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Abstract
In this paper, we discuss the shared set and uniqueness of algebroid function on annuli.
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1. Introduction
Yang Tan [44], Yang Tan and Yue Wang [43] investigated
some interesting results on the multiple values and uniqueness
of algebroid functions on annuli and also others have proved
several results for algebroid functions on annuli ([10, 11, 13–
17, 19–38]. Therefore it is interesting to consider the unique-
ness problem of algebroid functions in multiply connected
domains. By Doubly connected mapping theorem [42] each
doubly connected domain is conformally equivalent to the an-
nulus {z : r < |z|<R},0≤ r <R≤+∞. We consider only two
cases : r = 0, R =+∞ simultaneously and 0≤ r < R≤+∞.
In the latter case the homothety z 7→ z

rR reduces the given do-

main to the annulus A= A
(

1
R0
,R0

)
=
{

z : 1
R0

< |z|< R0

}
,

where R0 =
√

R
r . Thus, in two cases every annulus is invariant

with respect to the inversion z 7→ 1
z .

2. Basic Notations and Definitions
We assume that the reader is familiar with the Nevanlinna
theory of meromorphic functions and algebroid functions (see

[8, 9], [12] and [18]).
Let Av(z),Av−1(z), ...,A0(z) be a group of analytic

functions which have no common zeros and define on the
annulus A

(
1

R0
,R0

)
(1 < R0 ≤+∞),

ψ(z,W ) =Av(z)W v +Av−1(z)W v−1 + ...+A1(z)W

+A0(z) = 0. (2.1)

Then irreducible equation (2.1) defines a v-valued algebroid
function on the annulus A

(
1

R0
,R0

)
(1 < R0 ≤+∞).

In this paper, a algebroid function always mean
a function which is algebroid in A

(
1

R0
,R0

)
(1 < R0 ≤+∞).

Let W (z) and M(z) be ν-valued algebroid functions which
is determined by (2.1) on the annulus A

(
1

R0
,R0

)
(1 < R0 ≤

+∞), a ∈ C. We say that W and M share the value a CM if
W (z)−a and M(z)−a have the same zeros with the same mul-
tiplicities. We shall use standard notations of value distribu-
tion theory in annuli, T0(r,W ), m0(r,W ), N0(r,W ), N0(r,W ),...
([43], [44]).

Let W (z) and M(z) be ν-valued algebroid functions which
is determined by (2.1) on the annulus A

(
1

R0
,R0

)
(1 < R0 ≤

+∞) share the finite value a IM (ignoring multiplicities), if
W (z)− a and M(z)− a have the same zeros on annuli. If
W (z)− a and M(z)− a have the same zeros with the same
multiplicities, we say that W (z) and M(z) share the value
a CM (counting multiplicities) on annuli. If W (z)− a and
M(z)− a have the same zeros with different multiplicities,
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we say that W (z) and M(z) share the value a DM (different
multiplicities) on annuli.

Next, let k be a positive integer, we denote by Nk)
0

(
r,

1
W −a

)
is the counting function of zeros of W (z)−a with multiplicity

≤ k and N(k+1
0

(
r,

1
W −a

)
is the counting function of zeros

of W (z)−a with multiplicity > k. Definitions of the terms Nk)
0

and N(k+1
0 can be similarly formulated. Finally N2

0

(
r,

1
W

)
denotes the counting function of zeros of W where a zero of
multiplicity k is counted with multiplicity min{k,2}.

We use C to denote the open complex plane, C = C∪{∞}
to denote the extended complex plane, and X to denote the
subset of C. Let S be a set of distinct elements in C and X⊆C.
Define

EX(S,W ) = ∪a∈S{z ∈ X |Wa(z) = 0, counting multiplicities},

EX
(S,W ) = ∪a∈S{z ∈ X |Wa(z) = 0, ignoring multiplicities},

where Wa(z) =W (z)−a if a ∈ C and W∞(z) = 1
W (z) . We also

define

EX
1 (S,W ) = ∪a∈S{z ∈ X : all the simple zeros o f Wa(z)}.

For a ∈ C, we say that two algebroid functions W1 and W2
share the value a CM(IM) in X(or C), if W1(z)− a and
W2(z)− a have the same zeros with the same multiplicities
(ignoring multiplicities) in X (or C).

Definition 2.1. [43] Let W (z) be an algebroid function on

the annulus A
(

1
R0
,R0

)
(1 < R0 ≤+∞), the function

T0(r,W ) = m0(r,W )+N0(r,W ), 1≤ r < R0

is called Nevanlinna characteristic of W (z).

Definition 2.2. For positive integer k,m, we define that

δ
k
0 (a,W ) = 1− limsup

r→+∞

Nk
0
(
r, 1

W−a

)
T0(r,W )

,

Θ0(a,W ) = 1− limsup
r→+∞

N0
(
r, 1

W−a

)
T0(r,W )

,

where Nk
0
(
r, 1

W−a

)
is counting function of a-points of W (z) on

A where a-points of multiplicity m is counted m times if m≤ k
and 1+ k times if m > k. In particular, if k = ∞, then

δ0(a,W ) = liminf
r→+∞

m0
(
r, 1

W−a

)
T0(r,W )

= 1− limsup
r→+∞

N0
(
r, 1

W−a

)
T0(r,W )

.

3. Some Lemmas
Lemma 3.1. [43] (The first fundamental theorem on annuli)
Let W (z) be ν-valued algebroid function which is determined

by (2.1) on the annulus A
(

1
R0
,R0

)
(1 < R0 ≤+∞), a ∈ C

m0(r,a)+N0(r,a) = T0 (r,W )+O(1).

Lemma 3.2. [43] (The second fundamental theorem on an-
nuli). Let W (z) be v-valued algebroid function which is de-

termined by (2.1) on the annulus A
(

1
R0
,R0

)
(1 < R0 ≤+∞),

ak (k = 1,2, .., p) are p distinct complex numbers (finite or
infinite), then we have

(p−2v)T0 (r,W )≤
p

∑
k=1

N0

(
r,

1
W −ak

)
+S0(r,W ). (3.1)

Lemma 3.3. [43] Let W (z) be ν-valued algebroid function

which is determined by (2.1) on the annulus A
(

1
R0
,R0

)
(1 <

R0 ≤+∞), if the following conditions are satisfied

liminf
r→∞

T0 (r,W )

logr
< ∞, R0 =+∞,

liminf
r→R−0

T0 (r,W )

log 1
(R0−r)

< ∞, R0 <+∞,

then W (z) is an algebraic function.

The following result can be derived from the proof of
Frank-Reinders’ theorem in [46]

Lemma 3.4. Let n≥ 6 and

H(ω) =
(n−1)(n−2)

2
ω

(n)−n(n−2)ωn−1

+
n(n−1)

2
ω

n−2, (3.2)

Then H(ω) is a unique polynomial for admissible merommor-
phic functions, that is, for any two admissible meromorphic
functions f and g on A, H( f )≡ H(g) implies f ≡ g.

By similar process to the one in [47] we can obtain a stand
and Valiron-Mohokotype result in A as follows

Lemma 3.5. [45] Let f be a nonconstant meromorphic func-
tion in A, Q1( f ) and Q2( f ) be two mutually prime polynomi-
als in f with degree m and n, respectively. Then

T0

(
r,

Q1( f )
Q2( f )

)
= max{m,n}T0(r, f )+S0(r, f ) (3.3)

Lemma 3.6. Let W (z) be ν-valued algebroid function which

is determined by (2.1) on the annulus A
(

1
R0
,R0

)
(1 < R0 ≤

+∞). Then

N0

(
r,

1
W ′

)
= N0

(
r,

1
W

)
+N0 (r,W )+S0(r,W ) (3.4)

where S0(r,W ) as defined in Lemma 3.2.
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Proof. Since

m0

(
r,

1
W

)
≤ m0

(
r,

1
W ′

)
+m0

(
r,

W ′

W

)
= m0

(
r,

1
W ′

)
+S0(r,W ). (3.5)

From Lemma 3.1, we have

T0(r,W )−N0

(
r,

1
W

)
≤T0(r,W ′)−N0

(
r,

1
W ′

)
+S0(r,W ). (3.6)

That is,

N0

(
r,

1
W ′

)
≤T0(r,W ′)T0(r,W )+N0

(
r,

1
W

)
+S0(r,W ). (3.7)

Since

T0(r,W ′) = m0(r,W ′)+N0(r,W ′)

≤ m0(r,W )+m0

(
r,

W ′

W

)
+N0(r,W )+N0(r,W )

≤ T0(r,W )+N0(r,W )+S0(r,W ). (3.8)
≤ 2νT0(r,W )+S0(r,W )

Then from (3.7) and (3.8), we can get the conclusion of
Lemma 3.6.

Lemma 3.7. Let W1(z) and W2(z) be two ν-valued alge-
broid functions which is determined by (2.1) on the annulus

A
(

1
R0
,R0

)
(1 < R0 ≤+∞) satisfying EA(W1,0) = EA(W2,0)

and let c1,c2,c3, ...,cq be q(≥ 2) distinct nonzero complex
numbers. If

limsup
r→∞,r∈I

((
(2ν +1)N0(r,W1)+

q

∑
j=1

N(2)
0

(
r,

1
W1− c j

)
+N0

(
r,

1
W ′1

))
(T0(r,W1))

−1

)
< q,

limsup
r→∞,r∈I

((
(2ν +1)N0(r,W2)+

q

∑
j=1

N(2)
0

(
r,

1
W2− c j

)
+N0

(
r,

1
W ′2

))
(T0(r,W2))

−1

)
< q, (3.9)

where N(2)
0 (r, .) = N0(r, .) +N(2

0 (r, .), N(2
0 (r, .) = N0(r, .)−

N1)
0 (r, .), and I is some set of r of infinite linear measure, then

W1 =
aW2 +b
cW2 +d

, (3.10)

where a,b,c,d ∈ C are constants with ad−bc 6= 0.

Proof.Set

H ≡ W
′′
1

W ′
1
−2ν

W
′
1

W1
−

(
W
′′
2

W ′
2
−2ν

W
′
2

W2

)
. (3.11)

Supposing that H ≡ 0, we have

m0(r,H) = S0(r), (3.12)

where S0(r)= o(T0(r)),T0(r)=max[T0(r,W1),T0(r,W2)]. Since
EA(W1,0) = EA(W2,0), and by elementary calculation, we
can conclude that if z0 is a common simple zero of W1 and W2
in A, then H(z0) = 0. Thus we have

N1)
0 ≤ N0

(
r,

1
H

)
≤ T0(r,H)+O(1)

≤ N0(r,H)+S0(r), (3.13)

where N1)
0 (r) = N1)

0 (r, 1
W1

) = N1)
0 (r, 1

W2
). The poles of H in A

can only occur at zeros of W
′
1 and W

′
2 in A or poles of W1 and

W2 in A. Moreover, H only has simple zeros in A. Hence,

from (3.13), we have

N1)
0 (r) ≤ N0(r,W1)+N0(r,W2)+N0

0

(
r,

1
W ′

1

)

+N0
0

(
r,

1
W ′

2

)
+

q

∑
j=1

N(2
0

(
r,

1
W1− c j

)
+

q

∑
j=1

N(2
0

(
r,

1
W2− c j

)
+S0(r), (3.14)

where N0
0

(
r, 1

W ′1

)
is the reduced counting function for the

zeros of W ′ in A, where W1 does not take one of the values
0,c1,c2, ...,cq.
Since

N0

(
r,

1
W1

)
+N0

(
r,

1
W2

)
= 2νN1)

0 (r)+N(2
0

(
r,

1
W1

)
+N(2

0

(
r,

1
W2

)
. (3.15)

Then from (3.14) and (3.15), we have

N0

(
r,

1
W1

)
+N0

(
r,

1
W2

)
≤ 2νN0(r,W1)+2νN0(r,W2)

+2νN0
0

(
r,

1
W ′

1

)
+2νN0

0

(
r,

1
W ′

2

)
+N(2

0

(
r,

1
W1

)
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+N(2
0

(
r,

1
W2

)
+2ν

q

∑
j=1

N(2
0

(
r,

1
W1− c j

)

+2ν

q

∑
j=1

N(2
0

(
r,

1
W2− c j

)
+S0(r). (3.16)

From Lemma 3.2, we have

qT0(r,W1) ≤ N0(r,W1)+N0

(
r,

1
W1

)
+

q

∑
j=1

N(2
0

(
r,

1
W1− c j

)

−N0
0

(
r,

1
W ′

1

)
+S0(r), r 6∈ E,

qT0(r,W2) ≤ N0(r,W2)+N0

(
r,

1
W2

)
+

q

∑
j=1

N(2
0

(
r,

1
W2− c j

)

−N0
0

(
r,

1
W ′

2

)
+S0(r), r 6∈ E, (3.17)

where E is a set of r of finite linear measure and it needs not
to be the same at each occurrence. From (3.16) and (3.17), it
follows that, for r 6∈ E,

q[T0(r,W1)+T0(r,W2)]

≤ (2ν +1)N0(r,W1)+(2ν +1)N0 (r,W2)+
q

∑
j=1

N0

(
r,

1
W1− c j

)

+
q

∑
j=1

N0

(
r,

1
W2− c j

)
+2ν

q

∑
j=1

N(2
0

(
r,

1
W1− c j

)

+2ν

q

∑
j=1

N(2
0

(
r,

1
W2− c j

)
+N0(2

(
r,

1
W1

)
+N0(2

(
r,

1
W2

)

+N0
0

(
r,

1
W ′

1

)
+N0

0

(
r,

1
W ′

2

)
+S0(r). (3.18)

Since

q

∑
j=1

N(2
0

(
r,

1
W1− c j

)
+ N0(2

(
r,

1
W1

)
+N0

0

(
r,

1
W ′

1

)

= N0

(
r,

1
W ′

1

)
, (3.19)

From (3.18) and (8.18), we can get that, for r 6∈ E,

q[T0(r,W1)+T0(r,W2)]

≤ (2ν +1)N0(r,W1)+(2ν +1)N0 (r,W2)

+
q

∑
j=1

N0

(
r,

1
W1− c j

)
+

q

∑
j=1

N0

(
r,

1
W2− c j

)

+N0

(
r,

1
W ′

1

)
+N0

(
r,

1
W ′

2

)
+S0(r). (3.20)

From (3.9) and (3.20), Let W1(z) and W2(z) be two ν-valued
algebroid functions which is determined by (2.1) on the annu-
lus A

(
1

R0
,R0

)
(1 < R0 ≤+∞), we can get that

[T0(r,W1)+T0(r,W2)]≤ o[T0(r,W1)+T0(r,W2)], r 6∈ E,R ∈ I.(3.21)
Thus we can get a contradiction. Therefore H ≡ 0; that is

W
′′
1

W ′
1
−2ν

W
′
1

W1
≡ W

′′
2

W ′
2
−2ν

W
′
2

W2
. (3.22)

For the above equality, by integration, we can get

W1 ≡
aW2 +b
cW2 +d

, (3.23)

where a,b,c,d ∈ C and ad−bc 6= 0.

Lemma 3.8. Let W1(z) and W2(z) be two ν-valued alge-
broid functions which is determined by (2.1) on the annulus

A
(

1
R0
,R0

)
(1 < R0 ≤+∞) satisfying EA

1 (W1,0) = EA
1 (W2,0)

and let c1,c2,c3, ...,cq be q(≥ 2) distinct nonzero complex
numbers. If

limsup
r→∞,r∈I

((
(2ν +1)N0(r,W1)+

q

∑
j=1

N(2)
0

(
r,

1
W1− c j

)
+N0

(
r,

1
W ′1

)
+2νN(2

0

(
r,

1
W1

))
(T0(r,W1))

−1

)
< q,

limsup
r→∞,r∈I

((
(2ν +1)N0(r,W2)+

q

∑
j=1

N(2)
0

(
r,

1
W2− c j

)
+N0

(
r,

1
W ′2

)
+2νN(2

0

(
r,

1
W2

))
(T0(r,W2))

−1

)
< q, (3.24)

where N(2)
0 (r, .) = N0(r, .) +N(2

0 (r, .), N(2
0 (r, .) = N0(r, .)−

N1)
0 (r, .), and I is some set of r of infinite linear measure, then

W1 =
aW2 +b
cW2 +d

, (3.25)

where a,b,c,d ∈ C are constants with ad−bc 6= 0.

Proof. Let H be stated as in the proof of Lemma 3.7, since

EA
1 (W1,0) = EA

1 (W2,0), we can get that

N1)
0 (r)≤N0(r,W1)+N0(r,W2)+N0

0

(
r,

1
W ′

1

)

+N0
0

(
r,

1
W ′

2

)
+N(2

0

(
r,

1
W1

)
+N(2

0

(
r,

1
W2

)
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+
q

∑
j=1

N0

(
r,

1
W1− c j

)
+

q

∑
j=1

N0

(
r,

1
W2− c j

)
. (3.26)

Similar to the argument in Lemma 3.7, we can get that, for
r 6∈ E

q[T0(r,W1)+T0(r,W2)]

≤(2ν +1)N0(r,W1)+(2ν +1)N0 (r,W2)

+
q

∑
j=1

N0

(
r,

1
W1− c j

)
+

q

∑
j=1

N0

(
r,

1
W2− c j

)
+2νN(2

0

(
r,

1
W1

)
+2νN(2

0

(
r,

1
W2

)
+N0

(
r,

1
W ′

1

)
+N0

(
r,

1
W ′

2

)
+S0(r). (3.27)

From (3.24) and (3.27), let W1(z) and W2(z) be two ν-valued
algebroid functions which is determined by (2.1) on the annu-
lus A

(
1

R0
,R0

)
(1 < R0 ≤+∞), we can get that

[T0(r,W1)+T0(r,W2)]≤ o[T0(r,W1)+T0(r,W2)], r 6∈ E,R ∈ I.
(3.28)

Thus we can get a contradiction. Therefore H ≡ 0; that is

W
′′
1

W ′
1
−2ν

W
′
1

W1
≡ W

′′
2

W ′
2
−2ν

W
′
2

W2
. (3.29)

For the above equality, by integration, we can get

W1 ≡
aW2 +b
cW2 +d

, (3.30)

where a,b,c,d ∈ C and ad−bc 6= 0.

4. Main Results
In this paper, we will focus our attention on the uniqueness
problem of shared set of algebroid functions on annuli. In
fact, we will prove the uniqueness of algebroid functions on
annuli sharing one set S = {ω ∈ A : P1(ω) = 0}, where

P1(ω) =
(n−1)(n−2ν)

2ν
ω

n−n(n−2ν)ωn−1

+
n(n−1)

2ν
ω

n−2− c, (4.1)

and c is a complex number satisfying c 6= 0, 1.

Our main theorems of this paper are listed as follows

Theorem 4.1. Let W1(z) and W2(z) be two ν-valued alge-
broid function which is determined by (2.1) on the annulus

A
(

1
R0
,R0

)
(1 < R0 ≤+∞). If EA(S,W1) = EA(S,W2) and n

is an integer ≥ 10ν +1, then W1 ≡W2.
Proof. From the definition of P1(ω), we can get that P1 =
1− c := c1 6= 0, P0 =−c := c2 6= 0 and

P′1(ω) =
n(n−1)(n−2ν)

2ν
(ω−1)2

ω
n−3, (4.2)

P1(ω)− c1 = (ω−1)3Q1(ω), Q1(1) 6= 0, (4.3)
P1(ω)− c2 = ω

n−2Q2(ω), Q2(0) 6= 0, (4.4)

where Q1,Q2 are polynomials of degree n− (2ν +1) and 2ν ,
respectively. We also see that Qi(i = 1,2) and P1 have only
simple zeros.
Let F and G be defined as F = P1(W1) and G = P1(W2). Since
EA(W1,S) = EA(W2,S), we have EA(F,0) = EA(G,0). From
(4.3) and (4.4), we have

N(2)
0

(
r,

1
F− c1

)
= N0

(
r,

1
F− c1

)
+N(2

0

(
r,

1
F− c1

)
≤2νN0

(
r,

1
W1−1

)
+

n−(2ν+1)

∑
i=1

N0

(
r,

1
W1−ai

)
≤(n−1)T0(r,W1)+S0(r),

N(2)
0

(
r,

1
F− c2

)
= N0

(
r,

1
F− c2

)
+N(2

0

(
r,

1
F− c2

)
≤ 2νN0

(
r,

1
W1

)
+

2ν

∑
i=1

N0

(
r,

1
W1−b j

)
≤ 4νT0(r,W1)+S0(r), (4.5)

where ai(i = 1,2, ...,n− (2ν +1)) and b j( j = 1,2ν) are the
zeros of Q1(ω) and Q2(ω) in A, respectively. From (4.2), we
have

N0

(
r,

1
F ′

)
≤N0

(
r,

1
W1

)
+N0

(
r,

1
W1−1

)
+N0

(
r,

1
W ′1

)
. (4.6)

From Lemma 3.5, we have T0(r,F)= nT0(r,W1)+S0(r). Thus,
combining (4.5) and (4.6), by Lemmas 3.6 and 3.7 and n≥
(10ν +1), we have

limsup
r→∞,r 6∈I

((
(2ν +1)N0(r,F)+

q

∑
j=1

N(2)
0

(
r,

1
F− c j

)
+N0

(
r,

1
F ′

))
(T0(r,F))−1

)

≤ limsup
r→∞,r 6∈I

4νN0(r,W1)+(n+6ν)T0(r,W1)

nT0(r,W1)
< 2ν . (4.7)
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Similarly, we have

limsup
r→∞,r 6∈I

((
(2ν +1)N0(r,G)+

q

∑
j=1

N(2)
0

(
r,

1
G− c j

)
+N0

(
r,

1
G′

))
(T0(r,G))−1

)

≤ limsup
r→∞,r 6∈I

4νN0(r,W2)+(n+6ν)T0(r,W2)

nT0(r,W2)
< 2ν . (4.8)

Thus by Lemma 3.7, we have

F ′′

F ′
−2ν

F ′

F
≡ G′′

G′
−2ν

G′

G
. (4.9)

From the previous equality, by integration, we get

F ≡ aG+b
cG+d

, (4.10)

where a,b,c,d ∈ C and ad − bc 6= 0. Since EA(W1,S) is
non-empty and EA(W1,S) = EA(W2,S), we have b = 0,a 6= 0.
Hence

F ≡ aG
cG+d

≡ G
AG+B

, (4.11)

where A = c
a , B = d

a 6= 0.
Two cases will be considered as follows
Case 1 (A 6= 0): From the definition of P1(ω) and (4.11), we
see that every zero of P1(W2)+

B
A in A has a multiplicity of at

least n. Here, three following subcases will be discussed.
Subcase 1 ( B

A =−c1): From (4.3), we have

P1(W2)+
B
A
=(W2−1)3(W2−a1)(W2−a2ν)...

(W2−an−(2ν+1)), (4.12)

where ai 6= 0,1, are distinct values. It follows that

Θ0(ai,W1) = 1− limsup
r→∞

N0(r,a)
T0(r,W1)

≥ 1− limsup
r→∞

N0(r,a)
N0(r,W1)

≥ 1
2ν

. (4.13)

We can see that P1(W2)+
B
A has n−2ν values satisfying the

above inequality. Thus, from Lemma 3.2 and n≥ (10ν +1),
we can get a contradiction.
Subcase 2 ( B

A =−c2): From (4.3), we have

P1(W2)+
B
A
=W2)

(n−2)(W2−b1)(W2−b2ν), (4.14)

where b1 6= b2,bi 6= 0,1(i = 1,2). It follows that every zero
of W2 in A has a multiplicity of at least 2ν and every zero of

W2−bi(i = 1,2) in A has multiplicity of at least n. Then by
Lemma 3.2, we have

T0(r,W2) ≤ N0

(
r,

1
W2

)
+N0

(
r,

1
W2−b1

)
+N0

(
r,

1
W2−b2

)
+S0(r)

≤ 1
2ν

N0

(
r,

1
W2

)
+

1
n

N0

(
r,

1
W2−b1

)
+

1
n

N0

(
r,

1
W2−b2

)
+S0(r) (4.15)

≤
(

1
2ν

+
2ν

n

)
T0(r,W2)+S0(r).

Since W2(z) be an ν-valued algebroid function which is de-
termined by (2.1) on the annulus A

(
1

R0
,R0

)
(1 < R0 ≤+∞)

and n≥ (10ν +1), we can get a contradiction.
Subcase 3 ( B

A 6=−c1,−c2) : By using the same argument as
in Subcases 1 or 2, we can get a contradiction.
Case 2 (A = 0): If B 6= 1, from (4.11), we have F = G

B ; that
is

P1(W1) =
1
B

P1(W2). (4.16)

From (4.4) and (4.16), we get

P1(W1)−
c2

B
=

1
B
(P1(W2)− c2)

=
1
B

W n−2
2 (W2−b1)(W2−b2). (4.17)

Since c2
B 6= c2, from (4.2), it follows that P1(W1)− c2

B has at
least n−2ν distinct zeros e1,e2, ...,en−2. Then, by applying
Lemma 3.2, we get

(n−4ν)T0(r,W1) ≤
n−2ν

∑
i=1

N0

(
r,

1
W1− ei

)
+S0(r)

≤ N0

(
r,

1
W2

)
+N0

(
r,

1
W2−b1

)
+N0

(
r,

1
W2−b2

)
+S0(r)

≤ (2ν +1)T0(r,W2)+S0(r).(4.18)

By applying Lemma 3.7 to (4.16) and from (4.18), since n≥
(10ν +1) and Since W1(z) be an ν-valued algebroid function
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which is determined by (2.1) on the annulus A
(

1
R0
,R0

)
(1 <

R0 ≤+∞), we can get a contradiction.
Thus, we have A = 0 and B = 1 ; that is, P1(W1) ≡ P1(W2).
Noting the form of P1(ω); we can get that P1(W1)≡ P1(W2),
that is,

(n−1)(n−2ν)

2ν
W n

1 −n(n−2ν)W n−1
1 +

n(n−1)
2ν

W n−2
1

≡ (n−1)(n−2ν)

2ν
W n

2 −n(n−2ν)W n−1
2 +

n(n−1)
2ν

W n−2
2 .

(4.19)

Since W1(z) and W2(z) be two ν-valued algebroid func-
tion which is determined by (2.1) on the annulus A

(
1

R0
,R0

)
(1 < R0 ≤+∞), then it follows by Lemma 3.4 that W1 ≡W2.
Therefore, the proof of Theorem 4.1 is completed.

A set S is called a unique range set for algebroid function
which is determined by (2.1) on the annulus A

(
1

R0
,R0

)
(1 < R0 ≤ +∞). Let W1(z) and W2(z) be two ν-valued al-
gebroid function which is determined by (2.1) on the annulus
A. If EA(S,W1) = EA(S,W2) implies W1 ≡W2. We denote λ

the cardinality of a set S.

Thus from Theorem 4.1 we can get the following corollary.

Corollary 4.2. There exists one finite set S with λ = (6ν +1),
such that any two ν-valued algebroid functions W1(z) and

W2(z) which is determined by (2.1) on the annulus A
(

1
R0
,R0

)
(1 < R0 ≤+∞) must be identical if EA(S,W1) = EA(S,W2).

Theorem 4.3. Let W1(z) and W2(z) be two ν-valued alge-
broid functions which is determined by (2.1) on the annu-

lus A
(

1
R0
,R0

)
(1 < R0 ≤ +∞). If EA(S,W1) = EA(S,W2),

Θ0(∞,W1)>
(2ν+1)

4ν
, Θ0(∞,W2)>

(2ν+1)
4ν

and n is an integer
≥ 6ν +1, then W1 ≡W2.

Proof. Since Θ0(∞,W1)>
(2ν+1)

4ν
, Θ0(∞,W2)>

(2ν+1)
4ν

it fol-
lows that

limsup
r→∞

N0 (r,W1)

T0(r,W1)
<

1
4ν

, limsup
r→∞

N0 (r,W1)

T0(r,W1)
<

1
4ν

.

(4.20)

By applying (4.20), from (4.7) and (4.8), and since n ≥
6ν +1, we get

limsup
r→∞,r 6∈I

((
(2ν +1)N0(r,F)+

2ν

∑
j=1

N(2)
0

(
r,

1
F− c j

)
+N0

(
r,

1
F ′

))
(T0(r,F))−1

)

≤ limsup
r→∞,r 6∈I

4νN0(r,W1)+(n+6ν)T0(r,W1)

nT0(r,W1)
< 2ν .

limsup
r→∞,r 6∈I

((
(2ν +1)N0(r,G)+

2ν

∑
j=1

N(2)
0

(
r,

1
G− c j

)
+N0

(
r,

1
G′

))
(T0(r,G))−1

)

≤ limsup
r→∞,r 6∈I

4νN0(r,W2)+(n+6ν)T0(r,W2)

nT0(r,W2)
< 2ν . (4.21)

Then from Lemma 3.6, we have F ≡ aG+b
cG+d , a,b,c,d ∈ C

and ad−bc 6= 0. Thus, by using the same argument as that
in Theorem 4.1, we can prove the conclusion of Theorem
4.3.

Corollary 4.4. There exists one finite set S with λ = (6ν +1),
such that any two ν-valued algebroid functions W1(z) and

W2(z) which is determined by (2.1) on the annulus A
(

1
R0
,R0

)
(1 < R0 ≤+∞) must be identical if EA

1 (S,W1) = EA
1 (S,W2).

Theorem 4.5. Let W1(z) and W2(z) be two ν-valued alge-
broid functions which is determined by (2.1) on the annulus

A
(

1
R0
,R0

)
(1 < R0 ≤+∞). If EA

1 (S,W1) = EA
1 (S,W2) and n

is an integer ≥ 14ν +1, then W1 ≡W2.

Proof. Since EA
1 (S,W1) = EA

1 (S,W2), we have EA
1 (F,0) =

EA
1 (G,0) From (4.2) and (4.4), we get

N(2
0

(
r,

1
F

)
=

n

∑
i=1

N0

(
r,

1
W1−di

)
N0

(
r,

1
W ′1

)
, (4.22)

where di(i = 1,2, ...,n) are distinct zeros of P1(ω). And from
(4.6) (4.22) , Lemma 3.5, we have

N0

(
r,

1
F ′

)
+2νN(2

0

(
r,

1
F

)
≤ N0

(
r,

1
W1

)
+N0

(
r,

1
W1−1

)
+(2ν +1)N0

(
r,

1
W1

)
+(2ν +1)N0 (r,W1) (4.23)

≤ (4ν +1)T0(r,W1)+(2ν +1)N0(r,W1)+S0(r).
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Then from (4.5) and (4.23), since T0(r,F) = nT0(r,W1)+
S0(r) and n≥ 14ν +1, we have

limsup
r→∞,r 6∈I

((
(2ν +1)N0(r,F)+

2ν

∑
j=1

N(2)
0

(
r,

1
F− c j

)
+N0

(
r,

1
F ′

)
+2νN(2

0

(
r,

1
F

))
(T0(r,F))−1

)

≤ limsup
r→∞,r 6∈I

6νN0(r,W1)+(n+8ν)T0(r,W1)

nT0(r,W1)
< 2ν . (4.24)

Similarly, we get

limsup
r→∞,r 6∈I

((
(2ν+)N0(r,G)+

2ν

∑
j=1

N(2)
0

(
r,

1
G− c j

)
+N0

(
r,

1
G′

)
+2νN(2

0

(
r,

1
G

))
(T0(r,G))−1

)

≤ limsup
r→∞,r 6∈I

6νN0(r,W2)+(n+8ν)T0(r,W2)

nT0(r,W2)
< 2ν . (4.25)

Thus by Lemma 3.7, we have

F ≡ aG+b
cG+d

, (4.26)

where a,b,c,d ∈ C and ad− bc 6= 0. By using arguments
similar to those in the proof of Theorem 4.1, we can get that
W1 ≡W2.
This completes the proof of Theorem 4.5.

A set S is called a unique range set with weight 1 for alge-
broid function which is determined by (2.1) on the annulus
A
(

1
R0
,R0

)
(1 < R0 ≤ +∞). Let W1(z) and W2(z) be two ν-

valued algebroid function which is determined by (2.1) on the
annulus A. If EA

1 (S,W1) = EA
1 (S,W2) implies W1 ≡W2. Thus

from Theorem 4.5 we can get the following corollary.

Corollary 4.6. There exists one finite set S with λ = (14ν +
1), such that any two ν-valued algebroid functions W1(z) and

W2(z) which is determined by (2.1) on the annulus A
(

1
R0
,R0

)
(1 < R0 ≤+∞) must be identical if EA

1 (S,W1) = EA
1 (S,W2).

Theorem 4.7. Let W1(z) and W2(z) be two ν-valued alge-
broid functions which is determined by (2.1) on the annu-

lus A
(

1
R0
,R0

)
(1 < R0 ≤ +∞) and S = {ω ∈ A : P1(ω) =

0}, where P1(ω) and c are stateed as in Theorem 4.1. If
EA

1 (S,W1) = EA
1 (S,W2), Θ0(∞,W1) >

(4ν+1)
6ν

, Θ0(∞,W2) >
(4ν+1)

6ν
and n is an integer ≥ 8ν +1, then W1 ≡W2.

Proof. Since Θ0(∞,W1)>
(4ν+1)

6ν
, Θ0(∞,W2)>

(4ν+1)
6ν

, it fol-
lows that

limsup
r→∞,r 6∈E

N0 (r,W1)

T0(r,W1)
<

1
6ν

,

limsup
r→∞,r 6∈E

N0 (r,W1)

T0(r,W1)
<

1
6ν

. (4.27)

From (4.27), (4.24) and (4.25), since (n≥ 6nu+1), we can
get

limsup
r→∞,r 6∈I

((
(2ν +1)N0(r,F)+

2ν

∑
j=1

N(2)
0

(
r,

1
F− c j

)
+N0

(
r,

1
F ′

)
+2νN(2

0

(
r,

1
F

))
(T0(r,F))−1

)

≤ limsup
r→∞,r 6∈I

6νN0(r,W1)+(n+8ν)T0(r,W1)

nT0(r,W1)
< 2ν . (4.28)

Similarly, we get

limsup
r→∞,r 6∈I

((
(2ν+)N0(r,G)+

2ν

∑
j=1

N(2)
0

(
r,

1
G− c j

)
+N0

(
r,

1
G′

)
+2νN(2

0

(
r,

1
G

))
(T0(r,G))−1

)

≤ limsup
r→∞,r 6∈I

6νN0(r,W2)+(n+8ν)T0(r,W2)

nT0(r,W2)
< 2ν . (4.29)
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Thus by Lemma 3.7, we have

F ≡ aG+b
cG+d

, (4.30)

where a,b,c,d ∈ C and ad− bc 6= 0. By using arguments
similar to those in the proof of Theorem 4.1, we can get that
W1 ≡W2.
This completes the proof of Theorem 4.7.

From Theorem 4.7, we can get the following corollary as
follows:

Corollary 4.8. There exists one finite set S with λ = (8ν +1),
such that any two ν-valued algebroid functions W1(z) and

W2(z) which is determined by (2.1) on the annulus A
(

1
R0
,R0

)
(1 < R0 ≤+∞) must be identical if EA

1 (S,W1) = EA
1 (S,W2).
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