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Abstract
Let G = (V,E) be a graph. Let C =

{
C1,C2,C3 . . .Cχ

}
be a proper coloring of G.C is called a dominator color

class dominating set if each vertex v in G is dominated by a color class Ci ∈ C and each color class Ci ∈ C is
dominated by a vertex v in G. The dominator color class domination number is the minimum cardinality taken
over all dominator color class dominating sets in G and is denoted by γd

χ (G). In this paper, we obtain γd
χ (G) for

Fire cracker graph, Gear graph, Flower graph and Sunflower graph.
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1. Introduction
All graphs considered in this paper are finite, undirected
graphs and we follow standard definitions of graph theory
as found in [4].

Let G = (V,E) be a graph of order p. The open neigh-
borhood N(v) of a vertex v ∈ V (G) consists of the set of
all vertices adjacent to v. The closed neighborhood of v is
N[v] = N(v)∪{v}. For a set S ⊆ V , the open neighborhood
N(S) is defined to be Uv∈SN(v) and the closed neighborhood
of S is N[S] = N(S)∪ S. For any set H of vertices of G, the
induced sub graph 〈H〉 is the maximal sub graph of G with
vertex set H. A subset S of V is called a dominating set if
every vertex in V −S is adjacent to some vertex in S. A domi-
nating set is a minimal dominating set if no proper subset of S
is a dominating set of G. The domination number γ(G) is the
minimum cardinality taken over all minimal dominating sets

of G. A γ− set of G is any minimal dominating set with car-
dinality γ. A proper coloring of G is an assignment of colors
to the vertices of G such that adjacent vertices have different
colors. The smallest number of colors for which there exists
a proper coloring of G is called chromatic number of G and
is denoted by χ(G). A dominator coloring of G is a proper
coloring of G in which every vertex of G dominates at least
one color class. The dominator chromatic number is denoted
by χd(G) and is defined by the minimum number of colors
needed in a dominator coloring of G.

A dominator color class dominating set of G is a proper
coloring of G with the extra property that each vertex v in G
is dominated by a color class Ci ∈ C and every color class
in Ci ∈ C is dominated by a vertex in G. A dominator color
class dominating set is said to be a minimal dominator color
class dominating set if no proper subset of C is a dominator
color class dominating set of G. The dominator color class
domination number of G is the minimum cardinality taken
over all minimal dominator color class dominating sets of G
and is denoted by γd

χ (G). This notation was introduced by
A.Vijayalekshmi et.al in [3].

The join G1+G2 of graphs G1 and G2 with disjoint vertex
set V1 and V2 and edge sets E1 and E2 is the graph union
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G1∪G2 together with each vertex in V1 is adjacent to every
vertices in V2. The Fire cracker graph F(n,k) is the graph
obtained by the concatenation of nk -stars by linking one leaf
from each. The F(n,k) has order nk and size nk−1. A Gear
graph is a graph obtained by inserting an extra vertex between
each pair of adjacent vertices on the perimeter of a Wheel
graph W1,n. The flower graph Fln is the graph obtained from
a helm graph by joining each pendant vertex to the central
vertex of the helm. The sunflower graph S fn is the resultant
graph obtained from the flower graph of wheel W1,n by adding
pendant edges to the central vertex.

2. Main Results
Definition 2.1. Let G=(V,E) be a graph and let C = {C1,C2,
. . .Cχ} be a proper coloring of G.C is called a dominator
color class dominating set if each vertex v in G is dominated
by a color class Ci ∈ C and each color class Ci ∈ C is dom-
inated by a vertex v in G. The dominator color class dom-
ination number is the minimum cardinality taken over all
dominator color class dominating sets in G and is denoted by
γd

x (G).

Theorem 2.2. For the Fire cracker graph F(n,k),

γ
d
χ

(
Fn,k
)
=


3 if n = k = 2
4 if n = 2 and k ≥ 3

and n = 3 and k = 2
d 4n

3 e if n≥ 4 and k = 2
2n otherwise

Proof. Let
V
(
Fn,k
)
=
{

ui, j/
1≤i≤n
1≤ j≤k

}
with deg ui1 = k−1,1≤ i≤ n and ui1 is adjacent to u1 j,2≤
j ≤ k. If n = 2 and k ≥ 2, the proof is obvious. We consider
two cases.
Case (1): When n≥ 4 and k = 2
We have three subcases,
Subcase 1.1: When n ≡ 0(mod3). For, m = 1,2, . . . . . . n

3 .
Let Hm = 〈u3m−2,1,u3m−2,2,u3m−1,1,u3m−1,2,u3m,1,u3m,2〉 be
the vertex induced subgroup of Fn,k. Assign four distinct col-
ors 1,2,3 and 4 to the vertices {u3m−1,2} ,{u3m−2,2,u3m−1,1,
u3m,2}, {u3m−2,1} and {u3m,1} respectively.

This dominator coloring satisfies one requirement and
Fn,k ≈ n

3 Hm, Then γd
χ

(
Fn,k
)
= 4n

3 .

Figure 1. γd
χ (F6,2) = 8

Subcase 1.2: When n≡ 1(mod 3)
Since n− 1 ≡ 0(mod3),Fn,k is obtained by Fn−1,k followed
by F1,k.

Figure 2. γd
χ (F7,2) = 10

So γd
χ

(
Fn,k
)
= γd

χ

(
Fn−1,k

)
+ γd

χ

(
F1,k
)
= 4n

3
Subcase 1.3: When n≡ 2(mod 3),
Since n−2≡ 0(mod 3),Fn,k is obtained from Fn−2,k followed
by F2,k. So, γd

χ

(
Fn,k
)
= γd

χ

(
Fn−2,k

)
+ γd

χ

(
F2,k
)
= 4n

3

Figure 3. γd
χ (F11,2) = 15

Case (2): When n = 3,k ≥ 3 and n≥ 5,k ≥ 3
In this case, we assign n distinct colors say 1,3,5, . . . . . .(2n−
1) to the vertices {u11} ,{u21} . . . . . . . . . .{un1} respectively.
Also assign n distinct colors say 2,4,6, . . . . . .2n to the vertices{

u1 j/2≤ j ≤ k
}
,
{

u2 j/2≤ j ≤ k
}
. . . . . .

{
un j/2≤ j ≤ k

}
re-

spectively, we get a γd
χ - coloring of Fn,k. Thus γd

χ

(
Fn,k
)
= 2n

Figure 4. γd
χ (F6,7) = 12

Theorem 2.3. For the Gear graph Gn, when n≥ 3

γ
d
χ (Gn) =


4n
3 if n≡ 0(mod 3)

4b n
3c+2 if n≡ 1(mod 3)

4b n
3c+3 if n≡ 2(mod 3)

Proof. Let V (Gn)= {v}∪{v1,v2, . . .vn}∪{u1,u2, . . .un}whe
-re u is the central vertex and degui = 3 and degvi=2,1≤ i≤ n.
We have 3 cases.
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Figure 5. γd
χ (G12) = 16

Case (i): When n≡ 0(mod 3)
Assign colors 1 and 2 to the vertices {u1} and,{u,v1,v12} re-
spectively. Assign distinct colors say 3,5,7 . . .

( 4n
3 −1

)
to the

vertices {u2,u3} ,{v3,v4} ,{u5,u6} ,{v6,v9} , . . .{vn−3,vn−2} ,
{un−1,un} and colors 4,6,8, . . . , 4n

3 .
Case (ii): When n≡ 1(mod 3)
As in case (i), the same coloring together with two additional
colors say 4n

3 + 1 and 4n
3 + 2 assigned to the vertices {un}

and {vn} respectively. We obtain the γd
χ coloring of Gn. So

γd
χ (Gn) =

4n
3 +2.

Figure 6. γd
χ (G13) = 18

Case (iii): When n≡ 2(mod 3)
Apply the same coloring in case (i) and together with three
distinct colors say 4n

3 + 1, 4n
3 + 2 and 4n

3 + 3 to the vertices
{vn−2,vn−1} ,{un−1} and {un} respectively, we get the re-
quired coloring. Thus γd

χ (Gn) =
4n
3 +3

Figure 7. γd
χ (G20) = 27

Theorem 2.4. If G is a Flower graph Fln,

γ
d
χ (Fln) =

{
4 if n is even
5 if n is odd

Proof. The Flower graph Fln is obtained from a helm graph
by joining each pendant vertex to the central vertex. Let
V (Fln) = {u1,u2, . . . . . . .u2n+1} where u1 is the central ver-
tex, ui(2 ≤ i ≤ n + 1) is the vertices on the cycle Cn and
u j(n+2≤ j ≤ 2n+1) is adjacent to uui(2≤ i≤ n+1) and
u1. We have two cases.
Case (i): When n is even.
Let C = {C1,C2,C3,C4} be a dominator coloring of Fln, with
C1 = {u1} ,C2 = {u2,u4, . . .un} ,C3 = {u3,u5, . . .un+1} and
{un+2, . . . ,u2n+1} respectively.

Then the color classes C1,C2,C3,C4 are dominated by the
vertex u1 and each vertex is dominated by the color class C1.
In this case γd

χ (Fln) = 4.

Figure 8. γd
χ (Fln) = 4

Case (ii): When n is odd. Let C = {C1,C2,C3,C4,C5}
be a dominator coloring of Fln in which C1 = {u1}C2 =
{u2,u4, . . .un−1}C3 = {u3,u5 . . . . . .un}C4 = {un+1} and C5 =
{un+2, . . .u2n+1} respectively. As in case (i) γd

χ (Fln) = 5.

Figure 9. γd
χ (Fl7) = 5

Theorem 2.5. For the sunflower graph S fn,

n≥ 3,γd
χ (S fn) =

{
4 if n is even
5 if n is odd

Proof. Let G be a flower graph with pendant edges attached
to the central vertex. Then G is a sunflower graph S fn. By
Theorem 2.9 we assign the same dominator coloring of Fln
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in the color 2 to the pendant vertices {v2n+2,v2n+3, . . .v3n+1}
we obtain the γd

χ− coloring of S fn. Hence,

γ
d
χ (S fn) =

{
4 if n is even
5 if n is odd

Figure 10. n is odd γd
χ (S f3) = 5

Figure 11. n is even γd
χ (S f4) = 4
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