

https://doi.org/10.26637/MJM0901/0186

Uniqueness and value sharing of meromorphic functions on annuli

Ashok Rathod^{1*} and Praveen Basavanneppa Burji²

Abstract

In this paper, we study meromorphic functions that share only one value on annuli and prove the following results.

- 1. Let f(z) and g(z) be two non constant meromorphic functions in $\mathbb{A}(R_0)$, where $1 < R_0 \le +\infty$, $n \ge 6$. If $f^n f' g^n g' = 1$, then $f \equiv dg$ or $g = c_1 e^{cz}$ and $f = c_2 e^{-cz}$, where c, c_1 and c_2 are constants and $(c_1 c_2)^{n+1} c^2 = -1$.
- 2. Let f(z) and g(z) be two non constant entire functions in $\mathbb{A}(R_0)$, where $1 < R_0 \le +\infty$, $n \ge 1$. If $f^n f' g^n g' = 1$, then $f \equiv dg$ or $g = c_1 e^{cz}$ and $f = c_2 e^{-cz}$, where c, c_1 and c_2 are constants and $(c_1 c_2)^{n+1} c^2 = -1$.

Using the results (1) and (2) we prove, let f(z) and g(z) two non constant meromorphic functions on annuli and For $n \ge 11$, if $f^n f'$ and $g^n g'$ share the same nonzero and finite value *a* with the same multiplicities on annuli, then $f \equiv dg$ or $g = c_1 e^{cz}$ and $f = c_2 e^{-cz}$, where *d* is an $(n+1)^{th}$ root of unity, *c*, c_1 and c_2 being constants.

Keywords

Value Distribution Theory; meromorphic functions; annuli.

AMS Subject Classification

30D35.

¹Department of Mathematics, K.L.E Society's G. I. Bagewadi Arts Science and Commerce College, Nipani, Karnataka-591237, India. ²Department of Mathematics, S. S. Arts College and T. P. Science Institute, Sankeshwar, Karnataka-591313, India. *Corresponding author: ¹ ashokmrmaths@gmail.com; ²prasnemath@gmail.com Article History: Received 21 January 2021; Accepted 28 March 2021 ©2021 MJM.

Contents

1	Introduction and Mani Results1071
2	Some Basic Theorems and Lemmas 1072
3	Proof of Lemmas1072
4	Proof of Theorems 1075
	References 1077

1. Introduction and Mani Results

In this paper, a meromorphic function always mean a function which is meromorphic in $\mathbb{A}(R_0)$, where $1 < R_0 \leq +\infty$. Let f(z) and g(z) be non constant meromorphic in $\mathbb{A}(R_0)$, where $1 < R_0 \leq +\infty$, $a \in \overline{\mathbb{C}}$. We say that f and g share the value a CM if f(z) - a and g(z) - a have the same zeros with the same multiplicities. We shall use standard notations of value distribution theory in annuli, $T_0(R, f), m_0(R, f), N_0(R, f), \overline{N}_0(R, f), \dots$ (see [6],[7]).

In this paper, we shall show that certain types of differential polynomials on annuli when they share only one value. **Theorem 1.1.** Let f(z) and g(z) be two non constant meromorphic fuctions in $\mathbb{A}(R_0)$, where $1 < R_0 \le +\infty$, $n \ge 11$ an integer and $a \in \mathbb{C} - \{0\}$. If $f^n f'$ and $g^n g'$ share the value a*CM*, then either $f \equiv dg$ or $g = c_1 e^{c_2}$ and $f = c_2 e^{-c_2}$, where c, c_1 and c_2 are constants and satisfy $(c_1 c_2)^{n+1} c^2 = a^{-2}$.

Remark 1.2. The following example shows that $a \neq 0$ is necessary. For $f = e^{e^z}$ and $g = e^z$, we see that $f^n f'$ and $g^n g'$ share 0 CM for any integer n, but f and g do not satisfy the conclusion of Theorem 1.

In order to prove the above result, we shall first prove the following two theorems.

Theorem 1.3. Let f(z) and g(z) be two non constant meromorphic functions in $\mathbb{A}(R_0)$, where $1 < R_0 \le +\infty$, $n \ge 6$. If $f^n f' g^n g' = 1$, then $f \equiv dg$ or $g = c_1 e^{cz}$ and $f = c_2 e^{-cz}$, where c, c_1 and c_2 are constants and $(c_1 c_2)^{n+1} c^2 = -1$.

Theorem 1.4. Let f(z) and g(z) be two non constant entire fuctions in $\mathbb{A}(R_0)$, where $1 < R_0 \le +\infty$, $n \ge 1$. If $f^n f' g^n g' = 1$, then $f \equiv dg$ or $g = c_1 e^{cz}$ and $f = c_2 e^{-cz}$, where c, c_1 and c_2 are constants and $(c_1 c_2)^{n+1} c^2 = -1$.

2. Some Basic Theorems and Lemmas

Theorem 2.1. [7] (*Lemma on the Logarithmic Derivative*). Let f be a nonconstant meromorphic function in $\mathbb{A}(R_0)$, where $1 < R_0 \leq +\infty$, and $\alpha \geq 0$. Then 1. In the case, $R_0 = +\infty$,

$$m_0\left(R,\frac{f'}{f}\right) = O\left(\log(RT_0(R,f))\right)$$

for $R \in (1, +\infty)$ except for the set \triangle_R such that $\int_{\triangle_R} R^{\alpha-1} dR < +\infty$;

2. In the case, $R_0 < +\infty$,

$$m_0\left(R, \frac{f'}{f}\right) = O\left(\log\left(\frac{T_0(R, f)}{R_0 - R}\right)\right)$$

for $R \in (1, R_0)$ except for the set \triangle'_R such that $\int_{\triangle'_R} \frac{dR}{(R_0 - R^{\alpha-1})} < +\infty$.

Lemma 2.2. Let f and g be two non constant entire functions in $\mathbb{A}(R_0)$, where $1 < R_0 \leq +\infty$. Then for any $1 < R < R_0$, we have

$$N_0\left(R,\frac{f}{g}\right) - N_0\left(R,\frac{g}{f}\right) = N_0\left(R,f\right) + N_0\left(R,\frac{1}{g}\right) - N_0\left(R,g\right)$$
$$- N_0\left(R,\frac{1}{f}\right).$$

In studying on uniqueness theorems of meromorphic functions, the following lemma plays an important role.

Lemma 2.3. Suppose that $f_1(z), f_2(z), \ldots, f_n(z)$ are linearly independent meromorphic functions in $\mathbb{A}(R_0)$, where $1 < R_0 \leq +\infty$ satisfying the following identity

$$\sum_{j=1}^{n} f_j \equiv 1 \tag{2.1}$$

Then for $1 \le j \le n$, we have

$$\begin{aligned} T_0(R,f) &\leq \sum_{k=1}^n N_0\left(R,\frac{1}{f_k}\right) + N_0\left(R,f_j\right) + N_0\left(R,D\right) \\ &- \sum_{k=1}^n N_0\left(R,f_k\right) - N_0\left(R,\frac{1}{D}\right) + S(R,f). \end{aligned}$$
(2.2)

Where D is the Wronskian determinant $W(f_1, f_2, ..., f_n)$, $S(r, f) = o(T_0(R, f))$ and $T_0(R, f) = max_{1 \le k \le n} \{T_0(R, f_k)\}$, for every R such that $1 < R < R_0$, $R \notin E$ and E is the set of finite linear measure.

First of all, we prove a lemma which is a essentially generalization of Borel's theorem.

Lemma 2.4. Let $g_j(z)$ (j=1,2,...,n) be an entire functions and $a_j(z)$ (j=0,1,2,...,n) be a meromorphic functions in $\mathbb{A}(R_0)$, where $1 < R_0 \le +\infty$, satisfying $T_0(R,aj) = o\left(\sum_{k=1}^n T_0(R,e^{gk})\right)$,

for every R such that $1 < R < R_0$, $R \notin E$, (j = 0, 1, 2, ..., n). If

$$\sum_{j=1}^{n} a_j(z) e^{g_j(z)} \equiv a_0(z)$$
(2.3)

then there exists constant c_j (j=1,2,...,n) at least one of them is not zero such that

$$\sum_{j=1}^{n} c_j a_j(z) e^{g_j(z)} \equiv 0.$$
(2.4)

Lemma 2.5. Let f(z) and g(z) be two non constant entire functions in $\mathbb{A}(R_0)$, where $1 < R_0 \leq +\infty$. If f and g share 1 *CM*, one of the following three cases holds:

10

$$(i) T_{0}(R, f) \leq \overline{N}_{0}(R, f) + \overline{N}_{0}^{(2)}(R, f) + \overline{N}_{0}(R, g) + \overline{N}_{0}^{(2)}(R, g) + \overline{N}_{0}\left(R, \frac{1}{f}\right) + \overline{N}_{0}^{(2)}\left(R, \frac{1}{f}\right) + \overline{N}_{0}\left(R, \frac{1}{g}\right) + \overline{N}_{0}^{(2)}\left(R, \frac{1}{g}\right) + S(R, f) + S(R, g)$$

the same inequality holding for $T_0(R,g)$;

(*ii*)
$$f \equiv dg$$
;

$$(iii) fg \equiv 1,$$

where

$$\overline{N}_{0}^{(2}\left(R,1/f\right) = \overline{N}_{0}\left(R,\frac{1}{f}\right) - N_{0}^{(1)}\left(R,\frac{1}{f}\right)$$

and $N_0^{(1)}\left(R,\frac{1}{f}\right)$ is the counting function of the zeros of f in $\{z: |z| \leq R\}$.

3. Proof of Lemmas

1. Proof of Lemma 2.2: By Jensen's formula in annuli, we have

$$N_0\left(R,\frac{1}{f}\right) - N_0\left(R,f\right) = \int_0^{2\pi} \log \frac{1}{|f(Re^{i\theta})|} \frac{d\theta}{2\pi}$$
$$+ \int_0^{2\pi} \log |f(Re^{i\theta})| \frac{d\theta}{2\pi} - \int_0^{2\pi} \log |f(e^{i\theta})| \frac{d\theta}{\pi}$$

for every *R* such that $1 < R < R_0$. Consider,

$$\begin{split} &N_0\left(R,\frac{f}{g}\right) - N_0\left(R,\frac{g}{f}\right) \\ &= \int_0^{2\pi} \log\left|\frac{f(Re^{i\theta})}{g(Re^{i\theta})}\right| \frac{d\theta}{2\pi} + \int_0^{2\pi} \log\left|\frac{g(Re^{i\theta})}{f(Re^{i\theta})}\right| \frac{d\theta}{2\pi} \\ &+ \int_0^{2\pi} \log\left|\frac{g(e^{i\theta})}{f(e^{i\theta})}\right| \frac{d\theta}{2\pi} \\ &= \left\{\int_0^{2\pi} \log\left|\frac{1}{g(Re^{i\theta})}\right| \frac{d\theta}{2\pi} + \int_0^{2\pi} \log\left|g(Re^{i\theta})\right| \frac{d\theta}{2\pi} \\ &- \int_0^{2\pi} \log\left|g(e^{i\theta})\right| \frac{d\theta}{2\pi}\right\} \\ &- \left\{\int_0^{2\pi} \log\left|\frac{1}{f(Re^{i\theta})}\right| \frac{d\theta}{2\pi} + \int_0^{2\pi} \log\left|f(Re^{i\theta})\right| \frac{d\theta}{2\pi} \\ &- \int_0^{2\pi} \log\left|g(e^{i\theta})\right| \frac{d\theta}{2\pi}\right\} \\ &= N_0(R, f) + N_0\left(R, \frac{1}{g}\right) - N_0(R, g) - N_0\left(R, \frac{1}{f}\right). \end{split}$$

This completes the proof of Lemma 2.2.

2. Proof of Lemma 2.3: Taking the derivative in both sides of identity (2.1), we get

$$\sum_{j=1}^{n} f_{j}^{(k)} = 0 \quad (k = 1, 2, ..., n - 1)$$
(3.1)

Since $f_1(z), f_2(z), \dots, f_n(z)$ are linearly independent, we see that $D \neq 0$. (2.1) and (3.1) imply

$$D = D_j \ (j = 1, 2, ..., n), \tag{3.2}$$

where D_j is algebraic cofactor of f_j in D. Hence

$$f_1 = \frac{\frac{D_1}{f_2 f_3 \dots f_n}}{\frac{D}{f_1 f_2 \dots f_n}} = \frac{\Delta_1}{\Delta},$$
(3.3)

where

$$\Delta = \begin{vmatrix} 1 & 1 \cdots & 1 \\ \frac{f_1'}{f_1} & \frac{f_2'}{f_2} \cdots & \frac{f_n'}{f_n} \\ \cdots & \cdots & \cdots \\ \frac{f_1^{(n-1)}}{f_1} & \frac{f_2^{(n-1)}}{f_2} \cdots & \frac{f_n^{(n-1)}}{f_n} \end{vmatrix}$$

and Δ is the algebraic cofactor of the elements at the first column and the first row in Δ . From (3.3), we have

since $\Delta = \frac{D}{f_1 f_2 \dots f_n}$, which leads to

$$N_{0}(R,\Delta) - N_{0}\left(R,\frac{1}{\Delta}\right) = \sum_{k=1}^{n} N_{0}\left(R,\frac{1}{f_{k}}\right) - \sum_{k=1}^{n} N_{0}\left(R,f_{k}\right) + N_{0}\left(R,D\right) - N_{0}\left(R,\frac{1}{D}\right)$$
(3.5)

Note that $m_0\left(R, \frac{f_j^{(k)}}{f_j}\right) = S(R, f_j) = S(R, f)$, (j=1,2,...,n and k=1,2,...,n-1). We have

$$m_0(R,\Delta_1) + m_0(R,\Delta) = S(R,f)$$
 (3.6)

From (3.4), (3.5) and (3.6), we get

$$T_{0}(R, f_{1}) = m_{0}(R, f_{1}) + N_{0}(R, f_{1})$$

$$\leq \sum_{k=1}^{n} N_{0}\left(R, \frac{1}{f_{k}}\right) + N_{0}\left(R, f_{1}\right) + N_{0}\left(R, D\right)$$

$$-\sum_{k=1}^{n} N_{0}\left(R, f_{k}\right) - N_{0}\left(R, \frac{1}{D}\right) + S(R, f)$$
(3.7)

By the same method, we can prove other results similar to (3.7) for f_j , $(2 \le j \le n)$. Hence (2.2) holds.

3. Proof of Lemma 2.4: If $a_0(z) \equiv 0$, Lemma 2.4 is obviously true. In the following, we assume that $a_0(z) \neq 0$. From (2.3), we have $\sum_{j=1}^{n} \frac{a_j(z)}{a_0(z)} e^{g_j(z)} \equiv 1$. Let $G_j(z) = \frac{a_j(z)}{a_0(z)} e^{g_j(z)}$ (j=1,2,...,n). Then $\sum_{j=1}^{n} \equiv 1$.

If $G_1(z), G_2(z), \ldots, G_n(z)$ are linearly independent, then from Lemma 2.2 we have

$$T_0(R,G) \le \sum_{j=1}^n N_0\left(R,\frac{1}{G_j}\right) + N_0(R,D) + S(R,f), \quad (3.8)$$

where *D* is Wronskian $W(G_1, G_2, ..., G_n)$, and $S(r, f) = o(T_0(R, f))$ and $T_0(R, f) = max_{1 \le k \le n} \{T_0(R, f_k)\}$, as $1 < R < R_0, R \notin E$. *E* is the set of finite linear measure. Note that

$$N_0\left(R, \frac{1}{G_j}\right) \le N_0\left(R, \frac{1}{a_j}\right) + N_0\left(R, a_0\right) \le T_0\left(R, a_j\right)$$
$$+ T_0\left(R, a_0\right)$$
$$= o\left(\sum_{k=1}^n T_0(R, e^{gk})\right), \quad (1 < R < R_0, R \notin E).$$
(3.9)

and

$$N_{0}(R,G_{j}) \leq N_{0}(R,a_{j}) + N_{0}\left(R,\frac{1}{a_{0}}\right) \leq T_{0}(R,a_{j}) + T_{0}(R,a_{0}) = o\left(\sum_{k=1}^{n} T_{0}(R,e^{gk})\right), \quad (1 < R < R_{0}, R \notin E).$$

We have

$$N_0(R,D) \le n \sum_{j=1}^n N_0(R,G_j)$$

= $o\left(\sum_{k=1}^n T_0(R,e^{gk})\right), \ (1 < R < R_0, R \notin E).$
(3.10)

From (3.8), (3.9) and (3.10), we get

$$T_0(R,G_j) < o\left(\sum_{k=1}^n T_0(R,e^{gk})\right) + S(R,f),$$

(1 < R < R_0, R \notice E), j = 1,2,...,n.

On the other hand, we have

$$T_0(R,G_j) = T_0(R,e^{g_k}) + o\left(\sum_{k=1}^n T_0(R,e^{g_k})\right) \quad (R \notin E),$$
$$S(R,f) = o\left(\sum_{k=1}^n T_0(R,e^{g_k})\right) \quad (R \notin E).$$

Hence for j = 1, 2, ..., n we have

$$T_0(R, e^{g_k}) = o\left(\sum_{k=1}^n T_0(R, e^{g_k})\right) \ (R \notin E).$$

Therefore

$$\sum_{k=1}^{n} T_0(R, e^{g_k}) = o\left(\sum_{k=1}^{n} T_0(R, e^{g_k})\right) \ (R \notin E).$$

This is a contradiction. Hence $G_1(z), G_2(z), \ldots, G_n(z)$ are linearly dependent. This completes the proof of Lemma 2.4.

4. Proof of Lemma 2.5: Set

$$\phi = \frac{f''}{f'} - 2\frac{f'}{f-1} - \frac{g''}{g'} + 2\frac{g'}{g-1}$$
(3.11)

Since *f* and *g* share 1 CM, a simple computation on local expansions shows that $\phi(z_0) = 0$ if z_0 is a simple zero of f - 1 and g - 1. Next we consider two cases $\phi \neq 0$ and $\phi \equiv 0$.

If $\phi \not\equiv 0$, then

$$N_0^{(1)}\left(R,\frac{1}{f-1}\right) = N_0^{(1)}\left(R,\frac{1}{g-1}\right) \le N_0\left(R,\frac{1}{\phi}\right)$$
$$\le T_0\left(R,\phi\right) + O(1) \le N_0\left(R,\phi\right)$$
$$+S(R,f) + S(R,g) \quad (3.12)$$

where $N_0^{(1)}(R, 1/f - 1)$ is the counting function of the simple zeros of f - 1 in $\{z : |z| \le R\}$. Since f and g share 1 CM, any root of f(z) = 1 can not be a pole of $\phi(z)$. In addition, we can easily see from (3.11) that any simple pole of f and g is not a pole of ϕ . Therefore, by (3.11), the poles of ϕ only occur at zeros of f' and g' and the multiple poles of f and g. If $f'(z_0) = f(z_0) = 0$, then z_0 is a multiple zero of f. We

denote by $N_0(R, 1/f')$ the counting function of those zeros of f' but not that of f(f-1). From (3.11), (3.12) and the above observation that

$$N_{0}^{1)}\left(R,\frac{1}{f-1}\right) \leq \overline{N}_{0}^{(2)}(R,f) + \overline{N}_{0}^{(2)}(R,g) + N_{0}\left(R,\frac{1}{f'}\right) + N_{0}\left(R,\frac{1}{g'}\right) + N_{0}^{(2)}\left(R,\frac{1}{f'}\right) + N_{0}^{(2)}\left(R,\frac{1}{g'}\right) + S(R,f) + S(R,g)$$
(3.13)

On the other hand, by the second fundamental theorem we have

$$T_{0}(R,f) \leq \overline{N}_{0}(R,f) + N_{0}\left(R,\frac{1}{f}\right) + \overline{N}_{0}\left(R,\frac{1}{f-1}\right) - \overline{N}_{0}\left(R,\frac{1}{f'}\right) + S(R,f)$$
(3.14)

and by the first fundamental theorem on annuli, we have

$$\begin{split} N_0\left(R,\frac{1}{g'}\right) - N_0\left(R,\frac{1}{g}\right) &= N_0\left(R,\frac{g}{g'}\right) \le T_0\left(R,\frac{g}{g'}\right) + O(1) \\ &= \overline{N}_0(R,g) + \overline{N}_0\left(R,\frac{1}{g}\right) + S(R,g). \end{split}$$

This implies that

$$N_0\left(R,\frac{1}{g'}\right) = \overline{N}_0(R,g) + \overline{N}_0\left(R,\frac{1}{g}\right) + S(R,g).$$

It is easy to see from the definition of $N_0^{(0)}\left(R, \frac{1}{g'}\right)$ that

$$\begin{split} \overline{N}_{0}^{(0)}\left(R,\frac{1}{g'}\right) + \overline{N}_{0}^{(2)}\left(R,\frac{1}{g-1}\right) + \overline{N}_{0}^{(2)}\left(R,\frac{1}{g}\right) - \overline{N}_{0}^{(2)}\left(R,\frac{1}{g}\right) \\ \leq N_{0}\left(R,\frac{1}{g'}\right). \end{split}$$

The above two inequalities yield

$$\overline{N}_{0}^{(0)}\left(R,\frac{1}{g'}\right) + \overline{N}_{0}^{(2)}\left(R,\frac{1}{g-1}\right) \leq N_{0}\left(R,g\right)$$
$$+ N_{0}\left(R,\frac{1}{g}\right) + S(R,g).$$
(3.15)

Since f(z) and g(z) share 1 CM, we have

$$\overline{N}_0\left(R,\frac{1}{f-1}\right) \le \overline{N}_0^{(1)}\left(R,\frac{1}{f-1}\right) + \overline{N}_0^{(2)}\left(R,\frac{1}{g-1}\right).$$
(3.16)

Combining (3.13) to (3.16), we obtain (*i*). If $\phi(z) \equiv 0$, we deduce from (3.11) that

$$f \equiv \frac{Ag+B}{Cg+D},\tag{3.17}$$

where A, B, C and D are finite complex numbers satisfying $AD - BC \neq 0$.

Then, by the first fundamental theorem,

$$T_0(R, f) = T_0(R, g) + S(R, f).$$
 (3.18)

Next we consider three respective subcases.

Subcase 1. $AC \neq 0$. Then

$$f - \frac{A}{C} = \frac{B - AD/C}{Cg + D}.$$

By the second fundamental theorem on annuli, we have

$$T_{0}(R,f) \leq \overline{N}_{0}(R,f) + \overline{N}_{0}\left(R,\frac{1}{f-(A/C)}\right) + \overline{N}_{0}\left(R,\frac{1}{f}\right) + S(R,f)$$
$$= \overline{N}_{0}(R,f) + \overline{N}_{0}(R,g) + \overline{N}_{0}\left(R,\frac{1}{f}\right) + S(R,f)$$
(3.19)

we get (i).

Subcase 2. $A \neq 0$, C = 0 Then $f \equiv (Ag + B)/D$. If $B \neq 0$, by the second fundamental theorem on annuli, we have

$$T_{0}(R,f) \leq \overline{N}_{0}(R,f) + \overline{N}_{0}\left(R,\frac{1}{f}\right) + \overline{N}_{0}\left(R,\frac{1}{f-(B/D)}\right) + S(R,f)$$
$$= \overline{N}_{0}(R,f) + \overline{N}_{0}\left(R,\frac{1}{f}\right) + \overline{N}_{0}\left(R,\frac{1}{g}\right) + S(R,f).$$
(3.20)

we get (*i*). If B = 0, then $f \equiv Ag/D$. If A/D = 1, then $f \equiv g$; this is (*ii*). If $A/D \neq 1$, then by the assumption that f and g share 1 CM, it is easy to see that $f \neq 1$ and $g \neq 1$, which yields $f \neq 1, A/D$. By the second fundamental theorem on annuli, we have

$$T_0(R,f) \le \overline{N}_0(R,f) + S(R,f),$$

and (i) follows.

Subcase 3. A = 0, $C \neq 0$ Then $f \equiv B/(Cg+D)$. if $D \neq 0$, by the second fundamental theorem on annuli, we have

$$T_{0}(R,f) \leq \overline{N}_{0}(R,f) + \overline{N}_{0}\left(R,\frac{1}{f}\right) + \overline{N}_{0}\left(R,\frac{1}{f-(B/D)}\right) + S(R,f)$$
$$= \overline{N}_{0}(R,f) + \overline{N}_{0}\left(R,\frac{1}{f}\right) + \overline{N}_{0}\left(R,\frac{1}{g}\right) + S(R,f).$$
(3.21)

we get (*i*). If D = 0, then $f \equiv B/Cg$. If B/C = 1, then $fg \equiv 1$ and we obtain (*iii*). If $B/C \neq 1$, by the assumption that f and g

share 1 CM, we have $f \neq 1$, B/C. By the second fundamental theorem on annuli, we get

$$T_0(R,f) \le \overline{N}_0(R,f) + S(R,f).$$

This implies (i). Thus the proof of Lemma 2.5 is complete.

4. Proof of Theorems

1. Proof of Theorem 1.3: We prove the theorem step by step as follows.

Step 1. We prove that

$$f \neq 0, \quad g \neq 0. \tag{4.1}$$

In fact, suppose that f has a zero z_0 with order m. Then z_0 is a pole of g (with order p, say) by

$$f^n f' g^n g' = 1. (4.2)$$

Thus, nm + m - 1 = np + p + 1, i.e., (m - p)(n + 1) = 2. This impossible since $n \ge 6$ and m, p are integers.

Step 2. We claim that

$$N_0(R, f) + N_0(R, g) \le 2m_0\left(R, \frac{1}{fg}\right) + O(1).$$
 (4.3)

By step 1 and (4.2) we deduce that

$$(n+1)N_0(R,g) + \overline{N}_0(R,g) = N_0\left(R,\frac{1}{f'}\right).$$
 (4.4)

From Lemma 2.2 we have

$$N_0\left(R, \frac{f}{f'}\right) - N_0\left(R, \frac{f'}{f}\right)$$

$$= N_0\left(R, f\right) + N_0\left(R, \frac{1}{f'}\right) - N_0\left(R, f'\right) - N_0\left(R, \frac{1}{f}\right)$$

$$= N_0\left(R, \frac{1}{f'}\right) - \overline{N}_0\left(R, f\right).$$

By the first fundamental theorem on annuli, the left side is $m_0(R, f'/f) - m_0(R, f/f') + O(1)$, so we have

$$N_0\left(R,\frac{1}{f'}\right) = \overline{N}_0\left(R,f\right) + m_0\left(R,\frac{f}{f'}\right) - m_0\left(R,\frac{f'}{f}\right) + O(1).$$
(4.5)

Now we rewrite (4.2) in the form $g'/g = (f'/f)(1/fg)^{n+1}$. Then

$$m_0\left(R,\frac{f}{f'}\right) \ge m_0\left(R,\frac{g'}{g}\right) - (n+1)m_0\left(R,\frac{1}{fg}\right) - O(1)$$

combining this, (4.4) and (4.5), we get

$$(n+1)N_0(R,g) + \overline{N}_0(R,g)$$

$$\leq \overline{N}_0(R,f) + m_0\left(R,\frac{f'}{f}\right) - m_0\left(R,\frac{g'}{g}\right)$$

$$+ (n+1)m_0\left(R,\frac{1}{fg}\right) + O(1).$$

By symmetry,

$$(n+1)N_0(R,f) + \overline{N}_0(R,f)$$

$$\leq \overline{N}_0(R,g) + m_0\left(R,\frac{g'}{g}\right) - m_0\left(R,\frac{f'}{f}\right)$$

$$+ (n+1)m_0\left(R,\frac{1}{fg}\right) + O(1).$$

By adding above two inequalities we obtain (4.3).

Step 3. We prove that fg is constant. Let h = 1/fg. Then h is entire by Step 1, and (4.2) can be written as

$$\left(\frac{g'}{g} + \frac{1}{2}\frac{h'}{h}\right)^2 = \frac{1}{4}\left(\frac{h'}{h}\right)^2 - h^{n+1}.$$

Let

$$\alpha = \frac{g'}{g} + \frac{1}{2}\frac{h'}{h}$$

The above equation becomes

$$\alpha^{2} = \frac{1}{4} \left(\frac{h'}{h}\right)^{2} - h^{n+1}.$$
(4.6)

If $\alpha \equiv 0$, then $h^{n+1} = \frac{1}{2} (h'/h)^2$. Combining this with Step 1 we obtain $T_0(R,h) = m_0(R,h) = S(R,h)$; thus *h* is a constant. Next we assume that $\alpha \neq 0$. Differentiating (4.6) yields

$$2\alpha\alpha' = \frac{1}{2}\frac{h'}{h}\left(\frac{h'}{h}\right)' - (n+1)h'h^n.$$

From this and (4.6) it follows that

$$h^{n+1}\left((n+1)\frac{h'}{h} - 2\frac{\alpha'}{\alpha}\right) = \frac{1}{2}\frac{h'}{h}\left(\left(\frac{h'}{h}\right)' - \frac{\alpha'}{\alpha}\frac{h'}{h}\right)$$
(4.7)

If $(n+1)\frac{h'}{h} - 2\frac{\alpha'}{\alpha} \equiv 0$, then there exists a constant c such that $\alpha^2 = ch^{n+1}$. This and (4.6) give

$$(c+1)h^{n+1} = \frac{1}{4}\left(\frac{h'}{h}\right)^2.$$

If c = -1, then $h' \equiv 0$, and so *h* is constant. If $c \neq -1$, we have $T_0(R,h) = S(R,h)$, and *h* is constant. Next we suppose that

$$(n+1)\frac{h'}{h} - 2\frac{\alpha'}{\alpha} \neq o$$

Then, by (4.7) and the fact that *h* is entire,

$$\begin{split} (n+1)T_0(R,h) &= (n+1)m_0(R,h) \\ &\leq m_0 \left(R, h^{n+1} \left((n+1)\frac{h'}{h} - 2\frac{\alpha'}{\alpha} \right) \right) \\ &+ m_0 \left(R, \frac{1}{(n+1)h'/h} - 2\alpha'/\alpha} \right) + O(1) \\ &\leq m_0 \left(R, \frac{1}{2}\frac{h'}{h} \left(\left(\frac{h'}{h} \right)' - \frac{h'}{h} \right) \right) \\ &+ T_0 \left(R, (n+1)\frac{h'}{h} - 2\frac{\alpha'}{\alpha} \right) \\ &\leq \overline{N}_0 \left(R, f \right) + \overline{N}_0 \left(R, g \right) + \overline{N}_0 \left(R, \frac{1}{\alpha} \right) \\ &+ S(R,h) + S(R,\alpha). \end{split}$$

Now by (4.6) and (4.3) we have

$$T_0(R,\alpha) \leq \frac{1}{2}(n+3)T_0(R,h) + S(R,h),$$

and

$$N_0(R, f) + N_0(R, g) \le 2m_0(R, h) + O(1).$$

Combining the above three inequalities we obtain

$$\frac{1}{2}(n-5)T_0(R,h) \le S(R,h).$$

Thus *h* must be a constant.

Step 4. We prove our conclusion. By Step 3, h is constant. Then, by (4.2),

$$\frac{g'}{g} = c, \ c = ih^{(n+1)/2.}$$

Thus

$$g(z) = c_1 e^{cz}, \quad f = c_2 e^{-cz}$$

where c, c_1 and c_2 are constants and satisfy $(c_1c_2)^{n+1}c^2 = -1$ by (4.2). This completes the proof of the theorem.

2. Proof of Theorem 1.4: From

$$f^n f' g^n g' = 1$$

and the assumption that f and g are entire we immediately see that f and g have no zeros. Thus there exists two entire functions $\alpha(z)$ and $\beta(z)$ such that

$$f(z) = e^{\alpha(z)}, \quad g(z) = e^{\beta(z)}.$$

Inserting these in the above equality, we get

$$\alpha'\beta' e^{(n+1)(\alpha+\beta)} \equiv 1.$$

Thus α' and β' have no zeros and we may set

$$lpha'=e^{\delta(z)}, \quad eta'=e^{\gamma(z)}.$$

Differentiating this gives

$$(n+1)(e^{\delta}+e^{\gamma})+\delta'+\gamma'\equiv 0.$$

By Lemma 2.4, $\delta = \gamma + (2m+1)\pi i$ for some integer *m*. Inserting this in the above equality we deduce that $\delta' \equiv \gamma' \equiv 0$, and so δ and γ are constants, i.e., α' and β' are constants. From this we can easily obtain the desired result.

3. Proof of Theorem 2.1: Let $F = f^{n+1}/a(n+1)$ and $G = g^{n+1}/a(n+1)$. Then condition that $f^n f'$ and $g^n g'$ share the value *a* CM implies that F' and G' share the value 1 CM. Obviously,

$$N_0(R,F') = (n+1)N_0(R,f) + N_0(R,f),$$

$$N_0(R,G') = (n+1)N_0(R,g) + \overline{N}_0(R,g),$$
(4.8)

$$\overline{N}_0(R,F') = \overline{N}_0^{(2)}(R,F') = \overline{N}_0(R,f)$$

$$\leq \frac{1}{n+2} T_0(R,F') + O(1), \qquad (4.9)$$

$$\overline{N}_{0}\left(R,\frac{1}{F'}\right) + \overline{N}_{0}^{(2}\left(R,\frac{1}{F'}\right) \\
= 2\overline{N}_{0}\left(R,\frac{1}{f}\right) + \overline{N}_{0}\left(R,\frac{1}{f'}\right) + \overline{N}_{0}^{(2}\left(R,\frac{1}{f'}\right) \\
\leq 2\overline{N}_{0}\left(R,\frac{1}{f}\right) + \overline{N}_{0}\left(R,\frac{1}{f'}\right) \qquad (4.10) \\
\leq 2T_{0}(R,f) + \overline{N}_{0}\left(R,\frac{1}{f'}\right) + O(1).$$

Since

$$n m_0(R, f) = m_0 \left(R, a \frac{F'}{f'}\right) \le m_0 \left(R, F'\right) + m_0 \left(R, \frac{1}{f'}\right) + O(1)$$

= $m_0 \left(R, F'\right) + T_0(R, f) - N_0 \left(R, \frac{1}{f'}\right) + O(1)$
 $\le m_0 \left(R, F'\right) + T_0(R, f) + \overline{N}_0(R, f) - N_0 \left(R, \frac{1}{f'}\right)$
 $+ m_0 \left(R, \frac{f'}{f}\right) + O(1)$
 $\le m_0 \left(R, F'\right) + T_0(R, f) + \overline{N}_0(R, f) - N_0 \left(R, \frac{1}{f'}\right)$
 $+ m_0 \left(R, \frac{F'}{F}\right) + O(1),$

it follows from this,(4.8), and Theorem 4 that

$$(n-1)T_0(R,f) \le T_0(R,F') - N_0(R,f) - N_0\left(R,\frac{1}{f'}\right) + S(R,F').$$

This and Theorem 4 imply that

$$\begin{aligned} &2T_0(R,f) + N_0\left(R,\frac{1}{f'}\right) \\ &= \frac{2}{n-1} \left\{ (n-1)T_0(R,f) + N_0\left(R,\frac{1}{f'}\right) \right\} + \frac{n-3}{n-1}N_0\left(R,\frac{1}{f'}\right) \\ &\leq \frac{2}{n-1} \left\{ T_0(R,F') + N_0\left(R,f\right) \right\} + \frac{n-3}{n-1} \left\{ T_0(R,f) + \overline{N}_0\left(R,f\right) \right\} \\ &+ m_0\left(R,\frac{f'}{f}\right) + O(1) \\ &\leq \left(\frac{2}{n-1} + \frac{n-3}{(n-1)^2}\right) T_0(R,F') + \left(\frac{n-5}{n-1} + \frac{n-3}{(n-1)^2}\right) \\ &\quad N_0(R,f) + S(R,F'). \end{aligned}$$

Combining this (4.9), and (4.10), we obtain

$$\overline{N}_{0}\left(R,\frac{1}{F'}\right) + \overline{N}_{0}^{(2}\left(R,\frac{1}{F'}\right) \leq \frac{4n^{2} - 6n - 2}{(n-1)^{2}(n+2)}T_{0}(R,F') + S(R,F').$$
(4.11)

We similarly derive for G' that

$$\overline{N}_0(R,G') = \overline{N}_0^{(2)}(R,G') = \overline{N}_0(R,g) \le \frac{1}{n+2}T_0(R,G') + S(R,G'),$$
(4.12)

$$\overline{N}_0\left(R, \frac{1}{G'}\right) + \overline{N}_0^{(2}\left(R, \frac{1}{G'}\right) \le \frac{4n^2 - 6n - 2}{(n-1)^2(n+2)}T_0(R, G') + S(R, G').$$
(4.13)

Without loss of generality, we suppose that there exists a set $I \subset [0,\infty)$ such that $T_0(R,G') \leq T_0(R,F')$. Next we apply Lemma 2.5 to F' and G', it follows that there are three cases to be considered.

Case (i).

$$\begin{split} T_0(R,F') \leq &\overline{N}_0(R,F') + \overline{N}_0^{(2)}(R,F') + \overline{N}_0(R,G') \\ &+ \overline{N}_0^{(2)}(R,G') + \overline{N}_0\left(R,\frac{1}{F'}\right) \\ &+ \overline{N}_0^{(2)}\left(R,\frac{1}{F'}\right) + \overline{N}_0\left(R,\frac{1}{G'}\right) \\ &+ \overline{N}_0^{(2)}\left(R,\frac{1}{G'}\right) + S(R,F') + S(R,G') \end{split}$$

Setting (4.9), (4.11), (4.12), and (4.13) into the above inequality and keeping in mind that $T_0(R,G') \leq T_0(R,F')$, we get

$$\frac{n^3 - 12n^2 + 17n + 2}{(n+1)^2(n+2)} T_0(R, F') \le S(R, F').$$
(4.14)

We denote by p(n) the numerator of the coefficient on the left hand side above. Then $p'(n) = 3n^2 - 24n + 17 > 0$ for $n \le 8$. Note that p(11) = 68; thus p(n) is positive for $n \le 11$. It follows from (4.14) that F' must be rational function. But then, by the above derivatives, S(R, F') = O(1). Using (4.14) again, F' must be a constant, which is impossible.

Case (ii). F' = G'. Then we deduce that $f^{n+1} = g^{n+1} + c$ $(c \in \mathbb{C})$. Let f = hg, and we have

$$(h^{n+1}-1)g^{n+1} = c. (4.15)$$

If $h^{n+1} \equiv 1$, then *h* is $(n+1)^{th}$ unit root and we obtain the desired result. If $h^{n+1} \not\equiv 1$, then by (4.15),

$$g^{n+1} = \frac{c}{h^{n+1} - 1.}$$

Thus h is not constant. We write this in the form

$$g^{n+1} = \frac{c}{(h-u_1)\dots(h-u_{n+1})},$$

where u_1, \ldots, u_{n+1} are different $(n+1)^{th}$ roots of unity. Thus h has at least $n+1 (\ge 14)$ multiple values. However, from Nevanlinna's second fundamental theorem on annuli, we know that h has at most 4 multiple values, a contradiction.

Case (iii). $F'G' \equiv 1$, i.e., $a^{-2}f^n f'g^n g' \equiv 1$. Let $\hat{f} = a^{-1/(n+1)f}$ and $\hat{g} = a^{-1/(n+1)g}$. Then $\hat{f}^n f'\hat{g}^n g' = 1$. The conclusion follows follows from Theorem 2.

References

- [1] T. B. Cao, Z. S. Deng. On the uniqueness of meromorphic functions that share three or two finite sets on annuli, *Proceeding Mathematical Sciences*. 122(2012), 203-220.
- [2] T. B. Cao, H. X. Yi, Uniqueness theorems of meromorphic functions share sets IM on Annili, *Acta Math.Sinica* (*Chin.Ser.*), 54(2011), 623-632.
- [3] Y. X. Chen, Z. J. Wu. Exceptional values of meromorphic functions and of their derivatives on annuli, *Ann. Polon.Math.* 105(2012), 154-165.
- [4] H. Y. Xu, and Z. X. Xuan. The uniqueness of analytic functions on annuli sharing some values, *Abstract and Applied analysis*. 2012, Article ID 896596, 13 pages, 2012.
- [5] M. L. Fang. A note on a result of Singh and Kulkarni, *Internat. J Math Sci.* 23(4)(2000), 285-288.
- [6] A. Ya. Khrystiyanyn, A. A. Kondratyuk. On the Nevanlinna Theory for meromorphic functions on annuli. I, *Mathematychin Studii*. 23(1)(2005), 19-30.
- [7] A. Ya. Khrystiyanyn, A. A. Kondratyuk. On the Nevanlinna Theory for meromorphic functions on annuli. II, *Mathematychin Studii*. 24(2)(2005), 57-68.
- [8] T.B.Cao, H. X. Yi, H. Y. Xu. On the multiple values and uniqueness of meromorphic functions on annuli, *Compute. Math. Appl.* 58(7)(2009), 1457-1465.
- Yu-Zan He and Xiu-Zhi Xiao. Algebroid functions and Ordinarry Difference Equations, Beijing; Science Press, (1988).
- [10] A. Fernandez. On the value distribution of meromorphic function in the punctured plane, *Mathematychin Studii*. 34(2)(2010), 136-144.
- [11] Meili Liang. On the value distribution of algebroid functions, Sop transactions on applied mathematics. 1(1)(2014).
- [12] Hayman W. K. *Meromorphic functions*, Oxford: Oxford University Press; (1964).
- [13] R. S. Dyavanal, Ashok Rathod. Uniqueness theorems for meromorphic functions on annuli, *Indian Journal of Mathematics and Mathematical Sciences*. 12(1)(2016), 1-10.
- [14] R. S. Dyavanal, Ashok Rathod. Multiple values and uniqueness of meromorphic functions on annuli, *International Journal Pure and Applied Mathematics*. 107(4)(2016), 983-995.
- [15] R. S. Dyavanal, Ashok Rathod. On the value distribution of meromorphic functions on annuli, *Indian Journal of Mathematics and Mathematical Sciences*. 12(2)(2016), 203-217.
- [16] R. S. Dyavanal, Ashok Rathod. Some generalisation of Nevanlinna's five-value theorem for algebroid functions on annuli, *Asian Journal of Mathematics and Computer Research*, 20(2)(2017), 85-95.
- [17] R. S. Dyavanal, Ashok Rathod. Nevanlinna's five-value theorem for derivatives of meromorphic functions sharing values on annuli, *Asian Journal of Mathematics and Computer Research*. 20(1)(2017), 13-21.

- [18] R. S. Dyavanal, Ashok Rathod. Unicity theorem for algebroid functions related to multiple values and derivatives on annuli, *International Journal of Fuzzy Mathematical Archive.* 13(1)(2017), 25-39.
- [19] R. S. Dyavanal, Ashok Rathod. General Milloux inequality for algebroid functions on annuli, *International Journal of Mathematics and applications*. 5(3)(2017), 319-326.
- ^[20] Ashok Rathod. The multiple values of algebroid functions and uniqueness, *Asian Journal of Mathematics and Computer Research.* 14(2)(2016), 150-157.
- [21] Ashok Rathod. The uniqueness of meromorphic functions concerning five or more values and small functions on annuli, *Asian Journal of Current Research*. 1(3)(2016), 101-107.
- [22] Ashok Rathod. Uniqueness of algebroid functions dealing with multiple values on annuli, *Journal of Basic and Applied Research International*. 19(3)(2016), 157-167.
- [23] Ashok Rathod. On the deficiencies of algebroid functions and their differential polynomials, *Journal of Basic and Applied Research International*. 1(1)(2016), 1-11.
- [24] Ashok Rathod. The multiple values of algebroid functions and uniqueness on annuli, *Konuralp Journal of Mathematics*. 5(2)(2017), 216-227.
- ^[25] Ashok Rathod. Several uniqueness theorems for algebroid functions, *J. Anal.* 25(2)(2017), 203-213.
- [26] Ashok Rathod. Nevanlinna's five-value theorem for algebroid functions, *Ufa Mathematical Journal*. 10(2)(2018), 127-132.
- [27] Ashok Rathod. Nevanlinna's five-value theorem for derivatives of algebroid functions on annuli, *Tamkang Journal of Mathematics*. 49(2)(2018), 129-142.
- [28] S. S. Bhoosnurmath, R. S. Dyavanal, Mahesh Barki, Ashok Rathod. Value distribution for n'th difference operator of meromorphic functions with maximal deficiency sum, *J. Anal.* (2018). https://doi.org/10.1007/s41478– 018–0130–5.
- [29] Ashok Rathod. Characteristic function and deficiency of algebroid functions on annuli, *Ufa Mathematical Journal*. 11(1)(2019), 121-132.
- [30] Ashok Rathod. Value distribution of a algebroid function and its linear combination of derivatives on annuli, *Electronic Journal of Mathematical analysis and applications*. 8(1)(2020), 129-142.
- ^[31] Ashok Rathod. Uniqueness theorems for functions on annuli, *Ufa Mathematical Journal*. 12(1)(2020), 115-121.
- [32] Ashok Rathod. Uniqueness of algebroid functions in connection to Nevanlinna's five-value theorem, *Jnanabha*. 50(2)(2020), 160-116.
- [33] A. A. Kondratyuk, I. Laine. Meromorphic functions in multiply connected domains, Ilpo laine(ed), *Fourier Series Methods in Complex Analysis, Report Series*, 10, University of Joensuu, 1-111(2006).
- ^[34] Ashok Rathod, Naveenkumar S. H. On the uniqueness and value distribution of entire functions with their deriva-

tives, International J. Math. Combin. 2(2020), 33-42.

[35] Ashok Rathod. On the order of a meromorphic matrix valued function on annuli, *International J. Math. Combin.* 4(2020), 36-46.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

