
Malaya Journal of Matematik, Vol. 9, No. 1, 1080-1082, 2021

https://doi.org/10.26637/MJM0901/0187

Certified domination number in corona product of
graphs
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Abstract
A set S of vertices in G = (V,E) is called a dominating set of G if every vertex not in S has at least one neighbour
in S. A dominating set S of a graph G is said to be a certified dominating set of G if every vertex in S has either
zero or at least two neighbours in V\S. The certified domination number, γcer(G) of G is defined as the minimum
cardinality of certified dominating set of G. In this paper, we study the certified domination number of Corona
product of some standard graphs.
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1. Introduction
In this paper, graph G = (V,E) we mean a simple, finite,
connected, undirected graph with neither loops nor multi-
ple edges. The order |V (G)| is denoted by n. For graph
theoretic terminology we refer to West [7]. The open neigh-
borhood of any vertex v in G is N(v) = {x : xv ∈ E(G)} and
closed neighborhood of a vertex v in G is N[v] = N(v)∪{v}.
The degree of a vertex in the graph G is denoted by deg(v)
and the maximum degree (minimumdegree) in the graph G
is denoted by ∆(G)(δ (G)). For a set S ⊆ V (G) the open
(closed) neighborhood N(S)(N[S]) in G is defined as N(S) =⋃

v∈S N(v)(N[S] =Uv∈S N[v] . We write Kn,Pn, and Cn for a
complete graph, a path graph, a cycle graph of order n, respec-
tively. The complement of a graph G, denoted byḠ, is a graph

with the vertex set V (G) such that for every two vertices v and
w,vw ∈ E(Ḡ) if and only if vw /∈ E(Ḡ).

The corona of two disjoint graphs G1 and G2 is defined to
be the graph G = G1 ◦G2 formed from one copy of G1 and
|V (G1)| copies of G2 where the ith vertex of G1 is adjacent
to every vertex in the ith copy of G2. In particular, the corona
G◦K1 is the graph constructed from a copy of H, where for
each vertex v ∈V (G), a new vertex v′ and a pendant vv′ are
added. This is also denoted by G+.

The concept of certified domination in graphs was intro-
duced by Dettlaff, Lemanska, Topp, Ziemann and Zylinski[3]
and further studied in[2]. It has many application in real life
situations. This motivated we to study the certified domination
number in corona and Cartesian product of graphs.

In [3], authors studied certified dominaiton number in
graphs which is defined as follows:

Definition 1.1. Let G = (V,E) be any graph of order n. A
subset S ⊆V (G) is called a Certified dominating set of G if
S is a dominating set of G and every vertex in S has either
zero or at least two neighbours in V\S. The certified domina-
tion number defined by γcer(G) is the minimum cardinality of
certified dominating set in G.
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2. Preliminaries
Theorem 2.1 ([2]). For any graph Go of order n≥ 2, every
certified dominating set of G contains its extreme vertices.

Theorem 2.2 ([2]). For any graph G of order n, 1≤ γcer (G)≤
n.

Theorem 2.3 ([2]). For any graph G of order n≥ 3,γcer(G)=
1 if and only if G has a vertex of degree n−1.

Theorem 2.4 ([3]). For any Path graph Pn of order n≥ 1,

γcer(G) =

 1 if n = 1 or 3
2 if n = 2
4 if n = 4

γcer (G) =dn
3
e if n≥ 5

3. Main Results
Theorem 3.1. Let G be a connected graph with δ (G)≥ 2. If
S is a minimum certified dominating set of G, then V −S is a
dominating set of G.

Proof. Let G be a connected graph with δ (G)≥ 2 and let S
be a minimum certified dominating set of G. To prove V −S
is a dominating set of G. Suppose V −S is not a dominating
set of G. Then there exists a vertex v ∈ S such that vis not
dominated by any vertex in V −S. This shows that S−{v} is
a certified dominating set of G, which is a contradiction to the
minimality of S. Hence, V −S is a dominating set of G.

Remark 3.2. Let G be a connected graph with δ (G)≥ 2. If
S is a minimumcertified dominating set of G, then V −S is a
need not be a certified dominating set of G.

Figure 1

For the graph given in Figure 1, the set S = {y2,v5} is
a minimum certified dominating set of G. Also, here the set
V −S = {v1,v3,v4,v6} is a dominating set of G but no vertex
in V −S has greater than one neighbour in V − (V −S). That
is, in S. Therefore, V −S is not a certified dominating set of
G.

Theorem 3.3. If G is a connected graph with δ (G)≥ 2 and
If S is a minimum certified dominating set of G, then |V −S| ≥
|S|.

Proof. Let G be a connected graph with δ (G)≥ 2 and let S
be a minimum certified dominating set of G. To prove V −S
is a dominating set of G. Then by Theorem 3.1, V − S is a

dominating set of G. Therefore |V −S| 6= 0 and N[V −S] =
V (G). This implies that S has a neighbour in V −S.But since
δ (G)≥ 2 that S has at least two neighbours in V −S. Hence,
V −S >| S.

Theorem 3.4. If G is a connected graph with δ (G)≥ 2, then
γcer (G)≤ n/2.

Proof. Let G be a connected graph with δ (G)≥ 2. let S be a
minimum certified dominating set of G. Suppose γcer(G)>
n/2. By Theorem 3.1, V −S is a dominating set of G. Also
|V −S|= |V |−|S|< n−n/2. This implies that |V −S|< n/2.
Therefore by Theorem 3.3, S |< n/2, which is a contradiction.
Hence γcer (G)< n/2.

Theorem 3.5. Let G be a connected graph of even order
n≥ 2. If δ (G)≥ 2, then γcer(G) = n/2 if and only if G≈C4.

Proof. Let G be a connected graph of even order n≥ 2 with
δ (G)≥ 2. Suppose G≈C4. Then by Theorem 2.5, γcer (G) =
2 = n/2.

Conversely, assume γcer(G) = n/2. Then by Theorem 3.3.
V −S\> n/2. Since n is even that |V −S|= n/2. This shows
that every vertex in S has exactly two neighbours in V −S. Let
{S1, S2 . . .1 Sn} be the set of stars that covers all the vertices
in G. Let Si = {ui,yi} . Suppose n≥ 3. If there is a i such that
deg(ui) ≥ 2 and deg(vi) ≥ 2. Thus we can find a certified
dominating set of G with cardinality less than n/2, which is
a contradiction. Therefore for every i, either ui or yi must be
of degree equal to 1 . Since δ (G)≥ 2, which is not possible.
Therefore n < 2. Hence G must be isomorphic to either K2 or
K2m or the cycle C4. If K2 or K2

+, then δ (G) = 1 which is a
contradiction. Hence, G≈C4.

4. Corona of Graphs

For every v∈V (G) denote by Hv the copy of H whose vertices
are adioint to the vertex v. Denote v+Hv be the subgraph of
the corona G◦H corresponding to the join < {v}+Hv >.

Theorem 4.1. Let G be a connected graph of order n and
H be any graph of order m ≥ 2. Then, S ⊆ V (G ◦H) is a
certified dominating set of G◦H if and only if S∩V (v+Hv)
is a certified dominating set of v+Hv for every v ∈V (G).

Proof. Let G be a connected graph of order n and H be any
graph of order m ≥ 2. First assume that S ⊆ V (G ◦H) be a
certified dominating set of G ◦H. Let v ∈ V (G). Let Sv =
S∩V (v+Hv). We show that Sv is a certified dominating set
of v+Hv. If v ∈ Sv, then V (Hv)⊆ NHv+v[v]⊆ Nv+Hv [v]. Then
Sv is a certified dominating set in G◦H. Suppose v /∈ Sv. Then
clearly v ∈ Nv+Hv [Sv]. Let u ∈V (Hv)−Sv. Then there exists
w ∈ S such that u ∈ NGoH [w]. Also, ux /∈ E(GoH) for all x ∈
V (G)−{v}. This means that Sv is a dominating set of v+Hv.
Now we prove that Sv is a certified dominating set of v+Hv.
Since n ≥ 2, it is clear that |Nv+Hv [y]∩V (v+Hv)−Sv| ≥ 2
for every y ∈ Sv. Therefore, Sv is a certified dominating set of
v+Hv.
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Conversely, assume Sv = S∩V (v+Hv) is a certified dom-
inating set of v + Hv for every v ∈ V (G). To prove that
S ⊆ V (G ◦H) is a certified dominating set of G ◦H. Let
u ∈V (G◦H)−S. Since Nv+Hv [x] = NGoH [x] for every x ∈ Sv,
that the certified dominating set Sv in v+Hv implies the exis-
tence of x ∈ Sv such that u ∈ Nv+Hv [x]. Hence, S is a certified
dominating set of G◦H.

Corollary 4.2. Let G be a connected graph of order n and H
be any graph of order m≥ 2. Then γcer (G◦H) = n.

Theorem 4.3. Let G be a connected graph of order n and H
be any trivial graph. Then γcer(G◦H) = 2n.

Proof. Let G be a connected graph of order n and H be any
trivial graph. Since H ≈ K1, that G◦H = G+. Also, that G+

is a connected graph of order 2n. By definition, every vertex
in G+ is either a support vertex or a pendant vertex. Let S be
a minimum certified dominating set of G+. By Theorem 2.1,
every support vertices must in S. Also, every support vertex is
adjacent to exactly one pendant vertex implies every pendent
vertices are in S. Then S = V (G+). Hence, we conclude
γcer(G◦H) = 2n.
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