

https://doi.org/10.26637/MJM0901/0193

A new closure operator via $(1, 2)S_{\beta}$ -open sets in bi-topological spaces

V. Subprabha¹*, P. T. Infant Vijula² and N. Durga Devi³

Abstract $\bigwedge_{2)S_{2}}$ - set and to generate $\tau^{(1,2)S_{\beta}}$, $\rho^{(1,2)S_{\beta}}$ using The aim of this paper is to define a new closure operator of $(1,2)S_{\beta}$ - open sets in bitopological spaces and study some of their properties. **Keywords** (1, 2)semi-open sets, (1, 2) S_{β} -open sets, (1, 2) β -closed sets, (1, 2) S_{β} -Interior, (1, 2) S_{β} -Closure, $\bigwedge_{(1,2)S_{\beta}}$ -sets, $\bigvee_{\alpha} \text{-sets, } D^{(1,2)s_{\beta}} \text{-sets, } D^{(1,2)s_{\beta}} \text{-sets, } D^{(1,2)s_{\beta}} \text{-sets, } Int^{(1,2)s_{\beta}} \text{-sets, } C^{(1,2)s_{\beta}} \text{-sets, } \tau^{(1,2)s_{\beta}} \text{-sets, } \rho^{(1,2)s_{\beta}} \text{-sets, } P^{(1,2)s_{\beta}} \text{-sets,$ $(1,2)S_{\beta}$ **AMS Subject Classification** 11B05. 1.2 Research Scholar, Department of Mathematics, Sri Parasakthi College For Women (Affiliated to Manonmaniam Sundaranar University), Courtallam, Tirunelveli, Tamil Nadu. India. ³ Department of Mathematics, Sri Parasakthi College For Women (Affiliated to Manonmaniam Sundaranar University), Courtallam, Tirunelveli, Tamil Nadu. India. *Corresponding author: ¹ suvekafamily@gmail.com; ²infantvijula@gmail.com; and ³durgadevin681@gmail.com Article History: Received 12 February 2021; Accepted 27 March 2021

©2021 MJM.

Contents

1	Introduction1	114
2	Preliminaries1	114
3	A New Closure Operator $C^{(1,2)S_{\beta}}$	115
4	Conclusion1	117
	References1	117

1. Introduction

In the year 1963, Kelly initiated the systematic study of bitopology which is a triple (X, τ, σ) , where X is a non-empty set together with two distinct topologies τ , σ on X. Levine introduced the notion of semi-open sets and their properties in 1963. In 1983, Abd-El-monsef introduced β -open sets and β continuity in topological spaces. In 2013, Alias B.Khalaf and Nehmat K.Ahmed introduced and defined a class of semi-open sets called S_{β} -open sets in topological spaces. And rijevic introduced a class of generalized open sets in topological spaces. In 1986, Maki introduced some forms of open and closed sets known as \wedge -sets and \vee -sets The aim of this paper is to define

a new closure operator of $\bigwedge_{(1,2)S_{\beta}}$ - set and to generate $\tau^{(1,2)S_{\beta}}$

 $\rho^{(1,2)S_{\beta}}$ using (1,2) S_{β} - open sets in bitopological spaces and study some of their properties.

2. Preliminaries

Definition 2.1 ([6]). Let A be a subset of a bitopological space (X, τ_1, τ_2) . Then A is said to be

- (i) $\tau_1 \tau_2$ -open if $A \in \tau_1 \cup \tau_2$,
- (*ii*) $\tau_1 \tau_2$ -closed if $A^c \in \tau_1 \cup \tau_2$,
- (*iii*) (1, 2) β -open if $A \subseteq \tau_1 \tau_2 cl(\tau_1 int(\tau_1 \tau_2 cl(A)))$, where τ_1 -Int(A) is the interior of A with respect to the topology τ_1 and $\tau_1 \tau_2$ -Cl(A) is the intersection of all $\tau_1 \tau_2$ -closed sets containing A.
- (iv) $(1, 2)\beta$ -Int(A) is the union of all $(1, 2)\beta$ -open sets contained in A.
- (v) $(1, 2)\beta$ -Cl(A) is the intersection of all $(1, 2)\beta$ -closed sets containing A.

Definition 2.2 ([6]). A subset A of X is said to be

- (*i*) (1, 2)*semi-open if* $A \subseteq \tau_1 \tau_2$ -*Cl*(τ_1 *Int*(A)),
- (*ii*) (1, 2)*regular-open if* $A = \tau_1$ -*Int* $(\tau_1 \tau_2 Cl(A))$,

(*iii*) (1, 2) β -open if $A \subseteq \tau_1 \tau_2$ -Cl $(\tau_1$ -Int $(\tau_1 \tau_2$ -Cl(A))).

The set of all (1, 2)semi-open, (1, 2)regular-open, (1, 2) β open are denoted as (1, 2)SO(X, τ_1 , τ_2), (1, 2)RO(X, τ_1 , τ_2), (1, 2) β O(X, τ_1 , τ_2) or simply (1, 2)SO(X), (1, 2)RO(X), (1, 2) β O(X) respectively.

Definition 2.3 ([4]). A subset A of X is said to be

- (*i*) (1, 2)semi-closed if $\tau_1 \tau_2$ -Int $(\tau_1$ -Cl $(A)) \subseteq A$.
- (*ii*) (1, 2)regular-closed if $A = \tau_1$ -Cl $(\tau_1 \tau_2$ -Int(A))
- (iii) (1, 2) β closed if $\tau_1 \tau_2$ -Int $(\tau_1 Cl(\tau_1 \tau_2 Int(A))) \subseteq A$.

The set of all (1, 2)semi-closed, (1, 2)regular-closed, (1, 2) β -closed are denoted as (1, 2)SCL(X, τ_1 , τ_2), (1, 2)RCL (X, τ_1 , τ_2), (1, 2) β CL(X, τ_1 , τ_2) or simply (1, 2)SCL(X), (1, 2)RCL(X), (1, 2) β CL(X) respectively.

Remark 2.4 ([6]). *For any subset A of X,*

- (i) τ_1 -Int $(A) \subseteq \tau_1 \tau_2$ -Int(A) and τ_2 -Int $(A) \subseteq \tau_1 \tau_2$ -Int(A).
- (*ii*) $\tau_1 \tau_2$ -*Cl*(*A*) $\subseteq \tau_1$ -*Cl*(*A*) and $\tau_1 \tau_2$ -*Cl*(*A*) $\subseteq \tau_2$ -*Cl*(*A*).

(*iii*) $\tau_1 \tau_2$ - $Cl(A \cap B) \subseteq \tau_1 \tau_2$ - $Cl(A) \cap \tau_1 \tau_2$ -Cl(B).

(*iv*) $\tau_1 \tau_2$ -*Int*(A) $\cup \tau_1 \tau_2$ -*Int*(B) $\subseteq \tau_1 \tau_2$ -*Int*($A \cup B$).

Theorem 2.5 ([1]). Let (X, τ_1, τ_2) be a bitopological space. If $A \in \tau_1$ and $B \in (1, 2)SO(X)$, then $A \cap B \in (1, 2)SO(X)$.

Theorem 2.6 ([1]). Let $A \subset Y \subset (X, \tau_1, \tau_2)$ and if A is τ_i -semi open in X, then A is τ_i -semi open in Y.

Definition 2.7 ([9]). A (1, 2)semi-open subset A of a bitopological space (X, τ_1, τ_2) is said to be $(1, 2)S_\beta$ - open if for each $x \in A$ there exists a $(1, 2)\beta$ - closed set F such that $x \in F \subseteq A$.

Definition 2.8 ([10]). In a bitopological space X, a subset

B of X is said to be (1, 2)S_{$$\beta$$}- \wedge -set ($\bigwedge_{(1,2)S_{\beta}}$ -set) if B = B^{(1,2)S _{β}}

where $B^{(1,2)S_{\beta}} = \bigcap \{ G/G \supseteq B \text{ and } G \in (1, 2)S_{\beta} \cdot O(X) \}.$

Definition 2.9 ([10]). In a bitopological space X, a subset B of X is said to be $(1, 2)S_{\beta}$ - \lor -set $(\bigvee_{(1,2)S_{\beta}}$ -set) if $B = B^{(1,2)S_{\beta}}$,

where
$$B^{(1,2)S_{\beta}} = \bigcup \{F/F \subseteq B \text{ and } F \in (1, 2)S_{\beta}CL(X).$$

Proposition 2.10 ([10]). *Let A and B be two subsets of a bitopological space X. Then the following properties are hold.*

(i)
$$B \subseteq B^{(1,2)S_{\beta}}$$
.

(*ii*)
$$B^{(1,2)S_{\beta}} \subseteq B$$
.
(*iii*) If $A \subseteq B$, then $A^{(1,2)S_{\beta}} \subseteq B^{(1,2)S_{\beta}}$.
(*iv*) $(B^{(1,2)S_{\beta}})^{(1,2)S_{\beta}} = B^{(1,2)S_{\beta}}$.
(*v*) If $A \in (1, 2)S_{\beta}O(X)$, then $A = A^{(1,2)S_{\beta}}$.
(*vi*) $(B^c)^{(1,2)S_{\beta}} = (B^{(1,2)S_{\beta}})^c$, (*i.e*) $(X-B)^{(1,2)S_{\beta}} = X-B^{(1,2)S_{\beta}}$

Definition 2.11 ([10]). *In a bitopological space X, a subset B is called*

- (i) generalized $\bigwedge_{(1,2)S_{\beta}}$ -set (briefly g. $\bigwedge_{(1,2)S_{\beta}}$ -set) of X if $B^{(1,2)S_{\beta}} \subseteq F$ whenever $B \subseteq F$ and $F \in (1,2)S_{\beta}CL(X)$. The family of all g. $\bigwedge_{(1,2)S_{\beta}}$ -sets of X is denoted as $D^{(1,2)S_{\beta}}(X)$.
- (ii) generalized $\bigvee_{(1,2)S_{\beta}}$ -set (briefly g. $\bigvee_{(1,2)S_{\beta}}$ -set) of X if B^{c} is a g. $\wedge_{(1,2)S_{\beta}}$ -set. The family of all g. $\bigvee_{(1,2)S_{\beta}}$ -set of X is denoted as $D^{(1,2)S_{\beta}}(X)$.

Remark 2.12 ([10]). In a bitopological space X, every $\bigwedge_{(1,2)S_{\beta}}^{}$ -set is g. $\bigwedge_{(1,2)S_{\beta}}^{}$ -set and every $\bigvee_{(1,2)S_{\beta}}^{}$ -set is g. $\bigvee_{(1,2)S_{\beta}}^{}$ -set.

Proposition 2.13 ([10]). Let (X, τ_1, τ_2) be a bitopological space. Then the following properties hold:

(i) If
$$B_i \in D^{(1,2)S_\beta}$$
 for all $i \in I$, then $\bigcup_{i \in I} B_i \in D^{(1,2)S_\beta}$.
(ii) If $B_i \in D^{(1,2)S_\beta}$ for all $i \in I$, then $\bigcap_{i \in I} B_i \in D^{(1,2)S_\beta}$.

Proposition 2.14 ([10]). Let X be a bitopological space. Then

- (i) for each $x \in X$, either $\{x\}$ is a $(1, 2)S_{\beta}$ -open or $\{x\}^c$ is $g_{(1,2)S_{\beta}}^{\wedge}$ -set.
- (ii) for each $x \in X$, either $\{x\}$ is a $(1, 2)S_{\beta}$ -open or $\{x\}$ is g. $\bigvee_{\substack{(1,2)S_{\beta}}}$ -set.

3. A New Closure Operator $C^{(1,2)S_{\beta}}$

Definition 3.1. For any subset *B* of a bitopological space *X*, we define $C^{(1,2)S_{\beta}}(B) = \cap \{G : B \subseteq G \text{ and } G \in D^{(1,2)S_{\beta}} \}$ and $Int^{(1,2)S_{\beta}}(B) = \cup \{F : F \subseteq B \text{ and } F \in D^{(1,2)S_{\beta}}.$

Example 3.2. Let $X = \{a, b, c, d\}$ with two topologies $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{\phi, X, \{b, c, d\}\}$. Then (1, 2) $S_{\beta}O(X) = \{\phi, X, \{a\}, \{b, c, d\}\}$ and (1, 2) $S_{\beta}CL(X) = \{\phi, X, \{b, c, d\}, \{a\}\}$. Now, $\bigwedge_{(1,2)S_{\beta}}O(X) = \{\phi, X, \{a\}\}$ and $D^{(1,2)S_{\beta}} = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$, $D^{(1,2)S_{\beta}} = \{\phi, X, \{b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$. Then $C^{(1,2)S_{\beta}}(X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$ and $Int^{(1,2)S_{\beta}}(X) = \{\phi, X, \{b\}, \{c\}, \{d\}, \{b, c\}, \{b, c\}, \{b, c, d\}\}$.

Proposition 3.3. Let A and B be subsets of a bitopological space X. Then,

(i)
$$C^{(1,2)S_{\beta}}(B^{c}) = (Int^{(1,2)S_{\beta}}(B))^{c}$$

(ii) if $A \subseteq B$, then $C^{(1,2)S_{\beta}}(A) \subseteq C^{(1,2)S_{\beta}}(B)$.
(iii) if B is a g . $\bigwedge_{(1,2)S_{\beta}}$ -set, then $C^{(1,2)S_{\beta}}(B) = B$.

(iv) if B is a g.
$$\bigvee_{(1,2)S_{\beta}}$$
-set, then $Int^{(1,2)S_{\beta}}(B) = B$.

Proof. From Definitions 1.11 and 2.1.

Theorem 3.4. $C^{(1,2)S_{\beta}}$ is a Kuratowski's closure operator.

Proof. (i) $C^{(1,2)S_{\beta}}(\phi) = \phi$ is obvious.

- (ii) $A \subset C^{(1,2)S_{\beta}}$ (A) is true from the definition 2.1.
- (iii) Now to prove $C^{(1,2)S_{\beta}}(A \cup B) = C^{(1,2)S_{\beta}}(A) \cup C^{(1,2)S_{\beta}}(B)$. Suppose, there exists a point $x \in X$ such that $x \notin C^{(1,2)S_{\beta}}(B)$. $(A \cup B)$. Then there exists a subset $G \in D^{(1,2)S_{\beta}}$ such that $A \cup B \subseteq G$ and $x \notin G$. Then $A \subseteq G, B \subseteq G$ and $x \notin G$, which implies $x \notin C^{(1,2)S_{\beta}}(A)$ and $x \notin C^{(1,2)S_{\beta}}(B)$. So, $C^{(1,2)S_{\beta}}(A) \cup$
- implies $x \notin C^{(1,2)S_{\beta}}(B) \subseteq C^{(1,2)S_{\beta}}(A \cup B).$ So, $C^{(1,2)S_{\beta}}(B) \subseteq C^{(1,2)S_{\beta}}(A \cup B).$

Conversely, suppose that there exists a point $x \in X$ such that the closure operator $x \notin (C^{(1,2)S_{\beta}}(A) \cup C^{(1,2)S_{\beta}}(B))$. Then there exists two sets G_1 and G_2 in $D^{(1,2)S_{\beta}}$ such that $A \subseteq G_1$ and $B \subseteq G_2$ but $x \notin G_1$ and $x \notin G_2$. Now, let $G = G_1 \cup G_2$. Then by proposition 1.14, $G \in D^{(1,2)S_{\beta}}$. Then $A \cup B \subseteq G$ and $x \notin G$ and so $x \notin C^{(1,2)S_{\beta}}(A \cup B)$. Then $C^{(1,2)S_{\beta}}(A \cup B) \subseteq C^{(1,2)S_{\beta}}(A)$ $\cup C^{(1,2)S_{\beta}}(B)$.

(iv) To prove
$$C^{(1,2)S_{\beta}}(C^{(1,2)S_{\beta}}(B)) = C^{(1,2)S_{\beta}}(B).$$

Suppose, there exists a point $x \in X$ such that $x \notin C^{(1,2)S_{\beta}}(B)$. Then there exists a $U \in D^{(1,2)S_{\beta}}$ such that $x \notin U$ and $B \subseteq U$. By proposition 2.3, $C^{(1,2)S_{\beta}}(B) \subseteq C^{(1,2)S_{\beta}}(U) = U$. Thus, we have $x \notin C^{(1,2)S_{\beta}}(C^{(1,2)S_{\beta}}(B))$. Hence $C^{(1,2)S_{\beta}}(C^{(1,2)S_{\beta}}(B))$ $\subseteq C^{(1,2)S_{\beta}}(B)$. Also by (ii), $C^{(1,2)S_{\beta}}(B) \subseteq C^{(1,2)S_{\beta}}(C^{(1,2)S_{\beta}}(B))$. Therefore, $C^{(1,2)S_{\beta}}(C^{(1,2)S_{\beta}}(B)) = C^{(1,2)S_{\beta}}(B)$.

Definition 3.5. Let $\tau^{(1,2)S_{\beta}}$ be a bitopological space generated by $C^{(1,2)S_{\beta}}$ in the usual manner. Then,

- (i) $\tau^{(1,2)S_{\beta}} = \{B : B \subseteq X, C^{(1,2)S_{\beta}}(B^c) = B^c\}$. Here we also define another family of subsets,
- (ii) $\rho^{(1,2)S_{\beta}} = \{B : C^{(1,2)S_{\beta}}(B) = (B)\}$ and we can also define that

$$(iii) \ \rho^{(1,2)S_{\beta}} = \{B : B^c \in \tau^{(1,2)S_{\beta}}\}$$

Theorem 3.6. For a space X, the following hold:

(i)
$$\tau^{(1,2)S_{\beta}} = \{B : B \subseteq X, Int^{(1,2)S_{\beta}}(B) = B\}.$$

(ii) $(1,2)S_{\beta}O(X) \subseteq D^{(1,2)S_{\beta}} \subseteq \rho^{(1,2)S_{\beta}}.$
(iii) $(1,2)S_{\beta}CL(X) \subseteq D^{(1,2)S_{\beta}} \subseteq \tau^{(1,2)S_{\beta}}.$

- *Proof.* (i) Let $A \subseteq X$. Then $A \in \tau^{(1,2)S_{\beta}}$ if and only if $C^{(1,2)S_{\beta}}(A^c) = A^c$. By proposition 2.3, $C^{(1,2)S_{\beta}}(A^c) = [Int^{(1,2)S_{\beta}}(A)]^c = A^c$, which implies $Int^{(1,2)S_{\beta}}(A) = A$ and so $A \in \tau^{(1,2)S_{\beta}}$.
- (ii) Let $B \in (1, 2)S_{\beta}O(X)$. Then B is a $\bigwedge_{(1,2)S_{\beta}}$ -set and by remark 1.12, B is a g. $\bigwedge_{(1,2)S_{\beta}}$ -set. So $B \in D^{(1,2)S_{\beta}}$. Then $C^{(1,2)S_{\beta}}(B) = B$ which implies $B \in \rho^{(1,2)S_{\beta}}$. Hence, $(1,2)S_{\beta}O(X) \subseteq D^{(1,2)S_{\beta}} \subseteq \rho^{(1,2)S_{\beta}}$.
- (iii) Let $B \in (1, 2)S_{\beta}CL(X)$. By remark 1.12, B is a g. $\bigvee_{(1,2)S_{\beta}}^{\vee}$ set. So $B \in D^{(1,2)S_{\beta}}$ and so $Int^{(1,2)S_{\beta}}(B) = B$, which implies $C^{(1,2)S_{\beta}}(B^c) = B^c$. So $B \in \tau^{(1,2)S_{\beta}}$. Hence $(1,2)S_{\beta}CL(X) \subseteq D^{(1,2)S_{\beta}} \subseteq \tau^{(1,2)S_{\beta}}$.

Proposition 3.7. If $(1, 2)S_{\beta}O(X) = \tau^{(1,2)S_{\beta}}$, then every singleton set $\{x\}$ of X is $\tau^{(1,2)S_{\beta}}$ - open.

Proof. Suppose, $\{x\}$ is not $(1, 2)S_{\beta}$ -open, By proposition

1.13,
$$\{x\}^c$$
 is a g. $\bigwedge_{(1,2)S_\beta}$ -set and so $x \in \tau^{(1,2)S_\beta}$. If $\{x\}$ is (1,

2) S_{β} -open, then by assumption, $\{x\} \in \tau^{(1,2)S_{\beta}}$.

Proposition 3.8. Let X be a bitopological space. Then,

(i) if $(1, 2)S_{\beta}CL(X) = \tau^{(1,2)S_{\beta}}$, then every $g_{(1,2)S_{\beta}}$ -set of X is $(1, 2)S_{\beta}$ -open.

(i) if every g.
$$\bigwedge_{(1,2)S_{\beta}}$$
-set of X is $(1, 2)S_{\beta}$ -open, then $\tau^{(1,2)S_{\beta}} = \{B: B \subseteq X, B = B^{(1,2)S_{\beta}}\}.$

- *Proof.* (i) Let *B* be a g. $\bigwedge_{(1,2)S_{\beta}}$ -set of X. Then $B \in D^{(1,2)S_{\beta}}$ and by theorem 2.6, $B \in \rho^{(1,2)S_{\beta}}$ and so $B^c \in \tau^{(1,2)S_{\beta}}$. By assumption, $B^c \in (1, 2)S_{\beta}CL(X)$. Hence $B \in (1, 2)S_{\beta}O(X)$.
 - (ii) Let $A \subseteq X$ and $A \in \tau^{(1,2)S_{\beta}}$. Then $C^{(1,2)S_{\beta}}(A^c) = A^c = \bigcap \{G : A^c \subseteq G \text{ and } G \in D^{(1,2)S_{\beta}} \} = \bigcap \{G : A^c \subseteq GandG \in (1, 2)S_{\beta}O(X)\}$. (by assumption) = $(A^c)^{(1,2)S_{\beta}}$. Then by proposition 1.10, $A^c = (A^c)^{(1,2)S_{\beta}} = X A^{(1,2)S_{\beta}}$. So we get $A = A^{(1,2)S_{\beta}}$. That is, $A \in \tau^{(1,2)S_{\beta}} = \{B : B \subseteq X \text{ and } B = B^{(1,2)S_{\beta}} \}$.

Remark 3.9. From definitions 1.9, 2.1 and theorem 2.6, we have that $(1, 2)S_{\beta}CL(X) \subseteq \bigvee_{(1,2)S_{\beta}} O(X) \subseteq D^{(1,2)S_{\beta}} \subseteq \tau^{(1,2)S_{\beta}}$.

4. Conclusion

In this work, we have defined a new closure operator of $\bigwedge_{(1,2)S_{\beta}}$

set and generated $\tau^{(1,2)S_{\beta}}$, $\rho^{(1,2)S_{\beta}}$ using $(1,2)S_{\beta}$ - open sets in bitopological spaces and studied some of their properties. Also, these findings will help to carry out more theoretical research for future researchers.

References

[1] Alias B.Khalaf, Nehmat K.Ahmed,: S_β-open sets and S_β-continuity in topological spaces, *Thai Journal of Mathematics*, 11(2)(2013), 319-335.

- [2] Ameen,Z.A.: A New Class of Semi-open sets in topological spaces, *M.Sc., Thesis, College of Science, Dohuk Univ*, 2007.
- [3] Andrijevic, D.: Semi-pre open sets Mat. Vesnik, 38(1)(1986), 24-32.
- Fututake, T.: On generalized closed sets in Bitopological Spaces, *Bul. Fakuoka Univ. Edn.* 35, Part III (1985), 19-28.
- [5] Kelly, J, C., Bitopological spaces proc. London Math. Soc., 13(3)(1963), 71-89.
- [6] Lellis Thivagar, M.: Generalization of (1,2)α-continuous functions, *Pure and Applied Mathematicka Sciences*, 28(1991), 55-63.
- [7] Maki, H.: Generalized A-sets and the associated closure operator, in the special issue in commemoration of *Prof.kazusada Ikeda's, Retirement*, (1986), 139-146.
- [8] Navalagi, G, Lellis Thivagar, M And Raja Rajeswari, R. : On some extension of semi-pre open sets in Bitopological spaces, *Mathematical Forum vol XVII*, (2004-2005), 63-75.
- [9] Subprabha, V, Durgadevi, N.: A New Approach to (1, 2)Semipre-open sets in Bitopological Spaces, SSRG-International Journal of Mathematics Trends and Technology (SSRG-IJMTT), ISSN: 2231-5373 (58-61).
- ^[10] Subprabha, V, Infant Vijula, P, T, Durgadevi, N.: New forms of open and closed sets using $(1,2)S_\beta$ -Open sets in bitopological spaces, *Malaya Journal of Matematik*, 9(1)(2021), 1040-1042.

******* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

