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1. Introduction
In the year 1963, Kelly initiated the systematic study of
bitopology which is a triple (X ,τ,σ), where X is a non-empty
set together with two distinct topologies τ , σ on X . Levine
introduced the notion of semi-open sets and their properties in
1963. In 1983, Abd-El-monsef introduced β -open sets and β -
continuity in topological spaces. In 2013, Alias B.Khalaf and
Nehmat K.Ahmed introduced and defined a class of semi-open
sets called Sβ -open sets in topological spaces. Andrijevic in-
troduced a class of generalized open sets in topological spaces.
In 1986, Maki introduced some forms of open and closed sets
known as ∧-sets and ∨-sets The aim of this paper is to define

a new closure operator of ∧
(1,2)Sβ

- set and to generate τ

∧
(1,2)S

β ,

ρ

∧
(1,2)S

β using (1,2)Sβ - open sets in bitopological spaces and
study some of their properties.

2. Preliminaries
Definition 2.1 ([6]). Let A be a subset of a bitopological
space (X, τ1, τ2). Then A is said to be

(i) τ1τ2-open if A ∈ τ1 ∪ τ2,

(ii) τ1τ2-closed if Ac ∈ τ1 ∪ τ2,

(iii) (1, 2)β -open if A ⊆ τ1τ2− cl(τ1− int(τ1τ2− cl(A))),
where τ1-Int(A) is the interior of A with respect to the
topology τ1 and τ1τ2-Cl(A) is the intersection of all
τ1τ2-closed sets containing A.

(iv) (1, 2)β -Int(A) is the union of all (1, 2)β -open sets con-
tained in A.

(v) (1, 2)β -Cl(A) is the intersection of all (1, 2)β -closed
sets containing A.
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Definition 2.2 ([6]). A subset A of X is said to be

(i) (1, 2)semi-open if A⊆ τ1τ2-Cl(τ1− Int(A)),

(ii) (1, 2)regular-open if A = τ1-Int(τ1τ2−Cl(A)),

(iii) (1, 2)β -open if A⊆ τ1τ2-Cl(τ1-Int(τ1τ2-Cl(A))).

The set of all (1, 2)semi-open, (1, 2)regular-open, (1, 2)β -
open are denoted as (1, 2)SO(X ,τ1,τ2), (1, 2)RO(X ,τ1,τ2),
(1, 2)βO(X ,τ1,τ2) or simply (1, 2)SO(X), (1, 2)RO(X), (1,
2)β O(X) respectively.

Definition 2.3 ([4]). A subset A of X is said to be

(i) (1, 2)semi-closed if τ1τ2-Int(τ1-Cl(A))⊆ A.

(ii) (1, 2)regular-closed if A = τ1-Cl(τ1τ2-Int(A))

(iii) (1, 2)β - closed if τ1τ2-Int(τ1−Cl(τ1τ2-Int(A)))⊆ A.

The set of all (1, 2)semi-closed, (1, 2)regular-closed, (1,
2)β -closed are denoted as (1, 2)SCL(X ,τ1,τ2), (1, 2)RCL
(X ,τ1,τ2), (1, 2)βCL(X ,τ1,τ2) or simply (1, 2)SCL(X), (1,
2)RCL(X), (1, 2)βCL(X) respectively.

Remark 2.4 ([6]). For any subset A of X,

(i) τ1-Int(A)⊆ τ1τ2-Int(A) and τ2-Int(A)⊆ τ1τ2-Int(A).

(ii) τ1τ2-Cl(A)⊆ τ1-Cl(A) and τ1τ2-Cl(A)⊆ τ2-Cl(A).

(iii) τ1τ2-Cl(A∩B)⊆ τ1τ2-Cl(A)∩ τ1τ2-Cl(B).

(iv) τ1τ2-Int(A)∪ τ1τ2-Int(B)⊆ τ1τ2-Int(A∪B).

Theorem 2.5 ([1]). Let (X ,τ1,τ2) be a bitopological space.
If A ∈ τ1 and B ∈ (1, 2)SO(X), then A∩B ∈ (1, 2)SO(X).

Theorem 2.6 ([1]). Let A⊂Y ⊂ (X ,τ1,τ2) and if A is τi-semi
open in X, then A is τi-semi open in Y .

Definition 2.7 ([9]). A (1, 2)semi-open subset A of a bitopo-
logical space (X ,τ1,τ2) is said to be (1, 2)Sβ - open if for each
x ∈ A there exists a (1, 2)β - closed set F such that x ∈ F ⊆ A.

Definition 2.8 ([10]). In a bitopological space X, a subset

B of X is said to be (1, 2)Sβ -∧-set ( ∧
(1,2)Sβ

-set) if B = B
∧

(1,2)S
β ,

where B
∧

(1,2)S
β = ∩{G/G⊇ B and G ∈ (1, 2)Sβ -O(X)}.

Definition 2.9 ([10]). In a bitopological space X, a subset

B of X is said to be (1, 2)Sβ -∨-set ( ∨
(1,2)Sβ

-set) if B = B
∨

(1,2)S
β ,

where B
∨

(1,2)S
β = ∪{F/F ⊆ B and F ∈ (1, 2)Sβ CL(X).

Proposition 2.10 ([10]). Let A and B be two subsets of a
bitopological space X. Then the following properties are hold.

(i) B⊆ B
∧

(1,2)S
β .

(ii) B
∨

(1,2)S
β ⊆ B.

(iii) If A⊆ B, then A
∧

(1,2)S
β ⊆ B

∧
(1,2)S

β .

(iv) (B
∧

(1,2)S
β )

∧
(1,2)S

β = B
∧

(1,2)S
β .

(v) If A ∈ (1, 2)Sβ O(X), then A = A
∧

(1,2)S
β .

(vi) (Bc)
∧

(1,2)S
β = (B

∨
(1,2)S

β )c , (i.e)(X–B)
∧

(1,2)S
β = X –B

∨
(1,2)S

β

Definition 2.11 ([10]). In a bitopological space X, a subset
B is called

(i) generalized ∧
(1,2)Sβ

-set (briefly g. ∧
(1,2)Sβ

-set) of X if B
∧

(1,2)S
β ⊆

F whenever B⊆ F and F ∈ (1,2)SβCL(X). The family

of all g. ∧
(1,2)Sβ

-sets of X is denoted as D
∧

(1,2)S
β (X).

(ii) generalized ∨
(1,2)Sβ

-set (briefly g. ∨
(1,2)Sβ

-set) of X if Bc

is a g. ∧
(1,2)Sβ

-set. The family of all g. ∨
(1,2)Sβ

-set of X is

denoted as D
∨

(1,2)S
β (X).

Remark 2.12 ([10]). In a bitopological space X, every ∧
(1,2)Sβ

-

set is g. ∧
(1,2)Sβ

-set and every ∨
(1,2)Sβ

- set is g. ∨
(1,2)Sβ

-set.

Proposition 2.13 ([10]). Let (X, τ1, τ2) be a bitopological
space. Then the following properties hold:

(i) If Bi ∈ D
∧

(1,2)S
β for all i ∈ I, then

⋃
i∈I

Bi ∈ D
∧

(1,2)S
β .

(ii) If Bi ∈ D
∨

(1,2)S
β for all i ∈ I, then

⋂
i∈I

Bi ∈ D
∨

(1,2)S
β .

Proposition 2.14 ([10]). Let X be a bitopological space .Then

(i) for each x ∈ X, either {x} is a (1, 2)Sβ -open or {x}c is
g. ∧
(1,2)Sβ

-set.

(ii) for each x ∈ X, either {x} is a (1, 2)Sβ -open or {x} is
g. ∨
(1,2)Sβ

-set.

3. A New Closure Operator C
∧

(1,2)S
β

Definition 3.1. For any subset B of a bitopological space X,

we define C
∧

(1,2)S
β (B) = ∩{G : B ⊆ G and G ∈ D

∧
(1,2)S

β } and

Int
∨

(1,2)S
β (B) = ∪{F : F ⊆ B and F ∈ D

∨
(1,2)S

β .
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Example 3.2. Let X = {a, b,c,d} with two topologies τ1=
{φ , X, {a}, {b}, {a, b} }, τ2 = {φ , X, {b,c,d} }. Then (1,
2) Sβ O(X) = {φ , X, {a}, {b,c,d} } and (1, 2) Sβ CL(X) =
{φ , X, {b,c,d}, {a} }. Now, ∧

(1,2)Sβ

O(X) = {φ , X, {a}} and

D
∧

(1,2)S
β = {φ , X, {a}, {a,b}, {a,c}, {a,d}, {a, b, c}, {a, b, d},

{a, c, d }}, D
∨

(1,2)S
β = {φ , X, {b}, {c}, {d}, {b, c}, {b, d},

{c, d}, {b, c, d }}. Then C
∧

(1,2)S
β (X)= {φ , X, {a}, {b}, {a,b},

{a,c}, {a,d}, {a, b, c}, {a, b, d},

{a, c, d }} and Int
∧

(1,2)S
β (X) = {φ , X, {b}, {c}, {d}, {b, c}, {b,

d}, {c, d}, {b, c, d }}.

Proposition 3.3. Let A and B be subsets of a bitopological
space X. Then,

(i) C
∧

(1,2)S
β (Bc) =(Int

∨
(1,2)S

β (B))c

(ii) if A⊆ B, then C
∧

(1,2)S
β (A)⊆C

∧
(1,2)S

β (B).

(iii) if B is a g. ∧
(1,2)Sβ

-set, then C
∧

(1,2)S
β (B) = B.

(iv) if B is a g. ∨
(1,2)Sβ

-set, then Int
∨

(1,2)S
β (B) = B.

Proof. From Definitions 1.11 and 2.1.

Theorem 3.4. C
∧

(1,2)S
β is a Kuratowski’s closure operator.

Proof. (i) C
∧

(1,2)S
β (φ) = φ is obvious.

(ii) A⊂C
∧

(1,2)S
β (A) is true from the definition 2.1.

(iii) Now to prove C
∧

(1,2)S
β (A∪B) = C

∧
(1,2)S

β (A) ∪C
∧

(1,2)S
β (B).

Suppose, there exists a point x ∈ X such that x /∈C
∧

(1,2)S
β

(A∪ B). Then there exists a subset G ∈ D
∧

(1,2)S
β such that

A∪B⊆ G and x /∈ G. Then A⊆ G, B⊆ G and x /∈ G, which

implies x /∈ C
∧

(1,2)S
β (A) and x /∈ C

∧
(1,2)S

β (B). So, C
∧

(1,2)S
β (A) ∪

C
∧

(1,2)S
β (B) ⊆C

∧
(1,2)S

β (A∪B).

Conversely, suppose that there exists a point x ∈ X such

that the closure operator x /∈ (C
∧

(1,2)S
β (A) ∪C

∧
(1,2)S

β (B)). Then

there exists two sets G1 and G2 in D
∧

(1,2)S
β such that A⊆G1 and

B⊆ G2 but x /∈ G1 and x /∈ G2. Now, let G = G1∪G2. Then

by proposition 1.14, G ∈ D
∧

(1,2)S
β . Then A∪B⊆ G and x /∈ G

and so x /∈ C
∧

(1,2)S
β (A∪B). Then C

∧
(1,2)S

β (A∪B) ⊆C
∧

(1,2)S
β (A)

∪C
∧

(1,2)S
β (B).

(iv) To prove C
∧

(1,2)S
β (C

∧
(1,2)S

β (B)) = C
∧

(1,2)S
β (B).

Suppose, there exists a point x∈X such that x /∈C
∧

(1,2)S
β (B).

Then there exists a U ∈ D
∧

(1,2)S
β such that x /∈ U and B ⊆

U . By proposition 2.3, C
∧

(1,2)S
β (B) ⊆ C

∧
(1,2)S

β (U) = U . Thus,

we have x /∈ C
∧

(1,2)S
β (C

∧
(1,2)S

β (B)). Hence C
∧

(1,2)S
β (C

∧
(1,2)S

β (B))

⊆ C
∧

(1,2)S
β (B). Also by (ii), C

∧
(1,2)S

β (B) ⊆ C
∧

(1,2)S
β (C

∧
(1,2)S

β (B)).

Therefore, C
∧

(1,2)S
β (C

∧
(1,2)S

β (B)) = C
∧

(1,2)S
β (B).

Definition 3.5. Let τ

∧
(1,2)S

β be a bitopological space generated

by C
∧

(1,2)S
β in the usual manner. Then,

(i) τ

∧
(1,2)S

β = {B : B⊆ X ,C
∧

(1,2)S
β (Bc) = Bc}. Here we also

define another family of subsets,

(ii) ρ

∧
(1,2)S

β = {B : C
∧

(1,2)S
β (B) = (B)} and we can also define

that

(iii) ρ

∧
(1,2)S

β = {B : Bc ∈ τ

∧
(1,2)S

β }

Theorem 3.6. For a space X, the following hold:

(i) τ

∧
(1,2)S

β = {B : B⊆ X , Int
∨

(1,2)S
β (B) = B}.

(ii) (1, 2)Sβ O(X)⊆ D
∧

(1,2)S
β ⊆ ρ

∧
(1,2)S

β .

(iii) (1, 2)Sβ CL(X)⊆ D
∨

(1,2)S
β ⊆ τ

∧
(1,2)S

β .

Proof. (i) Let A ⊆ X . Then A ∈ τ

∧
(1,2)S

β if and only if

C
∧

(1,2)S
β (Ac) = Ac}. By proposition 2.3, C

∧
(1,2)S

β (Ac) =

[Int
∨

(1,2)S
β (A)]c =Ac, which implies Int

∧
(1,2)S

β (A)=A and

so A ∈ τ

∧
(1,2)S

β .

(ii) Let B ∈ (1, 2)Sβ O(X). Then B is a ∧
(1,2)Sβ

-set and by

remark 1.12, B is a g. ∧
(1,2)Sβ

-set. So B ∈ D
∧

(1,2)S
β . Then

C
∧

(1,2)S
β (B) = B which implies B ∈ ρ

∧
(1,2)S

β .

Hence, (1,2)Sβ O(X)⊆ D
∧

(1,2)S
β ⊆ ρ

∧
(1,2)S

β .

(iii) Let B ∈ (1, 2)Sβ CL(X). By remark 1.12, B is a g. ∨
(1,2)Sβ

-

set. So B ∈ D
∨

(1,2)S
β and so Int

∨
(1,2)S

β (B) = B, which im-

plies C
∧

(1,2)S
β (Bc) = Bc. So B ∈ τ

∧
(1,2)S

β .

Hence (1,2)SβCL(X)⊆ D
∨

(1,2)S
β ⊆ τ

∧
(1,2)S

β .
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Proposition 3.7. If (1, 2)Sβ O(X) = τ

∧
(1,2)S

β , then every single-

ton set {x} of X is τ

∧
(1,2)S

β - open.

Proof. Suppose, {x} is not (1, 2)Sβ -open, By proposition

1.13, {x}c is a g. ∧
(1,2)Sβ

-set and so x ∈ τ

∧
(1,2)S

β . If {x} is (1,

2)Sβ -open, then by assumption, {x} ∈ τ

∧
(1,2)S

β .

Proposition 3.8. Let X be a bitopological space. Then,

(i) if (1, 2)SβCL(X) = τ

∧
(1,2)S

β , then every g. ∧
(1,2)Sβ

-set of X

is (1, 2)Sβ -open.

(i) if every g. ∧
(1,2)Sβ

-set of X is (1, 2)Sβ -open, then τ

∧
(1,2)S

β =

{B : B⊆ X ,B = B
∧

(1,2)S
β }.

Proof. (i) Let B be a g. ∧
(1,2)Sβ

-set of X. Then B ∈ D
∧

(1,2)S
β

and by theorem 2.6, B ∈ ρ

∧
(1,2)S

β and so Bc ∈ τ

∧
(1,2)S

β .
By assumption, Bc ∈ (1, 2)SβCL(X). Hence B ∈ (1,
2)Sβ O(X).

(ii) Let A ⊆ X and A ∈ τ

∧
(1,2)S

β . Then C
∧

(1,2)S
β (Ac) = Ac =

∩{G : Ac ⊆G and G∈D
∧

(1,2)S
β } = ∩{G : Ac ⊆GandG∈

(1, 2)Sβ O(X)}.(by assumption) = (Ac)
∧

(1,2)S
β . Then by

proposition 1.10, Ac = (Ac)
∧

(1,2)S
β = X–A

∨
(1,2)S

β . So we

get A = A
∨

(1,2)S
β . That is, A ∈ τ

∧
(1,2)S

β = {B : B ⊆ X and

B = B
∨

(1,2)S
β }.

Remark 3.9. From definitions 1.9, 2.1 and theorem 2.6, we

have that (1, 2)SβCL(X)⊆ ∨
(1,2)Sβ

O(X)⊆ D
∨

(1,2)S
β ⊆ τ

∧
(1,2)S

β .

4. Conclusion
In this work, we have defined a new closure operator of ∧

(1,2)Sβ

-

set and generated τ

∧
(1,2)S

β , ρ

∧
(1,2)S

β using (1,2)Sβ - open sets
in bitopological spaces and studied some of their properties.
Also, these findings will help to carry out more theoretical
research for future researchers.
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