

https://doi.org/10.26637/MJM0901/0191

A study on lower *Q*-level subsets of *l*-subsemiring of an (Q,L)-fuzzy *l*-subsemiring of a *l*-semiring

R. Arokiaraj¹, V. Saravanan^{*2} and J. Jon Arockiaraj³

Abstract

In this paper, we made an attempt to study the algebraic nature of *Q*-level *l*-subsemiring of an (Q,L)-fuzzy *l*-subsemiring of a *l*-semiring and we introduce the some theorems in lower *Q*-level subsets of *l*-subsemiring of an (Q,L)-fuzzy *l*-subsemiring of a *l*-semiring.

Keywords

(Q,L)-fuzzy set, (Q,L)-fuzzy *l*-subsemiring, (Q,L)-fuzzy relation, Product of (Q,L)-fuzzy subsets, homomorphism, anti-homomorphism, *Q*-level subset.

AMS Subject Classification

03F55, 06D72, 08A72.

¹Department of Mathematics, Rajiv Gandhi College of Engineering and Technology, Pondicherry-607403, India.

²Department of Mathematics, FEAT, Annamalai University, Annamalainagar-608002, Tamil Nadu, India.

³Department of Mathematics, St.Joseph's College of Arts and Science, Cuddalore-607001, Tamil Nadu, India.

*Corresponding author: ²saravanan_aumaths@yahoo.com

Article History: Received 12 February 2021; Accepted 19 March 2021

Contents

- 2 Preliminaries......1100

1. Introduction

There are many concepts of universal algebras generalizing an associative ring $(R; +; \cdot)$. Some of them in particular, nearrings and several kinds of semirings have been proven very useful. An algebra $(R; +; \cdot)$ is said to be a semiring if (R; +)and $(R; \cdot)$ are semigroups satisfying $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(b+c) \cdot a = b \cdot a + c \cdot a$ for all a, b and c in R. A semiring *R* is said to be additively commutative if a + b = b + a for all a, b in R. A semiring R may have an identity 1, defined by $1 \cdot a = a = a \cdot 1$ and a zero 0, defined by 0 + a = a = a + 0and $a \cdot 0 = 0 = 0 \cdot a$ for all *a* in *R*. After the introduction of fuzzy sets by L.A.Zadeh [1], several researchers explored on the generalization of the concept of fuzzy sets. The notion of fuzzy subnearrings and ideals was introduced by S.Abou Zaid [1]. K.H.kim in [7] introduced the concept of intuitionistic Q-fuzzy semi prime ideals in semigroups. A.Solairaju and R.Nagarajan [14, 15] have introduced and defined a new algebraic structure called Q-fuzzy subgroups. In this paper, we introduce the some theorems in Q-level subsets of an (Q, L)-fuzzy l-subsemiring of a l-semiring. We also made an attempt to study the properties of lower Q-level subsets of an (Q, L)-fuzzy l-subsemirings of l-semiring under homomorphism and anti-homomorphism.

©2021 MJM.

2. Preliminaries

Definition 2.1. Let X be a non-empty set. A fuzzy subset A of X is a function $A: X \rightarrow [0, 1]$.

Definition 2.2. Let X be a non-empty set and $L = (L, \leq)$ be a lattice with least element 0 and greatest element 1 and Q be a non-empty set. A (Q,L)-fuzzy subset A of X is a function $A: X \times Q \rightarrow L$.

Definition 2.3. Let R be a l-semiring and Q be a non empty set. A (Q,L)-fuzzy subset A of R is said to be a (Q,L)-fuzzy l-subsemiring (QLFLSSR) of R if the following conditions are satisfied:

- 1. $A(x+y,q) \ge A(x,q) \land A(y,q)$,
- 2. $A(xy,q) \ge A(x,q) \land A(y,q)$,
- 3. $A(x \lor y,q) \ge A(x,q) \land A(y,q),$

4. $A(x \land y,q) \ge A(x,q) \land A(y,q)$, for all x and y in R and q in Q.

Example 2.4. Let $(N, +, \cdot, \lor, \land)$ be a *l*-semiring and $Q = \{p\}$. Then the (Q,L)-Fuzzy Set A of N is defined by

 $A(x) = \begin{cases} 0.63 & \text{if } x \text{ is even} \\ 0.37 & \text{if } x \text{ is odd} \end{cases}$

Clearly \hat{A} is an (Q,L)-Fuzzy l-subsemiring of l-semiring.

Definition 2.5. Let A and B be any two (Q,L)-fuzzy subsets of sets G and H, respectively. The product of A and B, denoted by $A \times B$, is defined as $A \times B = \{\langle ((x,y),q), A \times B((x,y),q) \rangle /$ for all x in G and y in H and q in Q}, where $A \times B((x,y),q) = A(x,q) \wedge B(y,q)$.

Definition 2.6. Let *R* and *R'* be any two *l*-semirings and *Q* be a non empty set. Let $f : R \to R'$ be any function and *A* be a (Q,L)-fuzzy *l*-subsemiring in *R*, *V* be a (Q,L)-fuzzy *l*-subsemiring in f(R) = R', defined by $V(y,q) = \sup_{x=f^{-1}(y)} A(x,q)$,

for all x in R and y in R' and q in Q. Then A is called a preimage of V under f and is denoted by $f^{-1}(V)$.

Definition 2.7. Let *R* and *R'* be any two *l*-semirings. Then the function $f : R \to R'$ is called a *l*-semiring homomorphism if f(x+y) = f(x) + f(y), f(xy) = f(x)f(y), for all *x* and *y* in *R*.

Definition 2.8. Let R and R' be any two *l*-semirings. Then the function $f : R \to R'$ is called a *l*-semiring anti-homomorphism if f(x+y) = f(y) + f(x), f(xy) = f(y)f(x), for all x and y in R.

Definition 2.9. Let A be a (Q,L)-fuzzy l-subsemiring of a lsemiring R. Then A^0 is defined as $A^0(x,q) = A(x,q)/A(0,q)$, for all x in R and q in Q, where 0 is the identity element of R.

Definition 2.10. Let A be a (Q,L)-fuzzy subset of X. For α in L, a Q-level subset of A corresponding to α is the set $A_{\alpha} = \{x \in X : A(x,q) \ge \alpha\}.$

3. Properties of *Q*-level *l*-subsemiring of (Q,L)-fuzzy *l*-subsemiring of a *l*-semiring

Theorem 3.1. Let A be an (Q,L)-fuzzy l-subsemiring of a l-semiring R. Then for α in L such that $A(0,q) \ge \alpha, A_{\alpha}$ is a l-subsemiring of R.

Proof. For all x and y in A_{α} , we have, $A(x,q) \ge \alpha$ and $A(y,q) \ge \alpha$. Now, $A(x+y,q) \ge A(x,q) \land A(y,q) \ge \alpha \land \alpha = \alpha$, which implies that $A(x+y,q) \ge \alpha$. And, $A(xy,q) \ge A(x,q) \land A(y,q) \ge \alpha \land \alpha = \alpha$, which implies that $A(xy,q) \ge \alpha$. Now $A(x \lor y, q) \ge A(x, q) \land A(y, q) \ge \alpha \land \alpha = \alpha$ which im-

Now $A(x \lor y, q) \ge A(x, q) \land A(y, q) \ge \alpha \land \alpha = \alpha$ which implies that

 $A(x \lor y,q) \ge \alpha, A(x \land y,q) \ge A(x,q) \land A(y,q) \ge \alpha \land \alpha = \alpha$ which implies that $A(x \lor y,q) \ge \alpha$. Therefore, $A(x + y, q) \ge \alpha$, $A(xy, q) \ge \alpha$ and $A(x \lor y, q) \ge \alpha$, $A(x \land y, q) \ge \alpha$. Therefore x + y, xy and $x \lor y, x \land y$ in A_{α} . Hence A_{α} is a *l*-subsemiring of a *l*-semiring *R*.

Theorem 3.2. Let A be an (Q,L)-fuzzy l-subsemiring of a l-semiring R. Then two Q-level l-subsemiring $A_{\alpha 1}, A_{\alpha 2}$ and α_1, α_2 are in L such that $A(0,q) \ge \alpha_1$ and $A(0,q) \ge \alpha_2$ with $\alpha_2 < \alpha_1$ of A are equal iff there is no x in R such that $\alpha_1 > A(x,q) > \alpha_2$.

Proof. Assume that $A_{\alpha 1} = A_{\alpha 2}$. Suppose there exists *x* in *R* such that $\alpha_1 > A(x,q) > \alpha_2$. Then $A_{\alpha 1} \subseteq A_{\alpha 2}$ implies *x* belongs to $A_{\alpha 2}$, but not in $A_{\alpha 1}$. This is contradiction to $A_{\alpha 1} = A_{\alpha 2}$. Therefore there is no $x \in R$ such that $\alpha_1 > A(x,q) > \alpha_2$. Conversely if there is no $x \in R$ such that $\alpha_1 > A(x,q) > \alpha_2$. Then $A_{\alpha 1} = A_{\alpha 2}$.

Theorem 3.3. Let *R* be a *l*-semiring and *A* be a fuzzy subset of *R* such that A_{α} be a *Q*-level *l*-subsemiring of *R*. If α in *L* is such that $A(0,q) \ge \alpha$, then *A* is an (Q,L)-fuzzy *l*-subsemiring of *R*.

Proof. Let *R* be a *l*-semiring and *Q* be a non-empty set. For $x, y \in R$ and $q \in Q$. Let $A(x,q) = \alpha_1$ and $A(y,q) = \alpha_2$.

Case (i): If $\alpha_1 < \alpha_2$, then $x, y \in A_{\alpha_1}$. As A_{α_1} is a *Q*-level *l*-subsemiring of R, x + y and xy in A_{α_1} . Now $A(x + y, q) \ge \alpha_1 = \alpha_1 \land \alpha_2 = A(x, q) \land A(y, q)$, which implies that $A(x + y, q) \ge A(x, q) \land A(y, q)$, for all $x, y \in R$ and $q \in Q$. And, $A(xy, q) \ge \alpha_1 = \alpha_1 \land \alpha_2 = A(x, q) \land A(y, q)$, implies that $A(xy, q) \ge A(x, q) \land A(y, q)$, for all $x, y \in R$ and $q \in Q$. Also $A(x \lor y, q) \ge \alpha_1 = \alpha_1 \land \alpha_2 = A(x, q) \land A(y, q)$, for all $x, y \in R$ and $q \in Q$. And $A(x \land y, q) \ge \alpha_1 = \alpha_1 \land \alpha_2 = A(x, q) \land A(y, q)$, for all $x, y \in R$ and $q \in Q$.

Case (ii): If $\alpha_1 > \alpha_2$, then $x, y \in A_{\alpha 2}$.

As $A_{\alpha 2}$ is a *Q*-level *l*-subsemiring of R, x + y and xy in $A_{\alpha 2}$. Now $A(x + y, q) \ge \alpha_2 = \alpha_2 \land \alpha_1 = A(y,q) \land A(x,q)$, which implies that $A(x + y,q) \ge A(x,q) \land A(y,q)$, for all $x, y \in R$ and $q \in Q$. Also, $A(xy,q) \ge \alpha_2 = \alpha_2 \land \alpha_1 = A(y,q) \land A(x,q)$, implies that $A(xy,q) \ge A(x,q) \land A(y,q)$, for all $x, y \in R$ and $q \in Q$. Also $A(x \lor y,q) \ge \alpha_2 = \alpha_1 \land \alpha_2 = A(x,q) \land A(y,q)$, for all $x, y \in R$ and $q \in Q$. And $A(x \land y,q) \ge \alpha_2 = \alpha_1 \land \alpha_2 = A(x,q) \land A(y,q)$ for all $x, y \in R$ and $q \in Q$.

Case (iii): If $\alpha_1 = \alpha_2$. It is trivial.

In all the cases, A is an (Q,L)-fuzzy *l*-subsemiring of a *l*-semiring R.

Theorem 3.4. Let A be an (Q,L)-fuzzy l-subsemiring of a l-semiring R. The intersection of two Q-level l-subsemiring of A in R is also a Q-level l-subsemiring of A in R.

Proof. Let α_1 and α_2 be in $L, A(0,q) \ge \alpha_1$ and $A(0,q) \ge \alpha_2$.

Case (i): If $\alpha_1 > A(x,q) > \alpha_2$, then $A_{\alpha 2} \subseteq A_{\alpha 1}$. Therefore, $A_{\alpha 1} \cap A_{\alpha 2} = A_{\alpha 2}$, but $A_{\alpha 2}$ is a *Q*-level *l*-subsemiring of *A*.

Case (ii): If $\alpha_1 < A(x,q) < \alpha_2$, then $A_{\alpha_1} \subseteq A_{\alpha_2}$. Therefore, $A_{\alpha_1} \cap A_{\alpha_2} = A_{\alpha_1}$, but A_{α_1} is a *Q*-level *l*-subsemiring of *A*.

Case (iii): If $\alpha_1 = \alpha_2$, then $A_{\alpha 1} = A_{\alpha 2}$.

In all cases, intersection of any two *Q*-level *l*-subsemirings is also *Q*-level *l*-subsemiring of *A*. \Box

Theorem 3.5. Let A be an (Q,L)-fuzzy l-subsemiring of a l-semiring R. If $\alpha_i \in L$, such that $A(0,q) \ge \alpha_i$ and $\{A_i\}_{i \in I}$ is a collection of Q-level l-subsemirings of A, then their intersection is also a Q-level l-subsemiring of A.

Proof. It is trivial.

Theorem 3.6. Let A be an (Q,L)-fuzzy l-subsemiring of a l-semiring R. The union of any two Q-level l-subsemirings of A in R, is also a Q-level l-subsemiring of A in R.

Proof. Let $\alpha_1, \alpha_2 \in L, A(0,q) \ge \alpha_1$ and $A(0,q) \ge \alpha_2$.

- **Case** (i): If $\alpha_1 < A(x,q) < \alpha_2$, then $A_{\alpha 2} \subseteq A_{\alpha 1}$. Therefore, $A_{\alpha 1} \cup A_{\alpha 2} = A_{\alpha 1}$, but $A_{\alpha 1}$ is a *Q*-level *l*-subsemiring of *A*.
- **Case** (ii): If $\alpha_1 > A(x,q) > \alpha_2$, then $A_{\alpha 1} \subseteq A_{\alpha 2}$. Therefore, $A_{\alpha 1} \cup A_{\alpha 2} = A_{\alpha 2}$, but $A_{\alpha 2}$ is a *Q*-level *l*-subsemiring of *A*.
- **Case** (iii): If $\alpha_1 = \alpha_2$, then $A_{\alpha 1} = A_{\alpha 2.}$ In all cases, union of any two *Q*-level *l*-subsemiring is also a *Q*-level *l*-subsemiring of *A*.

Theorem 3.7. Let A be an (Q,L)-fuzzy l-subsemiring of a lsemiring R. If $\alpha_i \in L, A(0,q) \ge \alpha_i$ and $\{A_i\}_{i \in I}$ is a collection of Q-level l-subsemirings of A, then their union is also a Q-level l-subsemiring of A.

Proof. It is trivial.

Theorem 3.8. The homomorphic image of a Q-level l- subsemiring of an (Q,L)-fuzzy l-subsemiring of a l-semiring R is a Q-level l-subsemiring of an (Q,L)-fuzzy l-subsemiring of a l-semiring R'. *Proof.* Let *R* and *R'* be any two semirings and $f : R \to R'$ be a homomorphism.

That is, f(x+y) = f(x) + f(y) and f(xy) = f(x)f(y), for all *x* and *y* in *R*.

Let V = f(A), where A is an (Q, L)-fuzzy *l*-subsemiring of a *l*-semiring *R*.

Clearly V is an (Q,L)-fuzzy *l*-subsemiring of a *l*-semiring R'. Let x and y in R, implies f(x) and f(y) in R'.

Let *A* is a *Q*-level *l*-subsemiring of *A*.

That is, $A(x,q) \ge \alpha$ and $A(y,q) \ge \alpha$; $A(x+y,q) \ge \alpha$, $A(xy,q) \ge \alpha$. We have to prove that $f(A_{\alpha})$ is a *Q*-level *l*-subsemiring of *V*. Now, $V(f(x),q) \ge A(x,q) \ge \alpha$, which implies that $V(f(x),q) \ge \alpha$ and $V(f(y),q) \ge A(y,q) \ge \alpha$,

which implies that $V(f(y),q) \ge \alpha$ and $V(f(x) + f(y),q) = V(f(x+y),q) \ge A(x+y,q) \ge \alpha$, which implies that $V(f(x) + f(y),q) \ge \alpha$.

And, $V(f(x)f(y),q) = V(f(xy),q) \ge A(xy,q) \ge \alpha$, which implies that $V(f(x)f(y),q) \ge \alpha$.

Also, $V(f(x) \lor f(y), q) = V(f(x \lor y), q) \ge A(x \lor y, q) \ge \alpha$, which implies that $V(f(x) \lor f(y), q) \ge \alpha$ and $V(f(x) \land f(y), q) = V(f(x \land y), q) \ge A(x \land y, q) \ge \alpha$, which implies that $V(f(x) \land f(y), q) \ge \alpha$.

Therefore, $V(f(x)+f(y),q) \ge \alpha$, $V(f(x)f(y),q) \ge \alpha$, $V(f(x) \lor f(y),q) \ge \alpha V(f(x) \land f(y),q) \ge \alpha$.

Hence $f(A_{\alpha})$ is a *Q*-level *l*-subsemiring of an (Q, L)-fuzzy *l*-subsemiring *V* of a *l*-semiring *R'*.

Theorem 3.9. The homomorphic pre-image of a Q-level l-subsemiring of an (Q,L)-fuzzy l-subsemiring of a l-semiring R' is a Q-level l-subsemiring of an (Q,L)-fuzzy l-subsemiring of a l-semiring R.

Proof. Let *R* and *R'* be any two semirings and $f : R \to R'$ be a homomorphism.

That is, f(x+y) = f(x) + f(y) and f(xy) = f(x)f(y) for all x and y in R.

Let V = f(A), where V is an (Q, L)-fuzzy *l*-subsemiring of a *l*-semiring R'.

Clearly A is an (Q,L)-fuzzy *l*-subsemiring of a *l*-semiring R. Let f(x) and f(y) in R', implies x and y in R.

Let f(A) is a *Q*-level *l*-subsemiring of *V*.

That is, $V(f(x),q) \ge \alpha$ and $V(f(y),q) \ge \alpha$; $V(f(x)+f(y),q) \ge \alpha$, $V(f(x)f(y),q) \ge \alpha$, $V(f(x) \lor f(y),q) \ge \alpha$, $V(f(x) \land f(y),q) \ge \alpha$.

We have to prove that A_{α} is a *Q*-level *l*-subsemiring of *A*. Now, $A(x,q) = V(f(x),q) \ge \alpha$,

implies that $A(x,q) \ge \alpha$; $A(y,q) = V(f(y),q) \ge \alpha$, implies that $A(y,q) \ge \alpha$ and $A(x+y,q) = V(f(x+y),q) = V(f(x) + f(y),q) \ge \alpha$, which implies that $A(x+y,q) \ge \alpha$. And, $A(xy,q) = V(f(xy),q) = V(f(x)f(y),q) \ge \alpha$, Which

implies that $A(xy,q) \ge \alpha$.

Also $A(x \lor y, q) = V(f(x \lor y), q) = V(f(x) \lor f(y), q) \ge \alpha$, which implies that $A(x \lor y, q) \ge \alpha$, $A(x \land y, q) = V(f(x \land y), q) = V(f(x) \land f(y), q) \ge \alpha$, which implies that $A(x \land y, q) \ge \alpha$.

Therefore, $V(f(x) + f(y), q) \ge \alpha$, $V(f(x)f(y), q) \ge \alpha$, $V(f(x) \lor f(y), q) \ge \alpha$, $V(f(x) \land f(y), q) \ge \alpha$.

Hence, A_{α} is a *Q*-level *l*-subsemiring of an (Q, L)-fuzzy *l*-subsemiring *A* of *R*.

Theorem 3.10. The anti-homomorphic image of a Q-level l-subsemiring of an (Q,L)-fuzzy l-subsemiring of a l-semiring R is a Q-level l-subsemiring of an (Q,L)-fuzzy l-subsemiring of a l-semiring R'.

Proof. Let *R* and *R'* be any two semirings and $f : R \to R'$ be an anti-homomorphism.

That is, f(x+y) = f(y) + f(x) and f(xy) = f(y)f(x), for all x and y in R.

Let V = f(A), where A is an (Q,L)-fuzzy *l*-subsemiring of R. Clearly V is an (Q,L)-fuzzy *l*-subsemiring of R'.

Let x and y in R, implies f(x) and f(y) in R'.

Let *A* is a *Q*-level *l*-subsemiring of *A*.

That is $A(x,q) \ge \alpha$ and $A(y,q) \ge \alpha . A(y+x,q) \ge \alpha . A(yx,q) \ge \alpha . A(y \lor x,q) \ge \alpha . A(y \lor x,q) \ge \alpha .$

We have to prove that f(A) is a *Q*-level *l*-subsemiring of *V*. Now, $V(f(x),q) \ge A(x,q) \ge \alpha$,

which implies that $V(f(x),q) \ge \alpha$; $V(f(y),q) \ge A(y,q) \ge \alpha$, which implies that $V(f(y),q) \ge \alpha$.

Now, $V(f(x) + f(y),q) = V(f(x) + f(y),q) = V(f(y+x),q) \ge A(y+x,q) \ge \alpha$, which implies that, $V(f(x) + f(y),q) \ge \alpha$.

And, $V(f(x)f(y),q) = V(f(yx),q) \ge A(yx,q) \ge \alpha$, which implies that $V(f(x)f(y),q) \ge \alpha$.

Also, $V(f(x) \lor f(y), q) = V(f(y \lor x), q) \ge A(y \lor x, q) \ge \alpha$, which implies that $V(f(x) \lor f(y), q) \ge \alpha$.

And, $V(f(x) \wedge f(y), q) = V(f(y \wedge x), q) \ge A(y \wedge x, q) \ge \alpha$, which implies that $V(f(x) \wedge f(y), q) \ge \alpha$.

Therefore, $V(f(x) + f(y), q) \ge \alpha$, $V(f(x)f(y), q) \ge \alpha$ and $V(f(x) \lor f(y), q) \ge \alpha$, $V(f(x) \land f(y), q) \ge \alpha$.

Hence $f(A_{\alpha})$ is a *Q*-level *l*-subsemiring of an (Q,L)-fuzzy *l*-subsemiring *V* of *R'*.

Theorem 3.11. The anti-homomorphic pre-image of a Qlevel l-subsemiring of an (Q,L)-fuzzy l-subsemiring of a lsemiring R' is a Q-level l-subsemiring of an (Q,L)-fuzzy lsubsemiring of a l-semiring R.

Proof. Let *R* and *R'* be any two *l*-semirings and $f : R \to R'$ be an anti-homomorphism.

That is, $f(x+y) = \overline{f}(y) + f(x)$ and f(xy) = f(y)f(x), for all x and y in R.

Let V = f(A), where V is an (Q,L)-fuzzy *l*-subsemiring of a *l*-semiring R'.

Clearly A is an (Q,L)-fuzzy *l*-subsemiring of a *l*-semiring R. Let f(x) and f(y) in R', implies x and y in R.

Let $f(A_{\alpha})$ is a *Q*-level *l*-subsemiring of *V*.

That is, $V(f(x),q) \ge \alpha$ and $V(f(y),q) \ge \alpha$; $V(f(y) + f(x),q) \ge \alpha$, $V(f(y)f(x),q) \ge \alpha$, $V(f(y) \lor f(x),q) \ge \alpha$, $V(f(y) \lor f(x),q) \ge \alpha$.

We have to prove that A_{α} is a *Q*-level subsemiring of *A*. Now, $A(x,q) = V(f(x),q) \ge \alpha$, which implies that $A(x,q) \ge \alpha$; $A(y,q) = V(f(y),q) \ge \alpha$, which implies that $A(y,q) \ge \alpha$. Now, $A(x+y,q) = V(f(x+y),q) = V(f(y) + f(x),q) \ge \alpha$, which implies that $A(x+y,q) \ge \alpha$. And, $A(xy,q) = V(f(xy),q) = V(f(y)f(x),q) \ge \alpha$, which implies that $A(xy,q) \ge \alpha$.

Also $A(x \lor y,q) = V(f(x \lor y),q) = V(f(y) \lor f(x),q) \ge \alpha$, which implies that $A(x \lor y,q) \ge \alpha$ and $A(x \land y,q) = V(f(x \land y),q) = V(f(y) \land f(x),q) \ge \alpha$, which implies that $A(x \land y,q) \ge \alpha$.

Therefore, $V(f(x) + f(y),q) \ge \alpha$, $V(f(x)f(y),q) \ge \alpha$ and $V(f(x) \lor f(y),q) \ge \alpha$, $V(f(x) \land f(y),q) \ge \alpha$.

Hence A_{α} is a *Q*-level *l*-subsemiring of an (Q, L)-fuzzy *l*-subsemiring *A* of *R*.

Theorem 3.12. If A is an (Q,L)-fuzzy l-subsemiring of a lsemiring R then $H = \{x | x \in R : A(x,q) = 1\}$ is either empty or is a l-subsemiring of R.

Proof. If no element satisfies this condition, then *H* is empty. If *x* and *y* in *H*, then $A((x+y),q) \ge A(x,q) \land A(y,q) = 1 \land 1 = 1$.

Therefore, A((x+y),q) = 1. And, $A(xy,q) \ge A(x,q) \land A(y,q) = 1 \land 1 = 1$. Therefore, A(xy,q) = 1. Also $A((x \lor y),q) \ge A(x,q) \land A(y,q) = 1 \land 1 = 1$. Therefore, $A((x \lor y),q) = 1$ and $A((x \land y),q) \ge A(x,q) \land A(y,q) = 1 \land 1 = 1$. Therefore, $A((x \land y),q) = 1$. We get $x + y, xy, x \lor y, x \land y$ in H. Therefore, H is a l-subsemiring of R. Hence H is either empty or is a l-subsemiring of R.

Theorem 3.13. If A be an (Q,L)-fuzzy l-subsemiring of a *l*-semiring R, then if A((x+y),q) = 0, then either A(x,q) = 0 or A(y,q) = 0, for all x and y in R and q in Q.

Proof. Let *x* and *y* in *R* and *q* in *Q*. By the definition $A((x+y),q) \ge A(x,q) \land A(y,q)$, which implies that $0 \ge A(x,q) \land A(y,q)$. Therefore, either A(x,q) = 0 or A(y,q) = 0.

Theorem 3.14. Let A be a (Q,L)-fuzzy l-subsemiring of a *l*-semiring R. Then A^0 is a (Q,L)-fuzzy l-subsemiring of a *l*-semiring R.

Proof. For any x in R and q in Q, we have

$$\begin{aligned} A^{0}(x+y,q) &= A(x+y,q)/A(0,q) \\ &\geq [1/A(0,q)] \{A(x,q) \wedge A(y,q)\} \\ &= [A(x,q)/A(0,q)] \wedge [A(y,q)/A(0,q)] \\ &= A^{0}(x,q) \wedge A^{0}(y,q). \end{aligned}$$

That is $A^0(x+y,q) \ge A^0(x,q) \wedge A^0(y,q)$ for all x and y in R and q in Q.

 $A^{0}(xy,q) = A(xy,q)/A(0,q) \ge [1/A(0,q)] \{A(x,q) \land A(y,q)\} = [A(x,q)/A(0,q)] \land [A(y,q)/A(0,q)] = A^{0}(x,q) \land A^{0}(y,q).$ That is $A^{0}(xy,q) \ge A^{0}(x,q) \land A^{0}(y,q)$ for all x and y in R and

q in Q.

$$A^{0}(x \lor y,q) = A(x \lor y,q)/A(0,q)$$

$$\geq [1/A(0,q)] \{A(x,q) \land A(y,q)\}$$

$$= [A(x,q)/A(0,q)] \land [A(y,q)/A(0,q)]$$

$$= A^{0}(x,q) \land A^{0}(y,q).$$

That is $A^0(x \lor y, q) \ge A^0(x, q) \land A^0(y, q)$ for all x and y in R and q in Q.

$$\begin{aligned} A^{0}(x \wedge y, q) =& A(x \wedge y, q) / A(0, q) \\ \geq & [1 / A(0, q)] \{A(x, q) \wedge A(y, q)\} \\ =& [A(x, q) / A(0, q)] \wedge [A(y, q) / A(0, q)] \\ =& A^{0}(x, q) \wedge A^{0}(y, q). \end{aligned}$$

That is $A^0(x \wedge y, q) \ge A^0(x, q) \wedge A^0(y, q)$ for all x and y in R and q in Q.

Hence A^0 is a (Q, L)-fuzzy *l*-subsemiring of a *l*-semiring *R*.

Theorem 3.15. Let A be an (Q,L)-fuzzy l-subsemiring of a l-semiring $R.A^+$ be a fuzzy set in R defined by $A^+(x,q) = A(x,q) + 1 - A(0,q)$, for all x in R and q in Q, where 0 is the identity element. Then A^+ is an (Q,L)-fuzzy l-subsemiring of a l-semiring R.

Proof. Let x and y in R and q in Q.

We have, $A^+(x+y,q) = A(x+y,q) + 1 - A(0,q) \ge \{A(x,q) \land A(y,q)\} + 1 - A(0,q) = \{A(x,q) + 1 - A(0,q)\} \land \{A(y,q) + 1 - A(0,q)\} = A^+(x,q) \land A^+(y,q)$, which implies that $A^+(x+y,q) \ge A^+(x,q) \land A^+(y,q)$ for all x, y in R and q in Q. $A^+(xy,q) = A(xy,q) + 1 - A(0,q) \ge \{A(x,q) \land A(y,q)\} + 1 - A(0,q) = \{A(x,q) + 1 - A(0,q)\} \land \{A(y,q) + 1 - A(0,q)\} = A^+(x,q) \land A^+(y,q)$. Therefore, $A^+(y,q)$.

Therefore, $A^+(xy,q) \ge A^+(x,q) \land A^+(y,q)$ for all x, y in R and q in Q.

Also

$$\begin{split} A^+(x \lor y,q) =& A(x \lor y,q) + 1 - A(0,q) \\ & \geq \{A(x,q) \land A(y,q)\} + 1 - A(0,q) \\ & = \{A(x,q) + 1 - A(0,q)\} \land \{A(y,q) + 1 - A(0,q)\} \\ & = A^+(x,q) \land A^+(y,q), \end{split}$$

which implies that $A^+(x \lor y, q) \ge A^+(x, q) \land A^+(y, q)$ for all *x*, *y* in *R* and *q* in *Q*.

 $\begin{array}{l} A^+(x \wedge y,q) = A(x \wedge y,q) + 1 - A(0,q) \ge \{A(x,q) \wedge A(y,q)\} + \\ 1 - A(0,q) = \{A(x,q) + 1 - A(0,q)\} \wedge \{A(y,q) + 1 - A(0,q)\} = \\ A^+(x,q) \wedge A^+(y,q), \text{ which implies that } A^+(x \wedge y,q) \ge A^+(x,q) \wedge \\ A^+(y,q) \text{ for all } x, y \text{ in } R \text{ and } q \text{ in } Q. \end{array}$

Hence A^+ is an (Q, L)-fuzzy *l*-subsemiring of a *l*-semiring *R*.

References

- ^[1] S. Abou Zaid, On fuzzy subnear rings and ideals, *Fuzzy Sets and Systems*, 44(1991), 139–146.
- ^[2] M. Akram and K.H. Dar, On fuzzy *d*-algebras, *Punjab University Journal of Mathematics*, 37(2005), 61–76.
- [3] M. Akram and K.H. Dar, Fuzzy left *h*-ideals in hemirings with respect to a *s*-norm, *International Journal of Computational and Applied Mathematics*, 2(1)(2007), 7–14.
- [4] Asok Kumer Ray, On product of fuzzy subgroups, *Fuzzy* Sets and Systems, 105(1999), 181–183.
- B.Davvaz and Wieslaw.A.Dudek, Fuzzy *n*-array groups as a generalization of Rosen field fuzzy groups, *Appl. Math. Lett.*, 20(2007), 1–16.
- [6] V.N.Dixit, Rajesh Kumar, Naseem Ajmal, Level subgroups and union of fuzzy subgroups, *Fuzzy Sets and Systems*, 37(1990), 359–371.
- [7] K.H.Kim, On intuitionistic Q-fuzzy semi prime ideals in semi groups, Advances in Fuzzy Mathematics, 1(1)(2006), 15–21.
- ^[8] N.Palaniappan and K.Arjunan, Operation on fuzzy and anti fuzzy ideals, *Antarctica J. Math.*, 4(1)(2007), 59–64.
- ^[9] Rajesh Kumar, Fuzzy Algebra, *University of Delhi Publication Division*, 1(1993).
- ^[10] V.Saravanan and D.Sivakumar, A Study on Anti-Fuzzy Subsemiring of a Semiring, *International Journal of Computer Applications*, 35(5)(2011).
- [11] V.Saravanan and D.Sivakumar, Lower level subsets of Anti-Fuzzy Subsemiring of a semiring, *AParipex Indian journal of Research (ISSN 2250-1991)*, 1(1)(2012), 80– 81.
- [12] S.Sampathu, S.Anita Shanthi and A.Praveen Prakash, A Study on (Q,L)-fuzzy Normal Subsemiring of a Semiring, American Journal of Applied Mathematics, 3(4)(2015), 185–188.
- [13] P. Sivaramakrishna Das, Fuzzy groups and level subgroups, *Journal of Mathematical Analysis and Applications*, 84(1981), 264–269.
- [14] A.Solairaju and R.Nagarajan, A New Structure and Construction of *Q*-Fuzzy Groups, *Advances in Fuzzy Mathematics*, 4(1)(2009), 23–29.
- [15] A.Solairaju and R.Nagarajan, *Q*-fuzzy left *R*-subgroups of near rings w.r.t *T*-norms, *Antarctica Journal of Mathematics*, 5(2008), 1–2.
- [16] J. Tang, X.Zhang, Product Operations in the Category of L-fuzzy groups, J. Fuzzy Math., 9(2001), 1–10.
- ^[17] W.B.Vasantha Kandasamy, Smarandache fuzzy algebra, *American Research Press, Rehoboth,* (2003).
- [18] L.A.Zadeh, Fuzzy sets, Information and Control, 8(1965), 338–353.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******