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Uniqueness and value sharing of meromorphic
functions on annuli
Ashok Rathod1* and Praveen Basavanneppa Burji2

Abstract
In this paper, we study meromorphic functions that share only one value on annuli and prove the following results.

1. Let f (z) and g(z) be two non constant meromorphic functions in A(R0), where 1 < R0 ≤ +∞, n ≥ 6. If
f n f ′gng′ = 1, then f ≡ dg or g = c1ecz and f = c2e−cz, where c, c1 and c2 are constants and (c1c2)

n+1c2 =−1.

2. Let f (z) and g(z) be two non constant entire functions in A(R0), where 1 < R0 ≤+∞, n≥ 1. If f n f ′gng′ = 1,
then f ≡ dg or g = c1ecz and f = c2e−cz, where c, c1 and c2 are constants and (c1c2)

n+1c2 =−1.

Using the results (1) and (2) we prove, let f (z) and g(z) two non constant meromorphic functions on annuli and
For n≥ 11, if f n f ′ and gng′ share the same nonzero and finite value a with the same multiplicities on annuli, then
f ≡ dg or g = c1ecz and f = c2e−cz, where d is an (n+1)th root of unity, c, c1 and c2 being constants.
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1. Introduction and Mani Results
In this paper, a meromorphic function always mean a func-
tion which is meromorphic in A(R0), where 1 < R0 ≤ +∞.
Let f (z) and g(z) be non constant meromorphic in A(R0),
where 1 < R0 ≤ +∞, a ∈ C. We say that f and g share the
value a CM if f (z)− a and g(z)− a have the same zeros
with the same multiplicities. We shall use standard nota-
tions of value distribution theory in annuli, T0(R, f ), m0(R, f ),
N0(R, f ), N0(R, f ),...(see [6],[7]).

In this paper, we shall show that certain types of differen-
tial polynomials on annuli when they share only one value.

Theorem 1.1. Let f (z) and g(z) be two non constant mero-
morphic fuctions in A(R0), where 1 < R0 ≤ +∞, n ≥ 11 an
integer and a ∈ C−{0}. If f n f ′ and gng′ share the value a
CM, then either f ≡ dg or g = c1ecz and f = c2e−cz, where
c, c1 and c2 are constants and satisfy (c1c2)

n+1c2 = a−2.

Remark 1.2. The following example shows that a 6= 0 is
necessary. For f = eez

and g = ez, we see that f n f ′ and gng′

share 0 CM for any integer n, but f and g do not satisfy the
conclusion of Theorem 1.

In order to prove the above result, we shall first prove the
following two theorems.

Theorem 1.3. Let f (z) and g(z) be two non constant mero-
morphic functions in A(R0), where 1 < R0 ≤ +∞, n ≥ 6. If
f n f ′gng′ = 1, then f ≡ dg or g= c1ecz and f = c2e−cz, where
c, c1 and c2 are constants and (c1c2)

n+1c2 =−1.

Theorem 1.4. Let f (z) and g(z) be two non constant entire
fuctions in A(R0), where 1 < R0 ≤+∞, n≥ 1. If f n f ′gng′ =
1, then f ≡ dg or g = c1ecz and f = c2e−cz, where c, c1 and
c2 are constants and (c1c2)

n+1c2 =−1.
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2. Some Basic Theorems and Lemmas
Theorem 2.1. [7] (Lemma on the Logarithmic Derivative ).
Let f be a nonconstant meromorphic function in A(R0), where
1 < R0 ≤+∞, and α ≥ 0. Then
1. In the case, R0 =+∞,

m0

(
R,

f ′

f

)
= O(log(RT0(R, f )))

for R∈ (1,+∞) except for the set4R such that
∫
4R

Rα−1dR<
+∞;
2. In the case, R0 <+∞,

m0

(
R,

f ′

f

)
= O

(
log
(

T0(R, f )
R0−R

))
for R∈ (1,R0) except for the set4′R such that

∫
4′R

dR
(R0−Rα−1)

<
+∞.

Lemma 2.2. Let f and g be two non constant entire functions
in A(R0), where 1 < R0 ≤+∞. Then for any 1 < R < R0, we
have

N0

(
R,

f
g

)
−N0

(
R,

g
f

)
=N0 (R, f )+N0

(
R,

1
g

)
−N0 (R,g)

−N0

(
R,

1
f

)
.

In studying on uniqueness theorems of meromorphic
functions, the following lemma plays an important role.

Lemma 2.3. Suppose that f1(z), f2(z), . . . , fn(z) are linearly
independent meromorphic functions in A(R0), where 1 <
R0 ≤+∞ satisfying the following identity

n

∑
j=1

f j ≡ 1 (2.1)

Then for 1≤ j ≤ n, we have

T0(R, f )≤
n

∑
k=1

N0

(
R,

1
fk

)
+N0 (R, f j)+N0 (R,D)

−
n

∑
k=1

N0 (R, fk)−N0

(
R,

1
D

)
+S(R, f ).

(2.2)

Where D is the Wronskian determinant W ( f1, f2, . . . , fn), S(r, f )
= o(T0(R, f )) and T0(R, f ) = max1≤k≤n{T0(R, fk)}, for every
R such that 1 < R < R0, R 6∈ E and E is the set of finite linear
measure.

First of all, we prove a lemma which is a essentially
generalization of Borel’s theorem.

Lemma 2.4. Let g j(z) (j=1,2,...,n) be an entire functions and
a j(z) (j=0,1,2,...,n) be a meromorphic functions in A(R0),

where 1<R0≤+∞, satisfying T0(R,a j)= o
(

n
∑

k=1
T0(R,egk)

)
,

for every R such that 1 < R < R0, R 6∈ E, ( j = 0,1,2, ...,n).
If

n

∑
j=1

a j(z)eg j(z) ≡ a0(z) (2.3)

then there exists constant c j (j=1,2,...,n) at least one of them
is not zero such that

n

∑
j=1

c ja j(z)eg j(z) ≡ 0. (2.4)

Lemma 2.5. Let f (z) and g(z) be two non constant entire
functions in A(R0), where 1 < R0 ≤ +∞. If f and g share 1
CM, one of the following three cases holds:

(i) T0(R, f ) ≤ N0 (R, f )+N(2
0 (R, f )+N0 (R,g)

+N(2)
0 (R,g)+N0

(
R,

1
f

)
+N(2

0

(
R,

1
f

)
+N0

(
R,

1
g

)
+N(2

0

(
R,

1
g

)
+S(R, f )+S(R,g)

the same inequality holding for T0(R,g);

(ii) f ≡ dg;

(iii) f g≡ 1,

where

N(2
0 (R,1/ f ) = N0

(
R,

1
f

)
−N1)

0

(
R,

1
f

)

and N1)
0

(
R, 1

f

)
is the counting function of the zeros of f in

{z : |z| ≤ R}.

3. Proof of Lemmas
1. Proof of Lemma 2.2: By Jensen’s formula in annuli, we
have

N0

(
R,

1
f

)
−N0 (R, f ) =

∫ 2π

0
log

1
| f (Reiθ )|

dθ

2π

+
∫ 2π

0
log | f (Reiθ )|dθ

2π
−
∫ 2π

0
log | f (eiθ )|dθ

π
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for every R such that 1 < R < R0. Consider,

N0

(
R,

f
g

)
−N0

(
R,

g
f

)
=
∫ 2π

0
log
∣∣∣∣ f (Reiθ )

g(Reiθ )

∣∣∣∣ dθ

2π
+
∫ 2π

0
log
∣∣∣∣ g(Reiθ )

f (Reiθ )

∣∣∣∣ dθ

2π

+
∫ 2π

0
log
∣∣∣∣ g(eiθ )

f (eiθ )

∣∣∣∣ dθ

π

=

{∫ 2π

0
log
∣∣∣∣ 1
g(Reiθ )

∣∣∣∣ dθ

2π
+
∫ 2π

0
log
∣∣∣g(Reiθ )

∣∣∣ dθ

2π

−
∫ 2π

0
log
∣∣∣g(eiθ )

∣∣∣ dθ

π

}
−
{∫ 2π

0
log
∣∣∣∣ 1

f (Reiθ )

∣∣∣∣ dθ

2π
+
∫ 2π

0
log
∣∣∣ f (Reiθ )

∣∣∣ dθ

2π

−
∫ 2π

0
log
∣∣∣ f (eiθ )

∣∣∣ dθ

π

}
= N0 (R, f )+N0

(
R,

1
g

)
−N0 (R,g)−N0

(
R,

1
f

)
.

This completes the proof of Lemma 2.2.

2. Proof of Lemma 2.3: Taking the derivative in both sides
of identity (2.1), we get

n

∑
j=1

f (k)j = 0 (k = 1,2, ...,n−1) (3.1)

Since f1(z), f2(z), . . . , fn(z) are linearly independent, we see
that D 6≡ 0. (2.1) and (3.1) imply

D = D j ( j = 1,2, ...,n), (3.2)

where D j is algebraic cofactor of f j in D. Hence

f1 =

D1
f2 f3... fn

D
f1 f2... fn

=
∆1

∆
, (3.3)

where

∆ =

∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1
f ′1
f1

f ′2
f2
· · · f ′n

fn
. . . . . . . . . . . .

f (n−1)
1

f1
f (n−1)
2

f2
· · · f (n−1)

n
fn

∣∣∣∣∣∣∣∣∣∣
and ∆ is the algebraic cofactor of the elements at the first
column and the first row in ∆. From (3.3), we have

m0(R, f1)≤ m0(R,∆1)+m0

(
R,

1
∆

)
≤ m0(R,∆1)+m0 (R,∆)+N0(R,∆)−N0

(
R,

1
∆

)
(3.4)

since ∆ = D
f1 f2... fn

, which leads to

N0(R,∆)−N0

(
R,

1
∆

)
=

n

∑
k=1

N0

(
R,

1
fk

)
−

n

∑
k=1

N0 (R, fk)

+N0 (R,D)−N0

(
R,

1
D

)
(3.5)

Note that m0

(
R,

f (k)j
f j

)
= S(R, f j) = S(R, f ), (j=1,2,...,n

and k=1,2,...,n-1). We have

m0(R,∆1)+m0 (R,∆) = S(R, f ) (3.6)

From (3.4), (3.5) and (3.6), we get

T0(R, f1) = m0(R, f1)+N0(R, f1)

≤
n

∑
k=1

N0

(
R,

1
fk

)
+N0 (R, f1)+N0 (R,D)

−
n

∑
k=1

N0 (R, fk)−N0

(
R,

1
D

)
+S(R, f )

(3.7)

By the same method, we can prove other results similar to
(3.7) for f j, (2≤ j ≤ n). Hence (2.2) holds.

3. Proof of Lemma 2.4: If a0(z)≡ 0, Lemma 2.4 is obviously
true. In the following, we assume that a0(z) 6≡ 0. From (2.3),

we have
n
∑
j=1

a j(z)
a0(z)

eg j(z) ≡ 1. Let G j(z) =
a j(z)
a0(z)

eg j(z) (j=1,2,...,n).

Then
n
∑
j=1
≡ 1.

If G1(z),G2(z), . . . ,Gn(z) are linearly independent, then from
Lemma 2.2 we have

T0(R,G)≤
n

∑
j=1

N0

(
R,

1
G j

)
+N0(R,D)+S(R, f ), (3.8)

where D is Wronskian W (G1,G2, ...,Gn), and S(r, f )= o(T0(R, f ))
and T0(R, f ) = max1≤k≤n{T0(R, fk)}, as 1 < R < R0, R 6∈ E.
E is the set of finite linear measure.
Note that

N0

(
R,

1
G j

)
≤ N0

(
R,

1
a j

)
+N0 (R,a0)≤ T0 (R,a j)

+T0 (R,a0)

= o

(
n

∑
k=1

T0(R,egk)

)
, (1 < R < R0, R 6∈ E).

(3.9)

and

N0 (R,G j)≤ N0 (R,a j)+N0

(
R,

1
a0

)
≤ T0 (R,a j)

+T0 (R,a0)

= o

(
n

∑
k=1

T0(R,egk)

)
, (1 < R < R0, R 6∈ E).
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We have

N0(R,D)≤ n
n

∑
j=1

N0 (R,G j)

= o

(
n

∑
k=1

T0(R,egk)

)
, (1 < R < R0, R 6∈ E).

(3.10)

From (3.8), (3.9) and (3.10), we get

T0 (R,G j)<o

(
n

∑
k=1

T0(R,egk)

)
+S(R, f ),

(1 < R < R0, R 6∈ E), j = 1,2, ...,n.

On the other hand, we have

T0 (R,G j) = T0 (R,egk)+o

(
n

∑
k=1

T0(R,egk)

)
(R 6∈ E),

S(R, f ) = o

(
n

∑
k=1

T0(R,egk)

)
(R 6∈ E).

Hence for j = 1,2, ...,n we have

T0 (R,egk) = o

(
n

∑
k=1

T0(R,egk)

)
(R 6∈ E).

Therefore

n

∑
k=1

T0 (R,egk) = o

(
n

∑
k=1

T0(R,egk)

)
(R 6∈ E).

This is a contradiction. Hence G1(z),G2(z), . . . ,Gn(z) are lin-
early dependent. This completes the proof of Lemma 2.4.

4. Proof of Lemma 2.5: Set

φ =
f ′′

f ′
−2

f ′

f −1
− g′′

g′
+2

g′

g−1
(3.11)

Since f and g share 1 CM, a simple computation on local
expansions shows that φ(z0) = 0 if z0 is a simple zero of f −1
and g−1. Next we consider two cases φ 6≡ 0 and φ ≡ 0.

If φ 6≡ 0, then

N1)
0

(
R,

1
f −1

)
= N1)

0

(
R,

1
g−1

)
≤ N0

(
R,

1
φ

)
≤ T0 (R,φ)+O(1)≤ N0 (R,φ)

+S(R, f )+S(R,g) (3.12)

where N1)
0 (R,1/ f −1) is the counting function of the simple

zeros of f −1 in {z : |z| ≤ R}. Since f and g share 1 CM, any
root of f (z) = 1 can not be a pole of φ(z). In addition, we
can easily see from (3.11) that any simple pole of f and g
is not a pole of φ . Therefore, by (3.11), the poles of φ only
occur at zeros of f ′ and g′ and the multiple poles of f and
g. If f ′(z0) = f (z0) = 0, then z0 is a multiple zero of f . We

denote by N0(R,1/ f ′) the counting function of those zeros of
f ′ but not that of f ( f −1). From (3.11), (3.12) and the above
observation that

N1)
0

(
R,

1
f −1

)
≤ N(2

0 (R, f )+N(2
0 (R,g)+N0

(
R,

1
f ′

)
+N0

(
R,

1
g′

)
+N(2

0

(
R,

1
f ′

)
+N(2

0

(
R,

1
g′

)
+S(R, f )+S(R,g) (3.13)

On the other hand, by the second fundamental theorem we
have

T0(R, f ) ≤ N0(R, f )+N0

(
R,

1
f

)
+N0

(
R,

1
f −1

)
−N0

(
R,

1
f ′

)
+S(R, f ) (3.14)

and by the first fundamental theorem on annuli, we have

N0

(
R,

1
g′

)
−N0

(
R,

1
g

)
= N0

(
R,

g
g′

)
≤ T0

(
R,

g
g′

)
+O(1)

= N0(R,g)+N0

(
R,

1
g

)
+S(R,g).

This implies that

N0

(
R,

1
g′

)
= N0(R,g)+N0

(
R,

1
g

)
+S(R,g).

It is easy to see from the definition of N(0)
0

(
R,

1
g′

)
that

N(0)
0

(
R,

1
g′

)
+N(2

0 (R,
1

g−1
)+N(2

0

(
R,

1
g

)
−N(2

0

(
R,

1
g

)
≤ N0

(
R,

1
g′

)
.

The above two inequalities yield

N(0)
0

(
R,

1
g′

)
+N(2

0 (R,
1

g−1
)≤ N0 (R,g)

+N0

(
R,

1
g

)
+S(R,g). (3.15)

Since f (z) and g(z) share 1 CM, we have

N0

(
R,

1
f −1

)
≤ N1)

0

(
R,

1
f −1

)
+N(2

0

(
R,

1
g−1

)
.

(3.16)

Combining (3.13) to (3.16), we obtain (i). If φ(z) ≡ 0, we
deduce from (3.11) that

f ≡ Ag+B
Cg+D

, (3.17)
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where A, B, C and D are finite complex numbers satisfying
AD−BC 6= 0.
Then, by the first fundamental theorem,

T0(R, f ) = T0(R,g)+S(R, f ). (3.18)

Next we consider three respective subcases.

Subcase 1. AC 6= 0. Then

f − A
C

=
B−AD/C

Cg+D
.

By the second fundamental theorem on annuli, we have

T0(R, f )≤N0(R, f )+N0

(
R,

1
f − (A/C)

)
+N0

(
R,

1
f

)
+S(R, f )

=N0(R, f )+N0(R,g)+N0

(
R,

1
f

)
+S(R, f ).

(3.19)

we get (i).

Subcase 2. A 6= 0, C = 0 Then f ≡ (Ag+B)/D. If B 6= 0, by
the second fundamental theorem on annuli, we have

T0(R, f )≤N0(R, f )+N0

(
R,

1
f

)
+N0

(
R,

1
f − (B/D)

)
+S(R, f )

=N0(R, f )+N0

(
R,

1
f

)
+N0

(
R,

1
g

)
+S(R, f ).

(3.20)

we get (i). If B = 0, then f ≡ Ag/D. If A/D = 1, then f ≡ g;
this is (ii). If A/D 6= 1, then by the assumption that f and
g share 1 CM, it is easy to see that f 6= 1 and g 6= 1, which
yields f 6= 1, A/D. By the second fundamental theorem on
annuli, we have

T0(R, f )≤ N0(R, f )+S(R, f ),

and (i) follows.

Subcase 3. A = 0, C 6= 0 Then f ≡ B/(Cg+D). if D 6= 0, by
the second fundamental theorem on annuli, we have

T0(R, f )≤N0(R, f )+N0

(
R,

1
f

)
+N0

(
R,

1
f − (B/D)

)
+S(R, f )

=N0(R, f )+N0

(
R,

1
f

)
+N0

(
R,

1
g

)
+S(R, f ).

(3.21)

we get (i). If D = 0, then f ≡ B/Cg. If B/C = 1, then f g≡ 1
and we obtain (iii). If B/C 6= 1, by the assumption that f and g

share 1 CM, we have f 6= 1, B/C. By the second fundamental
theorem on annuli, we get

T0(R, f )≤ N0(R, f )+S(R, f ).

This implies (i). Thus the proof of Lemma 2.5 is complete.

4. Proof of Theorems
1. Proof of Theorem 1.3: We prove the theorem step by step
as follows.

Step 1. We prove that

f 6= 0, g 6= 0. (4.1)

In fact, suppose that f has a zero z0 with order m. Then z0 is
a pole of g (with order p, say) by

f n f ′gng′ = 1. (4.2)

Thus, nm+m−1 = np+ p+1, i.e.,(m− p)(n+1) = 2. This
impossible since n≥ 6 and m, p are integers.

Step 2. We claim that

N0(R, f )+N0(R,g)≤ 2m0

(
R,

1
f g

)
+O(1). (4.3)

By step 1 and (4.2) we deduce that

(n+1)N0(R,g)+N0(R,g) = N0

(
R,

1
f ′

)
. (4.4)

From Lemma 2.2 we have

N0

(
R,

f
f ′

)
−N0

(
R,

f ′

f

)
= N0 (R, f )+N0

(
R,

1
f ′

)
−N0

(
R, f ′

)
−N0

(
R,

1
f

)
= N0

(
R,

1
f ′

)
−N0 (R, f ) .

By the first fundamental theorem on annuli, the left side is
m0(R, f ′/ f )−m0(R, f/ f ′)+O(1), so we have

N0

(
R,

1
f ′

)
=N0 (R, f )+m0

(
R,

f
f ′

)
−m0

(
R,

f ′

f

)
+O(1).

(4.5)

Now we rewrite (4.2) in the form g′/g = ( f ′/ f )(1/ f g)n+1.
Then

m0

(
R,

f
f ′

)
≥m0

(
R,

g′

g

)
−(n+1)m0

(
R,

1
f g

)
−O(1).

combining this, (4.4) and (4.5), we get

(n+1)N0 (R,g)+N0 (R,g)

≤ N0 (R, f )+m0

(
R,

f ′

f

)
−m0

(
R,

g′

g

)
+(n+1)m0

(
R,

1
f g

)
+O(1).
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By symmetry,

(n+1)N0 (R, f )+N0 (R, f )

≤ N0 (R,g)+m0

(
R,

g′

g

)
−m0

(
R,

f ′

f

)
+(n+1)m0

(
R,

1
f g

)
+O(1).

By adding above two inequalities we obtain (4.3).
Step 3. We prove that f g is constant. Let h = 1/ f g. Then

h is entire by Step 1, and (4.2) can be written as(
g′

g
+

1
2

h′

h

)2

=
1
4

(
h′

h

)2

−hn+1.

Let

α =
g′

g
+

1
2

h′

h
The above equation becomes

α
2 =

1
4

(
h′

h

)2

−hn+1. (4.6)

If α ≡ 0, then hn+1 = 1
2 (h

′/h)2 . Combining this with Step 1
we obtain T0(R,h) = m0(R,h) = S(R,h); thus h is a constant.
Next we assume that α 6≡ 0. Differentiating (4.6) yields

2αα
′ =

1
2

h′

h

(
h′

h

)′
− (n+1)h′hn.

From this and (4.6) it follows that

hn+1
(
(n+1)

h′

h
−2

α ′

α

)
=

1
2

h′

h

((
h′

h

)′
− α ′

α

h′

h

)
(4.7)

If (n+1) h′
h −2 α ′

α
≡ 0, then there exists a constant c such that

α2 = chn+1. This and (4.6) give

(c+1)hn+1 =
1
4

(
h′

h

)2

.

If c = −1, then h′ ≡ 0, and so h is constant. If c 6= −1, we
have T0(R,h) = S(R,h), and h is constant. Next we suppose
that

(n+1)
h′

h
−2

α ′

α
6≡ o.

Then, by (4.7) and the fact that h is entire,

(n+1)T0(R,h) =(n+1)m0(R,h)

≤m0

(
R,hn+1

(
(n+1)

h′

h
−2

α ′

α

))
+m0

(
R,

1
(n+1)h′/h−2α ′/α

)
+O(1)

≤m0

(
R,

1
2

h′

h

((
h′

h

)′
− h′

h

))
+T0

(
R,(n+1)

h′

h
−2

α ′

α

)
≤N0 (R, f )+N0 (R,g)+N0

(
R,

1
α

)
+S(R,h)+S(R,α).

Now by (4.6) and (4.3) we have

T0(R,α)≤ 1
2
(n+3)T0(R,h)+S(R,h),

and
N0(R, f )+N0(R,g)≤ 2m0(R,h)+O(1).

Combining the above three inequalities we obtain

1
2
(n−5)T0(R,h)≤ S(R,h).

Thus h must be a constant.
Step 4. We prove our conclusion. By Step 3, h is constant.

Then, by (4.2),

g′

g
= c, c = ih(n+1)/2.

Thus
g(z) = c1ecz, f = c2e−cz

where c, c1 and c2 are constants and satisfy (c1c2)
n+1c2 =−1

by (4.2). This completes the proof of the theorem.

2. Proof of Theorem 1.4: From

f n f ′gng′ = 1

and the assumption that f and g are entire we immediately
see that f and g have no zeros. Thus there exists two entire
functions α(z) and β (z) such that

f (z) = eα(z), g(z) = eβ (z).

Inserting these in the above equality, we get

α
′
β
′e(n+1)(α+β ) ≡ 1.

Thus α ′ and β ′ have no zeros and we may set

α
′ = eδ (z), β

′ = eγ(z).

Differentiating this gives

(n+1)(eδ + eγ)+δ
′+ γ

′ ≡ 0.

By Lemma 2.4, δ = γ +(2m+ 1)πi for some integer m. In-
serting this in the above equality we deduce that δ ′ ≡ γ ′ ≡ 0,
and so δ and γ are constants, i.e., α ′ and β ′ are constants.
From this we can easily obtain the desired result.
3. Proof of Theorem 2.1: Let F = f n+1/a(n+ 1) and G =
gn+1/a(n+ 1). Then condition that f n f ′ and gng′ share the
value a CM implies that F ′ and G′ share the value 1 CM.
Obviously,

N0(R,F ′) =(n+1)N0(R, f )+N0(R, f ),

N0(R,G′) =(n+1)N0(R,g)+N0(R,g), (4.8)

N0(R,F ′) =N(2
0 (R,F ′) = N0(R, f )

≤ 1
n+2

T0(R,F ′)+O(1), (4.9)
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N0

(
R,

1
F ′

)
+N(2

0

(
R,

1
F ′

)
= 2N0

(
R,

1
f

)
+N0

(
R,

1
f ′

)
+N(2

0

(
R,

1
f ′

)
≤ 2N0

(
R,

1
f

)
+N0

(
R,

1
f ′

)
(4.10)

≤ 2T0(R, f )+N0

(
R,

1
f ′

)
+O(1).

Since

nm0(R, f )

= m0

(
R,a

F ′

f ′

)
≤ m0

(
R,F ′

)
+m0

(
R,

1
f ′

)
+O(1)

= m0
(
R,F ′

)
+T0(R, f )−N0

(
R,

1
f ′

)
+O(1)

≤ m0
(
R,F ′

)
+T0(R, f )+N0(R, f )−N0

(
R,

1
f ′

)
+m0

(
R,

f ′

f

)
+O(1)

≤ m0
(
R,F ′

)
+T0(R, f )+N0(R, f )−N0

(
R,

1
f ′

)
+m0

(
R,

F ′

F

)
+O(1),

it follows from this,(4.8), and Theorem 4 that

(n−1)T0(R, f )≤T0(R,F ′)−N0(R, f )−N0

(
R,

1
f ′

)
+S(R,F ′).

This and Theorem 4 imply that

2T0(R, f )+N0

(
R,

1
f ′

)
=

2
n−1

{
(n−1)T0(R, f )+N0

(
R,

1
f ′

)}
+

n−3
n−1

N0

(
R,

1
f ′

)
≤ 2

n−1
{

T0(R,F ′)+N0 (R, f )
}
+

n−3
n−1

{
T0(R, f )+N0 (R, f )

}
+m0

(
R,

f ′

f

)
+O(1)

≤
(

2
n−1

+
n−3

(n−1)2

)
T0(R,F ′)+

(
n−5
n−1

+
n−3

(n−1)2

)
N0 (R, f )+S(R,F ′).

Combining this (4.9), and (4.10), we obtain

N0

(
R,

1
F ′

)
+N(2

0

(
R,

1
F ′

)
≤ 4n2−6n−2
(n−1)2(n+2)

T0(R,F ′)

+S(R,F ′). (4.11)

We similarly derive for G′ that

N0(R,G′) = N(2
0 (R,G′) = N0(R,g)≤

1
n+2

T0(R,G′)+S(R,G′),

(4.12)

N0

(
R,

1
G′

)
+N(2

0

(
R,

1
G′

)
≤ 4n2−6n−2

(n−1)2(n+2)
T0(R,G′)+S(R,G′).

(4.13)

Without loss of generality, we suppose that there exists a
set I ⊂ [0,∞) such that T0(R,G′)≤ T0(R,F ′). Next we apply
Lemma 2.5 to F ′ and G′, it follows that there are three cases
to be considered.
Case (i).

T0(R,F ′)≤N0(R,F ′)+N(2
0 (R,F ′)+N0(R,G′)

+N(2
0 (R,G′)+N0

(
R,

1
F ′

)
+N(2

0

(
R,

1
F ′

)
+N0

(
R,

1
G′

)
+N(2

0

(
R,

1
G′

)
+S(R,F ′)+S(R,G′).

Setting (4.9), (4.11), (4.12), and (4.13) into the above inequal-
ity and keeping in mind that T0(R,G′) ≤ T0(R,F ′), we get

n3−12n2 +17n+2
(n+1)2(n+2)

T0(R,F ′)≤ S(R,F ′). (4.14)

We denote by p(n) the numerator of the coefficient on the
left hand side above. Then p′(n) = 3n2− 24n+ 17 > 0 for
n≤ 8. Note that p(11) = 68; thus p(n) is positive for n≤ 11.
It follows from (4.14) that F ′ must be rational function. But
then, by the above derivatives, S(R,F ′) = O(1). Using (4.14)
again, F ′ must be a constant, which is impossible.
Case (ii). F ′ = G′. Then we deduce that f n+1 = gn+1 + c
(c ∈ C). Let f = hg, and we have

(hn+1−1)gn+1 = c. (4.15)

If hn+1 ≡ 1, then h is (n+ 1)th unit root and we obtain the
desired result. If hn+1 6≡ 1, then by (4.15),

gn+1 =
c

hn+1−1.

Thus h is not constant. We write this in the form

gn+1 =
c

(h−u1) . . .(h−un+1)
,

where u1, . . . ,un+1 are different (n+1)th roots of unity. Thus
h has at least n+ 1(≥ 14) multiple values. However, from
Nevanlinna’s second fundamental theorem on annuli, we know
that h has at most 4 multiple values, a contradiction.

Case (iii). F ′G′ ≡ 1, i.e., a−2 f n f ′gng′ ≡ 1. Let f̂ =
a−1/(n+1) f and ĝ = a−1/(n+1)g. Then f̂ n f ′ĝn g′ = 1. The con-
clusion follows follows from Theorem 2.
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