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In this paper, we study meromorphic functions that share only one value on annuli and prove the following results.

1. Let f(z) and g(z) be two non constant meromorphic functions in A(Ry), where 1 < Ry < +, n > 6. If
f'f'g"g =1,then f =dg or g = cie and f = c,e~%, where c, ¢; and c; are constants and (cjc;)"'¢? = —1.

2. Let f(z) and g(z) be two non constant entire functions in A(Ry), where 1 <Ry < 4eo, n > 1. If f"f'g"¢' =1,
then f =dg or g = cje and f = c,e~ %, where c, ¢; and ¢, are constants and (cjcy)"'c? = —1.

Using the results (1) and (2) we prove, let f(z) and g(z) two non constant meromorphic functions on annuli and
Forn > 11, if f*f and g"g’ share the same nonzero and finite value a with the same multiplicities on annuli, then
f=dgorg=cieand f = cre", where d is an (n+ 1)"" root of unity, ¢, ¢; and ¢, being constants.
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1. Introduction and Mani Results

In this paper, a meromorphic function always mean a func-
tion which is meromorphic in A(Ry), where 1 < Ry < 0.
Let f(z) and g(z) be non constant meromorphic in A(Ry),
where 1 < Ry < +oo0, a € C. We say that f and g share the
value a CM if f(z) —a and g(z) — a have the same zeros
with the same multiplicities. We shall use standard nota-
tions of value distribution theory in annuli, 7o(R, f), mo(R, f),
NO(R’f)’ NO(R’f)v'"(See [6L.[7D).

In this paper, we shall show that certain types of differen-
tial polynomials on annuli when they share only one value.

Theorem 1.1. Let f(z) and g(z) be two non constant mero-
morphic fuctions in A(Ry), where 1 <Ry < 4o, n > 11 an
integer and a € C —{0}. If f"f" and g"g' share the value a
CM, then either f =dg or g = c1e“ and f = cre™%, where

¢, ¢1 and c; are constants and satisfy (c) cz)’”'lc2 =a2

Remark 1.2. The following example shows that a # 0 is
necessary. For f = ¢¢ and g = ¢%, we see that f"f' and g"g'
share 0 CM for any integer n, but f and g do not satisfy the
conclusion of Theorem 1.

In order to prove the above result, we shall first prove the
following two theorems.

Theorem 1.3. Let f(z) and g(z) be two non constant mero-
morphic functions in A(Ry), where | < Ry < +oo, n > 6. If
ff'g"e =1,then f =dgor g =cie and f = coe” %, where
¢, c1 and ¢y are constants and (cic2)"™ ¢ = —1.

Theorem 1.4. Let f(z) and g(z) be two non constant entire
Suctions in A(Ry), where | <Ry < +oo,n> 1. If f"f'g"g =
1, then f =dg or g = c1e“ and f = cre” %, where c, c1 and
¢y are constants and (c1cy)" ' c? = —1.
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2. Some Basic Theorems and Lemmas

Theorem 2.1. [7] (Lemma on the Logarithmic Derivative ).
Let f be a nonconstant meromorphic function in A(Ry), where
1 <Ry < +oo,and a0 > 0. Then

1. In the case, Ry = +oo,

o (R, J}) — 0(log(RTy(R. f)))

Jor R € (1,+o0) except for the set g such that [, R*'dR <
o0,
2. In the case, Ry < oo,

m ()= o(ee(%77))

for R € (1,Ry) except for the set /Ny such that fA% (er%
oo,

<

Lemma 2.2. Let fand g be two non constant entire functions
in A(Ry), where 1 < Ry < +oo. Then for any 1 <R < Ry, we
have

No (R,i:) —No (R,g) =No (R, f)+No <R,;> —No(R,g)

f
N (R 1 )
— V0 IS
f
In studying on uniqueness theorems of meromorphic

functions, the following lemma plays an important role.

Lemma 2.3. Suppose that f(z), f2(2), ..., fa(z) are linearly
independent meromorphic functions in A(Ro), where 1 <
Ro < +oo satisfying the following identity

g

Then for 1 < j < n, we have

@2.1)

Z:‘, ( )—i—No(Rf,)—i-No(RD)

1
= M) Mo (R ) +S(R.)
k=1 D
(2.2)
Where D is the Wronskian determinant W (f1, fa, ..., fn), S(r, f)

=0(To(R, f)) and Ty(R, f) = maxi<k<n{To (R, fx) }, for every
R such that 1 < R < Ry, R € E and E is the set of finite linear
measure.

First of all, we prove a lemma which is a essentially
generalization of Borel’s theorem.

Lemma 2.4. Let g;(z) (j=1,2,...
a;(z) (j=0,1,2...

n
where 1 <Ry < +oo, satisfying To(R,aj) = o ( > To(R,egk)> ,
k=1

,n) be an entire functions and
n) be a meromorphic functions in A(Ry),
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for every R such that 1 <R <Ryp,R€E, (j=0,1,2,...,n).
If

Z 2)et19 = ay(z) (2.3)

then there exists constant cj (j=1,2,...,
is not zero such that

n) at least one of them

Zc aj(z eg/

0. 2.4

Lemma 2.5. Let f(z) and g(z) be two non constant entire
Sunctions in A(Ry), where 1 < Ry < 4oo. If fand g share 1
CM, one of the following three cases holds:

() To(R,f) < No(R,f)+Ny (R,f)+No(R.g)

_ _ 1
+NS (R, g) +No (R, f>
4N

(o) o (R 1) o (&1
(R,f> +No <R7g> +Ng (R7g>

+S(R, /) +5(R,g)

the same inequality holding for Ty(R, g);

(i) f=dg;
(i) fg=1,
where

NS (R1/f)

(e ()
7f 0 ’f

and N, D ( ’f) is the counting function of the zeros of f in
{z:]z] <R}

3. Proof of Lemmas

1. Proof of Lemma 2.2: By Jensen’s formula in annuli, we
have

1 2 1 do
No (R’f> —NO(RJ):/O logmﬁ

2 o do 2 o do
1 R i0 77/ 1 i0 -
+ [ 1ogl(Re) S~ [ togl (e S
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for every R such that 1 < R < Ry. Consider,

AN g
No (R’g> Mo (R’f)

B 2 f(Reie) 4o 2 g(Reie)
=y o | e | 27 log’f(Re"")
+‘/277,'

g(e”)
5y (e’9
Al
—/f”log\g@"%!df}
[l
- el 2

— No (R, f)+No (R, ;) — No(R,g)—No <R, }) .

de

21

de

T

2r de
1 ’ R 19 ‘ _
+/ og |g(Re o

21 0
1 R"
—|—/ og e o

This completes the proof of Lemma 2.2.

2. Proof of Lemma 2.3: Taking the derivative in both sides
of identity (2.1), we get

V=0 (k=1,2,.,n-1) 3.1)

M:

1

J

Since f1(2), f2(z), ..., fa(z) are linearly independent, we see
that D # 0. (2.1) and (3.1) imply

D=D; (j=1,2,...,n), (3.2)
where D is algebraic cofactor of f; in D. Hence
D,
n A
fi=2E = (33)
f1f2~-~fn
where
1 - 1
i 5. A
Aol B h I
f("’l) fz("*l) frgnfl)
f 2 Jn

and A is the algebraic cofactor of the elements at the first
column and the first row in A. From (3.3), we have

mo(R, f1) <mo(R,Ar) +mg (R, %)

< R 0 (R.8) + No(R.) Mo (R )
3.4

since A = which leads to

D
Nfafn?
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(k)
Note that my (R, ff > =S(R,f;) =S(R,f), (=1,2,...n

and k=1,2,...,n-1). We have
mo(R,Ar) +mo (R,A) = S(R, f)
From (3.4), (3.5) and (3.6), we get
To(R, f1) = mo(R, f1) + No(R, f1)

<ZN0( >+N0(R f1)+No (R,D)

—No (R,;) +S(R, )

By the same method, we can prove other results similar to
(3.7) for fj, (2 < j <n). Hence (2.2) holds.

(3.6)

- Z Nop (R7fk)
k=1
(3.7

3. Proof of Lemma 2.4: If a9(z) = 0, Lemma 2.4 is obviously
true. In the following, we assume that ag(z) ;‘é 0. From (2.3),

we have )’i Zg—gfgeg-/(z) =1.LetGj(z) = < I (j=1,2,...,n).
f=R20C

If G(z2),G2(2), - .., Gy(z) are linearly independent, then from
Lemma 2.2 we have

To(R,G) < ¥ No (R, é) +No(R.D) +S(R, ), (38)
=1

J

where D is Wronskian W (G, G2, ...,G,), and S(r, ) = o(To(R, f))

and TO(R,f) = maxlgkgn{To(R,fk)}, as 1 <R <Ry, R ¢E
E is the set of finite linear measure.
Note that
1 1
No|R,— | <Nyg|R,— | + Ny (R,a()) <Ty (R,aj)
Gj aj
+ T (R,ao)
n
=0 (Z TO(R,egk)> , (1<R<Ry,RZE).
k=1
3.9
and

1
No(R,Gj) < No(R,a;)+ Ny (R, a) <To(R,a;)
0

+ TO (Raao)

:"<k

(ngE

TO(R,egk)> ., (1<R<Ry,RZE).
1
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We have

n
No(R,D) <n Z No (R,G;))
j=1

=0 <Z TO(R,egk>> ., (1<R<Ry,REZE).
k=1
(3.10)

From (3.8), (3.9) and (3.10), we get

To (R,G}) <o <Z TO(R,egk)> +S(R, f),
k=1
(I<R<Ry,RZE), j=1,2,...n.

On the other hand, we have

To(R,Gj) =Ty (R,e%*) +o (i TO(R7egk)> (REE),

k=1
S(R,f) =0 (i TO(R,egk)> (RZE).
k=1

Hence for j =1,2,...,n we have

D=

k=1

TO(R,egk)—o< TO(R,eg">> (RZE).

Therefore

)i To(R,e%) =0 (i TO(R,egk)> (RZE).
k=1 k=1

This is a contradiction. Hence G1(z),G2(z),...,Gy(z) are lin-
early dependent. This completes the proof of Lemma 2.4.

4. Proof of Lemma 2.5: Set

(3.11)

Since f and g share 1 CM, a simple computation on local
expansions shows that ¢ (zo) = 0 if zp is a simple zero of f — 1
and g — 1. Next we consider two cases ¢ = 0 and ¢ = 0.

If ¢ # 0, then
0 g1 ’ ¢

A (R 1)
,f— 1
To(R,9)+O(1) < No (R, 9)
+S(R,f)+S(R,g) (3.12)

IN

where N(;) (R,1/f—1) is the counting function of the simple
zeros of f —1in {z: |z| < R}. Since f and g share 1 CM, any
root of f(z) = 1 can not be a pole of ¢(z). In addition, we
can easily see from (3.11) that any simple pole of f and g
is not a pole of ¢. Therefore, by (3.11), the poles of ¢ only
occur at zeros of f’ and g’ and the multiple poles of f and
g. If f'(z0) = f(z0) = 0, then zg is a multiple zero of f. We
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denote by Ny(R, 1/ ") the counting function of those zeros of
S but not that of f(f —1). From (3.11), (3.12) and the above
observation that

Ny (va11> < NG (R /) +Ng (R,g) +No (R’;’)

1 @ 1
+N0 Ra? +N() R7?

+N <R, ;,) +S(R, f)+S(R,g) (3.13)

On the other hand, by the second fundamental theorem we
have

f

and by the first fundamental theorem on annuli, we have

I I
No (R, 7) ~No (R., 7) No (R, %) < (R7£,) +o(1)
g g g g

No(R.g) +No (R, é) L S(R.g).

TO(Raf) < N0<R7f)+N0 (R’l) +N0 <R’fi1)

(3.14)

This implies that
1 — — 1
NO Ra? :NO(Rvg)+N0 R7§ +S(R,g)

1
It is easy to see from the definition of Néo) (R, /> that
8
Ny’ | R,— | +Ny (R,——)+Ny (R,— )| =Ny | R, —
0 ( Y o 2 — 1) 0 p 0 2

1
SNO (Ra/> .
8

The above two inequalities yield

5O (n 1Y) 1
R, — R,——) <Ny(R
§ (R )+ R ) < Mok

+ No <R,;> +S(R,g). (3.15)

Since f(z) and g(z) share 1 CM, we have

No(R——) <W) (R ) +W2 (R ——
0 7f_1 > 1¥q ,f_l 0 7g_l .

(3.16)

Combining (3.13) to (3.16), we obtain (i). If ¢(z) =0, we
deduce from (3.11) that

_ Ag+B
T Cg+D’

f
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where A, B, C and D are finite complex numbers satisfying

AD—BC #0.

Then, by the first fundamental theorem,
To(R,f) =To(R,8) +S(R, [). (3.18)

Next we consider three respective subcases.

Subcase 1. AC # 0. Then

f A B-AD/C
C Cg+D

By the second fundamental theorem on annuli, we have
— — 1
To(R, f) <No(R, f) +No <R7>
— 1
+ Ny (R,f> +S(R, f)
_ — — 1
MR )+ No(R)+No (R, ) + S(R.).
(3.19)
we get (i).

Subcase 2. A #0, C =0 Then f = (Ag+B)/D.If B+#0, by
the second fundamental theorem on annuli, we have

To(R, £) <No(R, f) + No (R., }) +No (R-f WZ/D))

+S(R, f)
—No(R.f) +No (R, }) W (R., é) +S(R.f).
(3.20)

we get (i). If B=0, then f =Ag/D.IfA/D=1,then f = g;
this is (if). If A/D # 1, then by the assumption that f and
g share 1 CM, it is easy to see that f # 1 and g # 1, which
yields f # 1, A/D. By the second fundamental theorem on
annuli, we have

TO(Raf) < NO(Raf) +S(R7f),
and (i) follows.

Subcase 3. A =0, C#0 Then f =B/(Cg+ D). if D #0, by
the second fundamental theorem on annuli, we have

To(R. f) <No(R.f) +No <R’ }) o (R’ f—(lB/D)>
+5(R, f)

—No(R. f) +No (R7 J‘,) A (R, ;) LS(R.J)-

(3.21)

we get (i). If D=0, then f = B/Cg. If B/C =1, then fg =1
and we obtain (iii). If B/C # 1, by the assumption that f and g
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share 1 CM, we have f # 1, B/C. By the second fundamental
theorem on annuli, we get

TO(R>f) < NO<Raf) +S(R7f>

This implies (i). Thus the proof of Lemma 2.5 is complete.

4. Proof of Theorems
1. Proof of Theorem 1.3: We prove the theorem step by step

as follows.
Step 1. We prove that
f#0, g#0. @.1)

In fact, suppose that f has a zero zo with order m. Then zg is
a pole of g (with order p, say) by

fnf/gng/ =1.
Thus, nm+m—1=np+p+1,ie.,(m—p)(n+1)=2. This

impossible since n > 6 and m, p are integers.
Step 2. We claim that

“4.2)

1
No(R. )+ No(R.) < 2mo (R, fg) Lo(). @3
By step 1 and (4.2) we deduce that

4.4

(n+1)No(R,g) +No(R,g) = No (R7 ;,) :

From Lemma 2.2 we have

ACHRICY
No (R, f)+No (R, ;,) —No (R, f") —No (R,})

NO (Ra ;) _NO (R7f) .

By the first fundamental theorem on annuli, the left side is
mo(R, f'/f) —mo(R,f/f)+0O(1), so we have

NO (R7;-,> :NO (R7f)+m0 (R7;7> —my (Ra ?) +O(])
(4.5)

Now we rewrite (4.2) in the form g'/g = (f'/f)(1/fg)" .
Then

mg (R’]J:’> > myo (R,‘g;) —(n+1)mg (R,J}g) —0(1).

combining this, (4.4) and (4.5), we get

(n+1)No(R,g)+No(R,g)

SNO (Raf)+m0 (R7§‘> —mg <R7gg)

+(nt Dymy (R,J}g) +o(1).
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By symmetry,
(n+1)No (R, f)+No (R, f)

SNO (Rag)+m0 <R7gg> —mg (Raj;-)

4 (n+ 1)m (R,;g) +o(1).

By adding above two inequalities we obtain (4.3).
Step 3. We prove that fg is constant. Let # = 1/fg. Then
h is entire by Step 1, and (4.2) can be written as

2 2
g+lﬁ/ :1 hil 7hn+1'
g 2h 4\ h
/ lhl

g, 1w
g 2h

The above equation becomes

1 /K 2
2 n+1
‘x = — e - h .

If o = 0, then h"+! = L (i /h)*. Combining this with Step 1

Let

(4.6)

S]]

we obtain Ty(R,h) = mo(R,h) = S(R,h); thus & is a constant.

Next we assume that o # 0. Differentiating (4.6) yields
IWAVEAN
2000/ = ~— | — ) — AR,
ao’ = ( h) (n+1)
From this and (4.6) it follows that

/ / / AN
(o0l 2) - ((3)

If (n+ 1)%' — 2% =0, then there exists a constant c such that
a? = ch"*!. This and (4.6) give

1 /K 2
n+l _ =~ [
(c+ 1A = ( ) .

If c=—1, then /' =0, and so & is constant. If ¢ # —1, we
have Ty(R,h) = S(R,h), and h is constant. Next we suppose
that

a/h/) 4.7)

o h

% o
1)— —2— .
(n+1)3 —2% #o
Then, by (4.7) and the fact that & is entire,

(n+1)To(R,h) =(n+1)my(R, h)

/ /
<mo (R,h"“ ((n+ ne —22))

1
+mo (R’ (n+ 1)h’/h—2a’/oc> +o()

am(e35 ((3) -5)

W o
To| R 1)——2—
+0<7("+)h oc)

<o (R)+ Mo (R.5) + o (R. ;)

+S(R,h)+S(R, ).
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Now by (4.6) and (4.3) we have

TO<R> OC) < (}’l + 3>T0(Rah) +S(R,h),

| —

and

Combining the above three inequalities we obtain
1
5 (n=S)To(R.h) < S(R,h).
Thus 4 must be a constant.
Step 4. We prove our conclusion. By Step 3, & is constant.

Then, by (4.2),

37:67 o= ipnt /2

8
Thus
g(Z) — CleCZ7 f — Czeicz
where ¢, ¢1 and ¢, are constants and satisfy (cjcy)""!c? = —1

by (4.2). This completes the proof of the theorem.

2. Proof of Theorem 1.4: From
fn f/ gn g/ =1
and the assumption that f and g are entire we immediately

see that f and g have no zeros. Thus there exists two entire
functions ¢t(z) and B(z) such that

f(Z) = ea(Z)v

Inserting these in the above equality, we get

g(z) =P,

o Blel R = 1.

Thus o’ and B’ have no zeros and we may set

/ 5(1)7 B = V@)

Differentiating this gives
(n4+1)(® +e')+8' +7 =0.

By Lemma 2.4, 6 = Y+ (2m+ 1) i for some integer m. In-
serting this in the above equality we deduce that 6’ =y =0,
and so 6 and ¥ are constants, i.e., o’ and B’ are constants.
From this we can easily obtain the desired result.

3. Proof of Theorem 2.1: Let F = ! Ja(n+1) and G =
g""!'/a(n+1). Then condition that f"f’ and g"g’ share the
value a CM implies that F/ and G’ share the value 1 CM.
Obviously,

No(R,G') =(n+1)No(R,g) +No(R, g), 4.8)
No(R.F') =Ny (R,F') = No(R. f)
! To(R,F')+0(1), (4.9)
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et)rles)
e o))
<o (& f)+N0<R’f>

<2TH(R, f) +N0 (

(4.10)

Since
nmo(R, f)

=my (R,al;:> <my (R,F")+my (R, }) +0(1)

( f’>+0( )
(e

= mg (R7Fl) +TO(R7f) 7N0

<mo (R,F') +To(R, f) +No(R, f)

+mg R,?) +0(1)
S mo (RvF/) TO(R7f> +N0(R7f) _NO (R7;7>

F/
it follows from this,(4.8), and Theorem 4 that
(1= TRA) < ToRF) ~No(R.f) ~No (R, ) +S(R ),

This and Theorem 4 imply that

2Ty(R.f) +No <R, ]%)

n—

2o o v

7)) (eg)

)+ No (R, 1)} + 123 {To(&f)mo (.)}

Combining this (4.9), and (4.10), we obtain

2 !
< m{T(,(R F
f?) +0(1)
< 2 n—3
= (n—1+(n71)2

No(R,f)+S(R,F').

+myg <R,

) To(R,F') + ("_5 +

n—1

- 1\ —@f, 1 4n? —6n—2 ,
J— J— [
No (R7 F,) +Ng (R, F,) _(nil)z(nH)To(R,F)
+S(R,F"). (4.11)

We similarly derive for G’ that

_ | — 1
No(R,G') = NG (R.G') =No(R.8) < 5 To(R.C) +S(R. G,
(4.12)
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1Y 1 4n® —6n—2
No(R,—= ) +Ny (R, <—s—
() (k) < i

Without loss of generality, we suppose that there exists a
set I C [0,00) such that To(R,G’) < Ty(R, F'). Next we apply
Lemma 2.5 to F’ and G/, it follows that there are three cases
to be considered.

Case (i).

(R.G')+S(R,G").
(4.13)

To(R,F') <No(R.F') + N (R, F') + No(R.G')
—0 — 1
+NY(R.G) +No (R, F,)
—(2 1 — 1
+Ng (R | +No (R &
N (R L) +s@RF)+5(R.G
NG (R ) +S(R.F) +S(R.G).
Setting (4.9), (4.11), (4.12), and (4.13) into the above inequal-

ity and keeping in mind that Tp(R,G’) < To(R,F’), we get

n—12n2 +17n+2
(n+1)*(n+2)

To(R,F') < S(R,F"). (4.14)

We denote by p(n) the numerator of the coefficient on the
left hand side above. Then p'(n) = 3n> —24n+ 17 > 0 for
n < 8. Note that p(11) = 68; thus p(n) is positive for n < 11.
It follows from (4.14) that F/ must be rational function. But
then, by the above derivatives, S(R, F’) = O(1). Using (4.14)
again, F/ must be a constant, which is impossible.
Case (ii). F/ = G'. Then we deduce that f**! = g"*! 4 ¢
(c € C). Let f = hg, and we have

(R —1)g" ! =¢. (4.15)
If /"1 =1, then h is (n+ 1)" unit root and we obtain the
desired result. If #"+! # 1, then by (4.15),

n+1 __ ¢
8 ool .
Thus 4 is not constant. We write this in the form

n+l _ ¢
(hful)...

8 (h—tta1)’

where u1,...,u, 1 are different (n+ 1) roots of unity. Thus
h has at least n+ 1(> 14) multiple values. However, from
Nevanlinna’s second fundamental theorem on annuli, we know
that / has at most 4 multiple values, a contradiction. R

Case (iii). F/'G' =1, ie., a ’f'f'lg"g = 1. Let f =
a V/t)f and g = g~ 1/("t1)8 Then f" f'g" ¢’ = 1. The con-
clusion follows follows from Theorem 2.
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