
Malaya Journal of Matematik, Vol. 9, No. 1, 1040-1042, 2021

https://doi.org/10.26637/MJM0901/0182

New forms of open and closed sets using
(1,2)Sβ -open sets in bitopological spaces
V. Subprabha1*, P. T. Infant Vijula2, N. Durga Devi3

Abstract
The aim of this paper is to define new forms of open and closed sets known as ∧

(1,2)Sβ

-set and ∨
(1,2)Sβ

-set using

(1,2)Sβ -open sets in bitopological spaces and study some of their properties.
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1. Introduction
In the year 1963, Kelly introduced the systematic study of

bitopology which is a triple (X ,τ,σ), where X is a non-empty
set together with two distinct topologies τ , σ on X . Levine
initiated semi-open sets and their properties in 1963. In 1983,
Abd-El-monsef introduced the notion of β - open sets and
β - continuity in topological spaces. In 1986, Maki intro-
duced some forms of open and closed sets known as ∧-sets
and ∨-sets. In 2013, Alias B.Khalaf and Nehmat K.Ahmed
introduced and defined a class of semi-open sets called Sβ -
open sets in topological spaces. The aim of this paper is to
define new forms of open and closed sets known as ∧

(1,2)Sβ

-set

and ∨
(1,2)Sβ

-set using (1,2)Sβ -open sets in bitopological spaces

and study some of their properties.

2. Preliminaries

Definition 2.1 ([5]). Let A be a subset of a bitopological
space (X, τ1, τ2). Then A is said to be

(i) τ1τ2 - open if A ∈ τ1 ∪ τ2,

(ii) τ1τ2 - closed if Ac ∈ τ1 ∪ τ2,

(iii) (1,2)β -open if A ⊆ τ1τ2 − cl(τ1 − int(τ1τ2 − cl(A))),
where τ1-Int(A) is the interior of A with respect to the
topology τ1 and τ1τ2-Cl(A) is the intersection of all
τ1τ2-closed sets containing A.

(iv) (1,2)β -Int(A) is the union of all (1,2)β -open sets con-
tained in A.

(v) (1,2)β -Cl(A) is the intersection of all (1,2)β -closed sets
containing A.

Definition 2.2 ([5]). A subset A of X is said to be

(i) (1,2)semi-open if A⊆ τ1τ2-Cl(τ1-Int(A)),

(ii) (1,2)regular-open if A = τ1-Int(τ1τ2-Cl(A)),



New forms of open and closed sets using (1,2)Sβ -open sets in bitopological spaces — 1041/1042

(iii) (1,2)β -open if A⊆ τ1τ2-Cl(τ1-Int(τ1τ2-Cl(A))).

The set of all (1,2)semi-open, (1,2)regular-open, (1,2)β -open
are denoted as (1,2)SO(X ,τ1,τ2), (1,2)RO(X ,τ1,τ2), (1,2)β
O(X ,τ1,τ2) or simply, (1,2)SO(X), (1,2)RO(X), (1,2)βO(X)
respectively.

Definition 2.3 ([4]). A subset A of X is said to be

(i) (1,2)semi-closed if τ1τ2-Int(τ1-Cl(A))⊆ A.

(ii) (1,2)regular-closed if A = τ1-Cl(τ1τ2-Int(A))

(iii) (1,2)β - closed if τ1τ2-Int(τ1−Cl(τ1τ2-Int(A)))⊆ A.

The set of all (1,2)semi-closed, (1,2)regular-closed, (1,2)β -
closed are denoted as (1,2)SCL(X ,τ1,τ2), (1,2)RCL(X ,τ1,τ2),
(1,2)βCL(X ,τ1,τ2) or simply, (1,2)SCL(X), (1,2)RCL(X), (1,2)
βCL(X) respectively.

Remark 2.4 ([5]). For any subset A of X,

(i) τ1-Int(A)⊆ τ1τ2-Int(A) and τ2-Int(A)⊆ τ1τ2-Int(A).

(ii) τ1τ2-Cl(A)⊆ τ1-Cl(A) and τ1τ2-Cl(A)⊆ τ2-Cl(A).

(iii) τ1τ2-Cl(A∩B)⊆ τ1τ2-Cl(A)∩ τ1τ2-Cl(B).

(iv) τ1τ2-Int(A)∪ τ1τ2-Int(B)⊆ τ1τ2-Int(A∪B).

Theorem 2.5 ([3]). Let (X ,τ1,τ2) be a bitopological space.
If A ∈ τ1 and B ∈ (1,2)SO(X), then A∩B ∈ (1,2)SO(X).

Theorem 2.6 ([2]). Let A⊂Y ⊂ (X ,τ1,τ2) and if A is τi-semi
open in X, then A is τi-semi open in Y .

Definition 2.7 ([8]). A (1,2)semi-open subset A of a bitopo-
logical space (X ,τ1,τ2) is said to be (1,2)Sβ -open if for each
x ∈ A there exists a (1,2)β -closed set F such that x ∈ F ⊆ A.

Theorem 2.8 ([8]). Let {Aα : α ∈ ∆} be a family of (1,2)Sβ -
open sets in a bitopological space (X ,τ1,τ2).Then

⋃
α∈∆

Aα is

also a (1,2)Sβ -open set.

3. ∧
(1,2)Sβ

- set and ∨
(1,2)Sβ

- set

Definition 3.1. In a bitopological space X, a subset B of X

is said to be (1,2)Sβ -∧-set ( ∧
(1,2)Sβ

-set) if B = B
∧

(1,2)S
β , where

B
∧

(1,2)S
β = ∩{G/G⊇ B and G ∈ (1,2)Sβ -O(X)}.

Definition 3.2. In a bitopological space X, a subset B of X

is said to be (1,2)Sβ -∨-set ( ∨
(1,2)Sβ

-set) if B = B
∨

(1,2)S
β , where

B
∨

(1,2)S
β = ∪{F/F ⊆ B and F ∈ (1,2)Sβ CL(X).

The family of all (1,2)Sβ -∧-sets (resp.(1,2)Sβ -∨-sets) is
denoted by ∧

(1,2)Sβ

- O(X) (resp. ∨
(1,2)Sβ

- O(X)).

Example 3.3. Let X = {a, b, c, d } with two topologies τ1
= {φ , X, {b}, {a, c}, {a, b, c}, {a, c, d}} and τ2 = {φ , X}.
Then, (1,2)Sβ -O(X) = {φ , X, {b}, {a, c}, {a, b, c}, {a, c, d}}
and (1, 2)Sβ -CL(X) = {φ , X, {b}, { d } , {b, d}, {a,c,d} }.
Therefore, ∧

(1,2)Sβ

-O(X) = {φ , X, {b}, {a, c}, {a, b, c}, {a, c,

d}} and ∨
(1,2)Sβ

- O(X) = {φ , X, {b}, { d } , {b, d}, {a,c,d} }.

Proposition 3.4. Let A and B be two subsets of a bitopologi-
cal space X. Then the following properties are hold.

(i) B⊆ B
∧

(1,2)S
β .

(ii) B
∨

(1,2)S
β ⊆ B.

(iii) If A⊆ B, then A
∧

(1,2)S
β ⊆ B

∧
(1,2)S

β .

(iv) (B
∧

(1,2)S
β )

∧
(1,2)S

β = B
∧

(1,2)S
β .

(v) If A ∈ (1,2)Sβ O(X), then A = A
∧

(1,2)S
β .

(vi) (Bc)
∧

(1,2)S
β = (B

∨
(1,2)S

β )c, (i.e)(X–B)
∧

(1,2)S
β = X –B

∨
(1,2)S

β

Proof. (i) and (ii) are obvious from the definitions 3.1 and
3.2.

(iii) Let x /∈ B
∧

(1,2)S
β . Then there exists a (1,2)Sβ -open set G

containing B such that x /∈ G. That is, x /∈ G⊇ B⊇ A. Hence,

x /∈ A
∧

(1,2)S
β .

(iv)By using (i) and (iii) we have, B⊆ (B
∧

(1,2)S
β ) and B

∧
(1,2)S

β ⊆

(B
∧

(1,2)S
β )

∧
(1,2)S

β .

Also By definition 3.1, (B
∧

(1,2)S
β )

∧
(1,2)S

β ⊆ (B
∧

(1,2)S
β ). Hence,

(B
∧

(1,2)S
β )

∧
(1,2)S

β = B
∧

(1,2)S
β .

(v)By definition 3.1 and as A ∈ (1,2)Sβ O(X). We have, A
∧

(1,2)S
β

⊆ A. By (i)

A⊆ A
∧

(1,2)S
β . Therefore, A

∧
(1,2)S

β = A.

(vi) (B
∨

(1,2)S
β )c = ∪{F/F ⊆ B and F ∈ (1,2)Sβ -CL(X)} c = ∩

{Fc/Fc ⊇ Bc and Fc ∈ (1,2)Sβ -O(X)}.

Therefore, X–B
∨

(1,2)S
β =(Bc)

∧
(1,2)S

β = (X –B)
∧

(1,2)S
β .

Proposition 3.5. Let Bi : i ∈ I be subsets of a bitopological
space X. Then we have the following properties.

(i) (∪
i∈I

Bi)
∧

(1,2)S
β = ∪

i∈I
B
∧

(1,2)S
β

i .

(ii) (∩
i∈I

Bi)
∧

(1,2)S
β ⊆ ∩

i∈I
B
∧

(1,2)S
β

i .
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(iii) (∪
i∈I

Bi)
∨

(1,2)S
β ⊇ ∪

i∈I
B
∨

(1,2)S
β

i for any index set I.

Proof. (i) Let x ∈ Xsuch that x /∈ (∪
i∈I

Bi)
∧

(1,2)S
β . Then there

exists a (1,2) Sβ -open set G such that x /∈ G and ∪
i∈I

Bi ⊆ G.

Therefore, for each i ∈ I, Bi ⊆ G and x /∈ G. So x /∈ B
∧

(1,2)S
β

i .

Then x /∈ ∪
i∈I

B
∧

(1,2)S
β

i . Therefore, ∪
i∈I

B
∧

(1,2)S
β

i ⊆ (∪
i∈I

Bi)
∧

(1,2)S
β .

Conversely, suppose that for each x ∈ X, there exists a
point x ∈ X such that

x /∈ ∪
i∈I

B
∧

(1,2)S
β

i . Then x /∈ B
∧

(1,2)S
β

i for each i ∈ I. Thus there exist

(1,2)Sβ - open sets Gi such that Bi ⊆ Gi and x /∈ Gi for each
i ∈ I. Let G = ∪

i∈I
Gi . By theorem 2.8, G is a (1,2)Sβ -open

set. Now, ∪
i∈I

Bi ⊆ G and x /∈ G. This implies x /∈ (∪
i∈I

Bi)
∧

(1,2)S
β

. So (∪
i∈I

Bi)
∧

(1,2)S
β ⊆ (∪

i∈I
Bi)

∧
(1,2)S

β .

(ii) Suppose that there exists a point x ∈ X such that x /∈

∩
i∈I

B
∧

(1,2)S
β

i . Then there exists a i ∈ I such that x /∈ B
∧

(1,2)S
β

i and

so there exists Gi ∈ (1,2)Sβ O(X) such that x /∈ Gi and Bi ⊆

Gi. Thus x /∈ Gi and ∩
i∈I

Bi ⊆ Gi ⇒ x /∈ (∩
i∈I

Bi)
∧

(1,2)S
β .

(iii)(∪
i∈I

Bi)
∨

(1,2)S
β = (((∪

i∈I
Bi)

c)
∧

(1,2)S
β )c = ((∩

i∈I
Bc

i )
∧

(1,2)S
β )c ⊇

(∩
i∈I
(Bc

i )
∧

(1,2)S
β )c = ((∩

i∈I
(Bi)

∧
(1,2)S

β )c)c = ∪
i∈I

B
∨

(1,2)S
β

i

Remark 3.6. In general, (B1∩B2)
∧

(1,2)S
β 6= B

∧
(1,2)S

β

1 ∩ B
∧

(1,2)S
β

2 .

This can be shown in the following example.

Example 3.7. As in example 3.3, let B1 = { d } and B2 = {a,

b, c}. Then B
∧

(1,2)S
β

1 = {a,c,d}, B
∧

(1,2)S
β

2 = {a, b, c} and B
∧

(1,2)S
β

1

∩ B
∧

(1,2)S
β

2 = {a, c}. But (B1∩B2) = φ .

Proposition 3.8. For any bitopological space X,

(i) The sets φ and X are both ∧
(1,2)Sβ

-sets and ∨
(1,2)Sβ

-sets.

(ii) Every union of ∧
(1,2)Sβ

-sets is a ∧
(1,2)Sβ

-set.

(iii) Every intersection of ∨
(1,2)Sβ

-sets is a ∨
(1,2)Sβ

-set.

4. Conclusion
In this work, we have defined and studied some properties
of ∧

(1,2)Sβ

-set and ∨
(1,2)Sβ

-set using (1,2)Sβ -open sets in bitopo-

logical spaces. This work will lead to the generalization of
corresponding sets. Also, these findings will help to carry out
more theoretical research for future researchers.
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