

https://doi.org/10.26637/MJM0901/0182

New forms of open and closed sets using $(1,2)S_{\beta}$ -open sets in bitopological spaces

V. Subprabha^{1*}, P. T. Infant Vijula², N. Durga Devi³

Abstract

The aim of this paper is to define new forms of open and closed sets known as $\bigwedge_{(1,2)S_{\beta}}$ -set and $\bigvee_{(1,2)S_{\beta}}$ -set using

 $(1,2)S_{\beta}$ -open sets in bitopological spaces and study some of their properties.

Keywords

(1,2)semi-open sets, (1,2) S_{β} -open sets, (1,2) S_{β} -Interior, (1,2) β -closed sets, (1,2) S_{β} -Closure, $\bigwedge_{(1,2)S_{\beta}}$ -set, $\bigvee_{(1,2)S_{\beta}}$ -set.

AMS Subject Classification

11B05.

¹Research Scholar, Department of Mathematics, Sri Parasakthi College For Women (Affiliated to Manonmaniam Sundaranar University), Courtallam, Tirunelveli, Tamil Nadu. India.

² Department of Mathematics, Sri Parasakthi College For Women (Affiliated to Manonmaniam Sundaranar University),

Courtallam, Tirunelveli, Tamil Nadu. India.

³Department of Mathematics, Sri Parasakthi College For Women (Affiliated to Manonmaniam Sundaranar University),

Courtallam, Tirunelveli, Tamil Nadu. India.

*Corresponding author: ¹ suvekafamily@gmail.com; ²infantvijula@gmail.com; ³durgadevin681@gmail.com Article History: Received 19 January 2021; Accepted 14 March 2021

©2021 MJM.

	Contents
1	Introduction1040
2	Preliminaries1040
3	$\bigwedge_{(1,2)S_{\beta}} \text{- set and } \bigvee_{(1,2)S_{\beta}} \text{- set.} $ 1041
4	Conclusion1042
	References1042

1. Introduction

In the year 1963, Kelly introduced the systematic study of bitopology which is a triple (X, τ, σ) , where *X* is a non-empty set together with two distinct topologies τ , σ on *X*. Levine initiated semi-open sets and their properties in 1963. In 1983, Abd-El-monsef introduced the notion of β - open sets and β - continuity in topological spaces. In 1986, Maki introduced some forms of open and closed sets known as \wedge -sets and \vee -sets. In 2013, Alias B.Khalaf and Nehmat K.Ahmed introduced and defined a class of semi-open sets called S_{β} - open sets in topological spaces. The aim of this paper is to define new forms of open and closed sets known as \wedge -set $(1,2)S_{\beta}$

and $\bigvee_{(1,2)S_{\beta}}$ -set using $(1,2)S_{\beta}$ -open sets in bitopological spaces

and study some of their properties.

2. Preliminaries

Definition 2.1 ([5]). Let A be a subset of a bitopological space (X, τ_1, τ_2) . Then A is said to be

- (i) $\tau_1 \tau_2$ open if $A \in \tau_1 \cup \tau_2$,
- (*ii*) $\tau_1 \tau_2$ closed if $A^c \in \tau_1 \cup \tau_2$,
- (iii) (1,2) β -open if $A \subseteq \tau_1 \tau_2 cl(\tau_1 int(\tau_1 \tau_2 cl(A)))$, where τ_1 -Int(A) is the interior of A with respect to the topology τ_1 and $\tau_1 \tau_2$ -Cl(A) is the intersection of all $\tau_1 \tau_2$ -closed sets containing A.
- (iv) $(1,2)\beta$ -Int(A) is the union of all $(1,2)\beta$ -open sets contained in A.
- (v) $(1,2)\beta$ -Cl(A) is the intersection of all $(1,2)\beta$ -closed sets containing A.

Definition 2.2 ([5]). A subset A of X is said to be

- (i) (1,2)semi-open if $A \subseteq \tau_1 \tau_2$ - $Cl(\tau_1$ -Int(A)),
- (ii) (1,2)regular-open if $A = \tau_1$ -Int $(\tau_1 \tau_2$ -Cl(A)),

(*iii*) (1,2) β -open if $A \subseteq \tau_1 \tau_2$ -Cl $(\tau_1$ -Int $(\tau_1 \tau_2$ -Cl(A))).

The set of all (1,2)semi-open, (1,2)regular-open, (1,2) β -open are denoted as (1,2)SO(X, τ_1 , τ_2), (1,2)RO(X, τ_1 , τ_2), (1,2) β $O(X, \tau_1, \tau_2)$ or simply, (1,2)SO(X), (1,2)RO(X), (1,2) β O(X) respectively.

Definition 2.3 ([4]). A subset A of X is said to be

(i) (1,2)semi-closed if $\tau_1 \tau_2$ -Int $(\tau_1$ -Cl $(A)) \subseteq A$.

(*ii*) (1,2)regular-closed if $A = \tau_1$ -Cl $(\tau_1 \tau_2$ -Int(A))

(iii) (1,2) β -closed if $\tau_1 \tau_2$ -Int $(\tau_1 - Cl(\tau_1 \tau_2 - Int(A))) \subseteq A$.

The set of all (1,2)semi-closed, (1,2)regular-closed, (1,2) β closed are denoted as (1,2)SCL(X, τ_1, τ_2), (1,2)RCL(X, τ_1, τ_2), (1,2) β CL(X, τ_1, τ_2) or simply, (1,2)SCL(X), (1,2)RCL(X), (1,2) β CL(X) respectively.

Remark 2.4 ([5]). For any subset A of X,

- (i) τ_1 -Int $(A) \subseteq \tau_1 \tau_2$ -Int(A) and τ_2 -Int $(A) \subseteq \tau_1 \tau_2$ -Int(A).
- (*ii*) $\tau_1 \tau_2$ - $Cl(A) \subseteq \tau_1$ -Cl(A) and $\tau_1 \tau_2$ - $Cl(A) \subseteq \tau_2$ -Cl(A).

(*iii*) $\tau_1 \tau_2$ - $Cl(A \cap B) \subseteq \tau_1 \tau_2$ - $Cl(A) \cap \tau_1 \tau_2$ -Cl(B).

(iv) $\tau_1 \tau_2$ -Int $(A) \cup \tau_1 \tau_2$ -Int $(B) \subseteq \tau_1 \tau_2$ -Int $(A \cup B)$.

Theorem 2.5 ([3]). Let (X, τ_1, τ_2) be a bitopological space. If $A \in \tau_1$ and $B \in (1,2)SO(X)$, then $A \cap B \in (1,2)SO(X)$.

Theorem 2.6 ([2]). Let $A \subset Y \subset (X, \tau_1, \tau_2)$ and if A is τ_i -semi open in X, then A is τ_i -semi open in Y.

Definition 2.7 ([8]). A (1,2)semi-open subset A of a bitopological space (X, τ_1, τ_2) is said to be $(1,2)S_\beta$ -open if for each $x \in A$ there exists a $(1,2)\beta$ -closed set F such that $x \in F \subseteq A$.

Theorem 2.8 ([8]). Let $\{A_{\alpha} : \alpha \in \Delta\}$ be a family of $(1,2)S_{\beta}$ open sets in a bitopological space (X, τ_1, τ_2) . Then $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is

also a $(1,2)S_{\beta}$ -open set.

3. $\bigwedge_{(1,2)S_{\beta}}$ - set and $\bigvee_{(1,2)S_{\beta}}$ - set

Definition 3.1. In a bitopological space X, a subset B of X is said to be $(1,2)S_{\beta}$ - \wedge -set $(\bigwedge_{(1,2)S_{\beta}}$ -set) if $B = B^{(1,2)S_{\beta}}$, where $B^{(1,2)S_{\beta}} = \cap \{G/G \supseteq B \text{ and } G \in (1,2)S_{\beta}$ - $O(X)\}.$

Definition 3.2. In a bitopological space X, a subset B of X is said to be $(1,2)S_{\beta}$ - \lor -set $(\bigvee_{(1,2)S_{\beta}}$ -set) if $B = B^{(1,2)S_{\beta}}$, where $B^{(1,2)S_{\beta}} = \bigcup \{F/F \subseteq B \text{ and } F \in (1,2)S_{\beta}CL(X).$ The family of all $(1,2)S_{\beta}$ - \wedge -sets (resp. $(1,2)S_{\beta}$ - \vee -sets) is denoted by $\bigwedge_{(1,2)S_{\beta}}$ - O(X) (resp. $\bigvee_{(1,2)S_{\beta}}$ - O(X)).

Example 3.3. Let $X = \{a, b, c, d\}$ with two topologies $\tau_1 = \{\phi, X, \{b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$ and $\tau_2 = \{\phi, X\}$. Then, $(1,2)S_\beta$ - $O(X) = \{\phi, X, \{b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$ and $(1, 2)S_\beta$ - $CL(X) = \{\phi, X, \{b\}, \{d\}, \{d\}, \{a, c, d\}\}$. Therefore, $\land -O(X) = \{\phi, X, \{b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. $d\}$ and $\bigvee_{(1,2)S_\beta} - O(X) = \{\phi, X, \{b\}, \{d\}, \{b, d\}, \{a, c, d\}\}$.

Proposition 3.4. *Let A and B be two subsets of a bitopological space X. Then the following properties are hold.*

(i)
$$B \subseteq B^{(1,2)S_{\beta}}$$
.
(ii) $B^{(1,2)S_{\beta}} \subseteq B$.
(iii) If $A \subseteq B$, then $A^{(1,2)S_{\beta}} \subseteq B^{(1,2)S_{\beta}}$.
(iv) $(B^{(1,2)S_{\beta}})^{(1,2)S_{\beta}} = B^{(1,2)S_{\beta}}$.
(v) If $A \in (1,2)S_{\beta}O(X)$, then $A = A^{(1,2)S_{\beta}}$.

(vi)
$$(B^c)^{(1,2)S_{\beta}} = (B^{(1,2)S_{\beta}})^c$$
, $(i.e)(X-B)^{(1,2)S_{\beta}} = X - B^{(1,2)S_{\beta}}$

Proof. (i) and (ii) are obvious from the definitions 3.1 and 3.2.

(iii) Let $x \notin B^{(1,2)S_{\beta}}$. Then there exists a $(1,2)S_{\beta}$ -open set G containing B such that $x \notin G$. That is, $x \notin G \supseteq B \supseteq A$. Hence, $x \notin A^{(1,2)S_{\beta}}$.

(iv)By using (i) and (iii) we have, $B \subseteq (B^{(1,2)S_{\beta}})$ and $B^{(1,2)S_{\beta}} \subseteq (B^{(1,2)S_{\beta}})^{(1,2)S_{\beta}}$.

Also By definition 3.1, $(B^{(1,2)S_{\beta}})^{(1,2)S_{\beta}} \subseteq (B^{(1,2)S_{\beta}})$. Hence, $(B^{(1,2)S_{\beta}})^{(1,2)S_{\beta}} = B^{(1,2)S_{\beta}}$.

(v)By definition 3.1 and as $A \in (1,2)S_{\beta}O(X)$. We have, $A^{(1,2)S_{\beta}} \subseteq A$. By (i)

$$A \subseteq A^{(1,2)S_{\beta}}_{\vee}. \text{ Therefore, } A^{(1,2)S_{\beta}} = A.$$
(vi) $(B^{(1,2)S_{\beta}})^c = \bigcup \{F/F \subseteq B \text{ and } F \in (1,2)S_{\beta}\text{-CL}(X)\}^c = \cap \{F^c/F^c \supseteq B^c \text{ and } F^c \in (1,2)S_{\beta}\text{-O}(X)\}.$
Therefore, $X-B^{(1,2)S_{\beta}}=(B^c)^{(1,2)S_{\beta}}=(X-B)^{(1,2)S_{\beta}}.$

Proposition 3.5. Let $B_i : i \in I$ be subsets of a bitopological space *X*. Then we have the following properties.

$$(i) \ \left(\bigcup_{i\in I} B_i\right)^{(1,2)S_{\beta}} = \bigcup_{i\in I} B_i^{(1,2)S_{\beta}}.$$
$$(ii) \ \left(\bigcap_{i\in I} B_i\right)^{(1,2)S_{\beta}} \subseteq \bigcap_{i\in I} B_i^{(1,2)S_{\beta}}.$$

(iii)
$$\left(\bigcup_{i\in I} B_i\right)^{(1,2)S_\beta} \supseteq \bigcup_{i\in I} B_i^{(1,2)S_\beta}$$
 for any index set I

Proof. (i) Let $x \in X$ such that $x \notin \left(\bigcup_{i \in I} B_i\right)^{(1,2)S_{\beta}}$. Then there exists a (1,2) S_{β} -open set G such that $x \notin G$ and $\bigcup_{i \in I} B_i \subseteq G$.

Therefore, for each $i \in I$, $B_i \subseteq G$ and $x \notin G$. So $x \notin B_i^{(i,2)S_\beta}$. Then $x \notin \bigcup_{i \in I} B_i^{(1,2)S_\beta}$. Therefore, $\bigcup_{i \in I} B_i^{(1,2)S_\beta} \subseteq (\bigcup_{i \in I} B_i)^{(1,2)S_\beta}$.

Conversely, suppose that for each $x \in X$, there exists a point Х such that $x \notin \bigcup_{i \in I} B_i^{(1,2)S_\beta}$. Then $x \notin B_i^{(1,2)S_\beta}$ for each $i \in I$. Thus there exist $(1,2)S_{\beta}$ - open sets G_i such that $B_i \subseteq G_i$ and $x \notin G_i$ for each $i \in I$. Let $G = \bigcup_{i \in I} G_i$. By theorem 2.8, G is a $(1,2)S_\beta$ -open set. Now, $\bigcup_{i \in I} B_i \subseteq G$ and $x \notin G$. This implies $x \notin (\bigcup_{i \in I} B_i)^{(1,2)S_\beta}$. So $\left(\bigcup_{i\in I} B_i\right)^{(1,2)S_{\beta}} \subseteq \left(\bigcup_{i\in I} B_i\right)^{(1,2)S_{\beta}}$. (ii) Suppose that there exists a point $x \in X$ such that $x \notin A$ $\bigcap_{i \in I} B_i^{(1,2)S_\beta}$. Then there exists a $i \in I$ such that $x \notin B_i^{(1,2)S_\beta}$ and so there exists $G_i \in (1,2)S_\beta$ O(X) such that $x \notin G_i$ and $B_i \subseteq$

$$G_{i}. \text{ Thus } x \notin G_{i} \text{ and } \underset{i \in I}{\cap} B_{i} \subseteq G_{i} \Rightarrow x \notin \left(\underset{i \in I}{\cap} B_{i} \right)^{(1,2)S_{\beta}}.$$

$$(\text{iii}) \left(\underset{i \in I}{\cup} B_{i} \right)^{(1,2)S_{\beta}} = \left(\left(\left(\underset{i \in I}{\cup} B_{i} \right)^{c} \right)^{(1,2)S_{\beta}} \right)^{c} = \left(\left(\underset{i \in I}{\cap} B_{i}^{c} \right)^{(1,2)S_{\beta}} \right)^{c} \supseteq$$

$$\left(\underset{i \in I}{\cap} \left(B_{i}^{c} \right)^{(1,2)S_{\beta}} \right)^{c} = \left(\left(\underset{i \in I}{\cap} \left(B_{i} \right)^{(1,2)S_{\beta}} \right)^{c} \right)^{c} = \underset{i \in I}{\cup} B_{i}^{(1,2)S_{\beta}} \square$$

Remark 3.6. In general, $(B_1 \cap B_2)^{(1,2)S_\beta} \neq B_1^{(1,2)S_\beta} \cap B_2^{(1,2)S_\beta}$

This can be shown in the following example.

Example 3.7. *As in example 3.3, let* $B_1 = \{ d \}$ *and* $B_2 = \{ a, d \}$ b, c}. Then $B_1^{(1,2)S_\beta} = \{a,c,d\}, B_2^{(1,2)S_\beta} = \{a, b, c\} and B_1^{(1,2)S_\beta}$ $\cap B_{2}^{(1,2)S_{\beta}} = \{a, c\}. But (B_{1} \cap B_{2}) = \phi.$

Proposition 3.8. For any bitopological space X,

- (i) The sets ϕ and X are both $\bigwedge_{(1,2)S_{\beta}}$ -sets and $\bigvee_{(1,2)S_{\beta}}$ -sets.
- (ii) Every union of $\bigwedge_{(1,2)S_{\beta}}$ -sets is a $\bigwedge_{(1,2)S_{\beta}}$ -set.
- (iii) Every intersection of $\bigvee_{(1,2)S_{\beta}}$ -sets is a $\bigvee_{(1,2)S_{\beta}}$ -set.

4. Conclusion

In this work, we have defined and studied some properties $\wedge _{(1,2)S_{\beta}}$ -set and $\vee _{(1,2)S_{\beta}}$ -set using $(1,2)S_{\beta}$ -open sets in bitopoof

logical spaces. This work will lead to the generalization of corresponding sets. Also, these findings will help to carry out more theoretical research for future researchers.

References

- ^[1] Abd El-Monsef, A.S, El-Deab, S.N, Mahnoud, R.A., β open sets and β -continuity mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [2] Alias B.Khalaf, Nehmat K.Ahmed, S_{β} -open sets and S_{β} continuity in topological spaces, Thai Journal of Mathematics, 11(2)(2013), 319-335.
- [3] Andrijevic, D., Semi-pre open sets, Mat. Vesnik, 38(1986), 24-32.
- [4] Fututake, T., On generalized closed sets in Bitopological Spaces, Bul. Fakuoka Univ. Edn. 35, Part III (1985) 19-28.
- [5] Lellis Thivagar, M., Generalization of $(1,2)\alpha$ -continuous functions, Pure and Applied Mathematicka Sciences, 28(1991), 55-63.
- [6] Levine, N., Semi-open sets and Semi-continuity in topological spaces, Amer.Math.Monthly, 70(1963), 36-41.
- [7] Maki, H., Generalized *A*-sets and the associated closure operator, in the special issue in commemoration of Prof. kazusada Ikeda's, Retirement, (1986), 139-146.
- Subprabha, V, Durgadevi, N., A New Approach to (1, 2)semipre-open sets in Bitopological Spaces, SSRG-International Journal of Mathematics Trends and Technology (SSRG-IJMTT), ISSN : 2231-5373 (58-61).

******* ISSN(P):2319-3786 Malaya Journal of Matematik ISSN(O):2321-5666 ******

