has a single fixed point at p+ = p− = 1

2
that is neutral.

3. For c < 1
4 , Qc has two fixed points at p+ and p−. The fixed

point p+ is always repelling. The fixed points p− is

a. If −3
4 < c < 1

4 , p− is attracting.

b. If c = −3
4 ,p− is neutral.

c. If c < −3
4 ,p− is repelling.

To study the cycle of period 2, we have the equation
Q2

c(z) = z and its roots are p+,p− and

q±=
1
2
(−1∓

√
−4c−3)

Proposition 2.13. [5] The Second Bifurcation.
For the family of quadratic maps Qc(z) = z2 + c:

1. For −3
4 < c < 1

4 , Qc has an attracting fixed point at p− and
no 2-cycles.

2. For c = −3
4 , Qc has a neutral fixed point at p− = q± and no

2 cycles.

3. For −5
4 < c < −3

4 has repelling fixed points at p± and an an
attracting 2 cycles at q±.

The Cycle graph is the next standard graph, and we can
get some interesting results by analyzing its second degree
independence polynomial.

3. Cycle graph

A simple graph with n vertices (n ≥ 3) and n edges is
called a cycle graph if all its edges form a cycle of length n
and its degree of each vertex is two.We denote cycle graph by
Cn.[? ]

Theorem 3.1. Independence polynomial of Cycle graph of
order 5 is given by a I(C5,z) = 5z2+5z+1 and it is conjugate
to z2 + 5

4 . .

Theorem 3.2. [5] For c ∈ R , J( fc) is connected if and only
if c ∈ [−2, 1

4 ].Outside this interval J( fc) is a cantor set.

Definition 3.3. Graph G is called a Mandelbrot graph if
J(R(G;z)) is connected.Mandelbrot graph is useful for the
connectivity of a Julia set of independence polynomial.

Corollary 3.4. Julia set of independence polynomial of Cycle
graph of order 5 is not connected and is not an element of
Mandelbrot set.

Proof.

J(I(C5,z),z) = J(z2 +
5
4
).

By using theorem 3.2 if n ≥ 2, J(z2 + 5
4 ) is not connected,

therefore only J(I(C5,z)) /∈Mandelbrotset.

Corollary 3.5. Energy of J(I(C5,z)) is greater than the Haus-
dorff dimension of J(I(C5,z)).

Proof. We have J(I(C5,z))= J(z2+ 5
4 ). Hausdorff dimension

of J(z2 + 5
4 ) = .4346 . The eigen values of C5 is

2
5

∑
j=1
|cos(

π. j
5

)|

Therefore energy is 8.1484.Hence the result.

Definition 3.6. The orbit of independence polynomial is de-
fined as the sequence of points

x0,x1 = I(x0),x2 = I2(x0), ...,xn = In(x0), .....

where x0 ∈ R.

To understand the chaotic behaviour on Julia set of Cycle
graph ,consider the fixed points of I(C5,z). It is given by the
quadratic equation

I(C5,z) = z2 +
5
4
= z⇒ z2− z+

5
4
= 0

. It gives z1 = 1
2 + i and z2 = 1

2 − i as fixed points and are
repelling . All iterates of I(C5,z) tend to infinity.Hence we
have the following theorem.

Theorem 3.7. All orbits of independence polynomial of Cycle
graph of order 5 tend to infinity .

The Julia set fractal of I(C5) is visualized as:

Figure 1.

4. Path graph
The path graph is a tree with two nodes of vertex degree

1, and the other nodes of vertex degree 2.
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4.1 Path graph of order 3
It is denoted by P3.

Theorem 4.1. Independence polynomial of path graph of
order 3 is given by I(P3,z) = z2 +3z+1 . It is same as that
of independence polynomial of star graph of order 3, S3. It is
conjugate to z2 + 1

4 .

Corollary 4.2. Julia set of independence polynomial of Path
graph of order 3 is connected and is an element of Mandelbrot
set.

Proof. J(I(P3,z),z) = J(z2 +3z+1). By using theorem 3.2,
J(I(P3,z)) is connected and therefore J(I(C5,z)) ∈ Mandel-
brot set .

Corollary 4.3. Energy of J(I(P3,z)) is greater than the Haus-
dorff dimension of J(I(P3,z)).

Proof. We have

J(I(P3,z)) = J(z2 +
1
4
).

Hausdorff dimension of J(z2 + 1
4 ) = 1.0812 . The energy of

P3 is 2
√

2 ie, 2.8285.Hence the result.

To discuss the nature of periodic points of path graph of
order 3 , we have the following result:

Theorem 4.4. I(P3,z) have neither attracting nor repelling
fixed points.

Proof. Fixed points of I(P3,z) is given by the quadratic equa-
tion: I(P3,z) = z2 + 1

4 = z⇒z2− z+ 1
4 = 0⇒= 1

2 , 1
2 .

Therefore, the only fixed point of I(P3,z) is at z = 1
2 .

I
′
(P3,z) = 1 , thus I(P3,z) has neither attractig nor repelling

fixed point that is neutral. .

Theorem 4.5. I(P3,z) has repelling 2 cycles.

Proof. The 2 cycles of I(P3,z) are given by
I2(P3,z) = z⇒ (z2 + 1

4 )
2
+ 1

4 = z⇒ z4 + 1
2 z2− z+ 5

16 = 0.
By solving, z = 1

2 ,
1
2 ,−

1
2 ± i. But both − 1

2 ± i are not fixed
points of I(P3,z). So z =− 1

2 + i,− 1
2 − i is a 2 cycle of I(P3,z)

and since |I ′(P3,z)|> 1 at both these points, the 2 cycle− 1
2± i

is repelling.

We have created a fractal diagram associated with I(P3)
as

Figure 2.

4.2 Path graph of order 4
It is denoted by P4.

Theorem 4.6. Independence polynomial of path graph of
order 4 is given by 4z2 +3z+1 and is conjugate to z2 +1.

Corollary 4.7. Julia set of independence polynomial of Path
graph of order 4 is totally disconnected and is not an element
of Mandelbrot set.

Proof. J(I(P4,z),z)= J(z2+1) By using theorem 3.2, J(I(P3,z))
is disconnected and therefore J(I(C5,z)) /∈ Mandelbrotset.

Corollary 4.8. Energy of J(I(P4,z)) is greater than the Haus-
dorff dimension of J(I(P4,z)).

Proof. We have J(I(P4,z)) = J(z2+1). Hausdorff dimension
ofJ(z2 +1) = .6791. The eigen values of P4 is

2
4

∑
j=1
|cos(

2π. j
4

)|.

Therefore energy is 4.47206.Hence the result.

Theorem 4.9. The independence polynomial of path graph of
order 4 has two fixed points at 1

2 ±
√

3
2 i. Both the fixed points

are repelling since |1±
√

3i|> 1.

The fractal diagram associated with I(P4) as

Figure 3.
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5. Wheel graph

The order n wheel graph is a graph with n+ 1 vertices.
This graph is created by copying Cn and adding a central
vertex that is adjacent to every vertex in Cn. The wheel graph
of order n is denoted by the symbol Wn. A second degree
polynomial in z provides the independence polynomial for
wheel graphs of order 5 and 6.

5.1 Wheel graph of order 5
It is denoted by W5 The independence polynomial of a wheel
graph is a quadratic polynomial, and we can prove the follow-
ing theorem using conjugacy of quadratic maps.

Theorem 5.1. The independence polynomial of a Wheel graph
of order 5 is I(W5,z) = 2z2 + 5z+ 1,and it is conjugate to
z2− 7

4 .

We can obtain the following result by analyzing the con-
nectivity of these graphs.

Corollary 5.2. The Julia set of independence polynomials of
the Wheel graph of order 5 is connected and belongs to the
Mandelbrot set.

Proof.

J(I(W5,z),z) = J(z2− 7
4
).

By using theorem 5.3([5]),J(I(W5,z)) is connected and there-
fore J(I(W5,z) ∈Mandelbrotset.

Corollary 5.3. Energy of J(I(W5,z)) is greater than the Haus-
dorff dimension of J(I(W5,z)).

Proof. We have

J(I(W5,z)) = J(z2− 7
4
).

Hausdorff dimension of J(z2− 7
4 ) = 1.1632.The energy of W5

is 9.37 . Hence the result.

Theorem 5.4. The independence polynomial of wheel graph
of order 5 has two fixed points at

p+ =
1
2
+
√

2, p− =
1
2
−
√

2

.Both the fixed points p+ and p− are repelling.

To help us understand these characteristics, we have a
fractal diagram of I(W5).

Figure 4.

5.2 Wheel graph of order 6
It is denoted by W6.

Theorem 5.5. Independence polynomial of Wheel graph of
order 6 is given by I(W6,z) = 5z2 +6z+1 and is conjugate to
z2−1.

Corollary 5.6. Julia set of independence polynomial of Wheel
graph of order 6 is connected and is an element of Mandelbrot
set.

Proof.

J(I(W5,z),z) = z2−1.

By using theorem 3.2, J(I(W6,z)) is connected and therefore
J(I(W6,z)) ∈Mandelbrotset.

Corollary 5.7. Energy of J(I(W6,z)) is greater than the Haus-
dorff dimension of J(I(W6,z)).

Proof. We have J(I(W6,z))= J(z2−1). Hausdorff dimension
of J(z2−1) = 1.26835. W6 is 11.92.Hence the result.

Theorem 5.8. The independence polynomial of wheel graph
of order 6 has two fixed points at

p+ =
1+
√

5
2

, p− =
1−
√

5
2

.

Both the fixed points p+ and p− are repelling.

The fractal diagram of I(W6) is

Figure 5.
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6. Conclusion
Summarizing the research pertaining to the graphs, the

salient observations are listed as follows:

• Energy of second degree independence polynomial of
cycle graph,path graph and wheel graph is greater than
the Hausdorff dimension of a Julia set of corresponding
independence polynomial.

• Juia set of independence polynomial of P3,W5 & W6 are
all connected and therefore element of Mandelbrot set.

• Juia set of independence polynomial of C5 & P4 are not
connected and therefore not an element of Mandelbrot
set

• Connectivity of a graph does not depend on the connec-
tivity of its fractal.

• The quadratic family of functions z2 + c where c is a
constant have different dynamical properties and the
behaviour of its orbit depends on the value of c.

• The number of fixed points of the independence poly-
nomial of these graphs will differ depending on c = 1

4
or c 6= 1

4 .

• Except the path graph of order 3, all other graphs men-
tioned above have fixed points which are repelling.
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