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(a,d)-distance antimagic labeling for some regular
graphs
N. P. Shrimali1* and A. K. Rathod2

Abstract
Let G = (V,E) be a graph of order n. Let f : V (G)−→ {1,2,3, ...,n} be a bijective function. For every vertex v in
G, we define its weight w(v) as the sum ∑

u∈N(v)
f (u), where N(v) is the open neighborhood of v. If the set of all

vertex weights forms an arithmetic progression {a,a+d,a+2d, . . . ,a+(n−1)d}, then f is called (a,d)-distance
antimagic labeling and the graph G is called (a,d)-distance antimagic graph. In this paper we prove circulant
graph Circ(2n,{1,n}) for odd n and nK2n+1 for odd n are (a,d)-distance antimagic graphs. We also give some
necessary conditions for mKn to be (a,d)-distance antimagic graph for d = 2k, where k is some positive integer.
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1. Introduction and Definitions
By a graph G we mean simple, finite, and connected graph
with V as vertex set and E as edge set respectively. For the
graph theoretical terminology and notations, we refer to Gross
and Yellen[2]. Throughout the paper, N(v) denotes an open
neighborhood of a vertex v.

Definition 1.1. Let G be a graph of order n. A bijective
function f : V (G) −→ {1,2,3, ...,n} is said to be distance
magic labeling if there is a constant k such that ∑

u∈N(v)
f (u) = k

for every vertex v in V . The constant k is called magic constant
of the labeling f .

The concept of distance magic labeling was introduced
by many researchers under the different names [7], [8], [9].
For more details about distance magic labeling reader may

refer to the Gallian survey [1]. A distance antimagic la-
beling is a natural variant of distance magic labeling. Aru-
mugam and Kamatchi[3] observed that set of all vertex weight{

n(n+1)
2

− k− i|1≤ i≤ n
}

of Gc is in arithmetic progres-

sion if G is distance magic graph of order n with magic
constant k. So, they motivated to introduce (a,d)-distance
antimagic labeling.

Definition 1.2. Let G be a graph of order n. A bijective
function f : V (G) −→ {1,2,3, ...,n} is said to be an (a,d)-
distance antimagic labeling if the set of all vertex weights is
{a,a+ d,a+ 2d, . . . ,a+(n− 1)d}, where a and d are fixed
positive integers and G is called (a,d)-distance antimagic
graph.

Arumugam and Kamatchi[3] investigate (a,d)-distance
antimagic labeling for Cn and Cn×K2. In [4], R. Simanjuntak
and K. Wijaya proved: Wheel graph Wn is (a, d)-distance
antimagic if and only if 3≤ n≤ 5; the fan graph Fn = Pn×K1
is (a, d)-distance antimagic if and only if n = 2 or n = 4; the
friendship graph fn is (a, d)-distance antimagic if and only if
n = 1 or n = 2. In [5], M. Nalliah proved that graph mCn is
(a, d)-distance antimagic if and only if mn is odd and d = 1;
the path Pn of order upto 15 except n = 3,4 and 5 is (a, d)-
distance antimagic. Patel and Vasava[6] proved that circulant
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graph Circ(2n,1,n) is (2n+ 2,1)-distance antimagic for all
even n; mK2n is (n(2mn−2m+1),1)-distance antimagic for
all m and n . They also proved that 2K2n+1, the Helm graph
Hn, the book graph Bn and the graph Kn�K1 are not (a, d)-
distance antimagic. In this paper we show that circulant graph
Circ(2n,{1,n}) is (2n+2,1)-distance antimagic for all odd

n and nK2n+1 is
(

4n3 +n+1
2

,1
)

-distance antimagic for all

odd n. We give some necessary conditions for mKn to be a
(a,d)-distance antimagic for even values of d.

2. Main Results
Definition 2.1. Let s1,s2, . . . ,sm,n be positive integers such
that 1 ≤ s1 < s2 < ... < sm < n. Then the circulant graph
Circ(n,s1,s2, ...,sm) is the graph with vertex set {v1,v2, ...,vn}
and whose edges are of the type vivi+s j for i = 1,2, ...,n, j =
1,2, ...,m; where i+ s j is taken modulo n.

Patel and Vasava[6] proved that the circulant graph Circ(
2n,{1,n}) is (2n + 2,1)-distance antimagic for all even n.
Here, we prove it is also (2n+2,1)-distance antimagic for all
odd n.

Theorem 2.2. The circulant graph Circ(2n,{1,n}) is (2n+
2,1)-distance antimagic for all odd n.

Proof. Let G denote the graph Circ(2n,{1,n}) where n is odd.
Let u1,u2, . . . ,u2n be the vertices of the graph G. We define
f : V (G)−→ {1,2,3, ...,2n} as follows.

f (ui) =



i+1
2

, i is odd ,1≤ i≤ n
5n+1

2
− i+1

2
, i is odd ,n+2≤ i≤ 2n−3

2n, i = 2n−1
n+1

2
+

i
2
, i is even ,2≤ i≤ n−3

2n− i
2
, i is even ,n−1≤ i≤ 2n

Vertex weights are given by

w(ui)=



3n+1, i = 1
5n+3

2
+

i−1
2

, i = 3,5,7, . . . ,n−4
7n+1

2
, i = n−2

4n, i = n

4n− i−1
2

, i = n+2,n+4,n+6, . . . ,2n−3
7n+3

2
, i = 2n−1

2n+1+
i
2
, i = 2,4,6, . . . ,n−3

3n, i = n−1
5n+1

2
, i = n+1

9n+1
2
− i

2
, i = n+3,n+5, . . . ,2n−4

4n+1, i = 2n−2
5n+3

2
, i = 2n

Here, all the weights are in arithmetic progression with d =
1 in following sequence, w(u2),w(u4),w(u6), . . . ,w(un−3),
w(un+1),w(u2n),w(u3),w(u5),w(u7), . . . ,w(un−4),w(un−1),
w(u1), w(u2n−3),w(u2n−1), . . . ,w(un+2),w(un−2),w(u2n−1),
w(u2n−4),w(u2n−2), . . . ,w(un+3),w(un),w(u2n−4).

Hence the graph Circ(2n,{1,n}) is (2n+ 2,1)-distance
antimagic for all odd n.

Illustration 1. (28,1)-distance antimagic labeling of
Circ(26,{1,13}) is shown in Figure 1. In this figure the
vertex label indicated in the usual font and its weight in the
bold font.

Figure 1. (28,1)-distance antimagic labeling of
Circ(26,{1,13}).

Theorem 2.3. The graph nK2n+1 is
(

4n3 +n+1
2

,1
)

-distance

antimagic for all odd n.

Proof. Let G= nK2n+1, where n is odd. Let u j
1,u

j
2,u

j
3, . . . ,u

j
2n+1

be the vertices of jth copy of K2n+1 for j = 1,2, . . . ,n. First
we define two functions δl(m) and ∆l(m) as follows.

δl(m) =

{
0, l < m
1, l ≥ m

∆l(m) =

{
1, l ≤ m
0, l > m

Now we define f : V (G)−→
{

1,2,3, ...,2n2 +n
}

as follows.
f (u j

1) = j,1≤ j ≤ n
f (u j

i ) = j+(n+1)(i−1),2≤ i≤ n, j = 1
f (u j

i ) = j + (n+ 1)(i− 1),2 ≤ i ≤ n,2 ≤ j ≤ n− 1 where
i 6= n+2− j, j = 2,3, . . . ,n−1
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f (u j
i )= n(n−1)+1−n(n−i), i= n+2− j, j = 2,3, . . . ,n−

1

f (u j
i ) =


n2 +

n+3
2
− j+1

2
, j is odd

n(n+1)+1− j
2
, j is even

i = n+1

f (u j
i ) =


n(n+2)+1− j+1

2
, j is odd

n(n+1)+
n+1

2
− j

2
, j is even

i = n+2

f (u j
i ) = (n+1)2+(i−n−3)(n+1), n+3≤ i≤ 2n+3, j =

1
f (u j

i )= (n+1)2+(n+1− j)+∆n+3+ j(i)+δn+2+ j(i)(i−n−
3)(n+ 1)+∆n+3+ j(i)(i− n− 4)(n+ 1), n+ 4 ≤ i ≤ 2n+ 3,
where i 6= n+2+ j, for j = 2,3, . . . ,n−1
f (u j

i ) = (n+1)2 +n+n( j−2), i = n+2+ j,2≤ j ≤ n−1
f (u j

i ) = (n+ 1)2 + 1+ (i− n− 3)(n+ 1),n+ 3 ≤ i ≤ 2n+
3, j = n
In the graph G,

2n2+n

∑
i=1

f (u j
i ) =

4n4 +4n3 +3n2 +n
2

So, weight of u j
i is given by w j

i =
4n3 +4n2 +3n+1

2
− f (u j

i ),

which is in arithmetic progression with a =
4n3 +n+1

2
and

d = 1.

Hence, nK2n+1 is
(

4n3 +n+1
2

,1
)

-distance antimagic for all

odd n.

Theorem 2.4. For even value of d, the graph mKn is not
(a,d)-distance antimagic if m is odd.

Proof. Let G = mKn and d = 2k for some positive integer k.
Suppose m is any odd number.
Since d is even, all the weights in graph G are either even
or odd. Therefore, the labels of the vertices in each copy
of Kn are either all even or all odd. For, if there is a copy
of Kn having vertices with even labels and vertices with odd
labels together, then in this copy there are some vertices with
even weights and some vertices with odd weights which is not
possible.
In the graph G, there are dmn

2 e vertices with odd labels and
bmn

2 c vertices with even labels. After labeling mn vertices
by keeping parity of labels of vertices in each copy, there

must be
m−1

2
copies having vertices with even labels and

m−1
2

copies having vertices with odd labels as m is odd
number. Hence the remaining one copy of must contains
vertices having even labels as well as vertices having odd
labels, which is not possible. Hence, G is not (a,d)-distance
antimagic for d = 2k if m is odd.

In [3], Arumugam and Kamatchi observed that every r regular
(a,d)-distance antimagic graph with cardinality v satisfies the

equation

2a+(v−1)d = r(v+1) (2.1)

Theorem 2.5. For even value of d, the graph mKn is not
(a,d)-distance antimagic if n is even.

Proof. Let G = mKn and d = 2k for some positive integer
k. If m is odd then by Theorem 2.4, G is not (a,d)-distance
antimagic.
So, we assume m is even. Let n be any even number. For G,
|V (G)|= mn and r = n−1. So, Equation 2.1 becomes

2a+(mn−1)(2k) = (n−1)(mn+1)
⇒ 2a+2kmn−2k = mn2 +n−mn−1
⇒ 2a = mn2− (2k+1)mn+n+2k−1

⇒ a =
mn2− (2k+1)mn

2
+

n+2k−1
2

Since n is even, a can not be an integer. It follows that G is
not (a,d)-distance antimagic.

Theorem 2.6. For even value of d, the graph mKn is not
(a,d)-distance antimagic if a is odd.

Proof. Let a be any odd integer. If possible suppose G = mKn
is (a,d)-distance antimagic for d = 2k where k is positive
integer. So by Theorems 2.4 and 2.5, m must be even and n
must be odd.
Since a is odd integer and d = 2k, all the weights in the graph
G are odd. As per the reason given in Theorem 2.4, there
does not exist any copy having vertices with even labels as
well as vertices with odd labels. Since m is even, there are
m
2

copies with even labeled vertices and
m
2

copies with odd
labeled vertices. But then vertex weights of copies of Kn with
even labeled vertices must be even which is a contradiction
to the fact that all the vertex weights in G are odd. Therefore,
the graph mKn is not (a,d)-distance antimagic for even d if a
is odd.

Note: From Theorems 2.4, 2.5 and 2.6, it follows that if the
graph mKn is (a,d)-distance antimagic for even value of d
then m is even, n is odd and a is even integers.

Theorem 2.7. If the graph mKn is (a,d)-distance antimagic
for d = 2k where k is some positive integer, then
(i) n 6≡ 1(mod 4) and d 6≡ 2(mod 4)
(ii) n 6≡ 3(mod 4) and d 6≡ 0(mod 4)

Proof. Let graph G = mKn be (a,d)-distance antimagic for
d = 2k. Then by Theorems 2.4 and 2.6, m and a are even
numbers and

a =
mn2− (2k+1)mn

2
+

n+2k−1
2

(i) If possible suppose n≡ 1(mod 4) and d ≡ 2(mod 4). Let
n = 4q+1 and d = 2k = 4p+2, where p and q are integers.
So, we have
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a =
m(4q+1)2− (4p+3)m(4q+1)

2
+

4q+1+4p+1
2

Since (4q+1)2 = 4t +1 for some integer t and (4q+1)(4p+
3) = 4s+1 for some integer s, a can be written as

a =
m(4t +1)−m(4s+3)

2
+

4(p+q)+2
2

⇒ a =
m(4t−4s−2)

2
+2(p+q)+1

⇒ a = m(2t−2s−1)+2(p+q)+1

This shows that, if m is even integer then a is odd integer
which is not possible. So, our assumptions is wrong.
Therefore, n 6≡ 1(mod 4) and d 6≡ 2(mod 4).
(ii) If possible suppose n≡ 3(mod 4) and d ≡ 0(mod 4). Let
n = 4q+3 and d = 2k = 4p, where p and q are integers. So,
we have

a =
m(4q+3)2− (4p+1)m(4q+3)

2
+

4q+3+4p−1
2

Since (4q+3)2 = 4t +1 for some integer t and (4q+1)(4p+
3) = 4s+3 for some integer s, a can be written as

a =
m(4t +1)−m(4s+3)

2
+

4(p+q)+2
2

⇒ a =
m(4t−4s−2)

2
+2(p+q)+1

⇒ a = m(2t−2s−1)+2(p+q)+1

This shows that, if m is even integer then a is odd integer which
is not possible. So, our assumptions is wrong. Therefore, n 6≡ 3(
mod 4) and d 6≡ 0(mod 4).

Theorem 2.8. For d = 4, the graph mKn is not (a,d)-distance
antimagic if m≡ 2(mod 4) .

Proof. Let G = mKn and m≡ 2(mod 4). If possible suppose
G is a (a,d)-distance antimagic graph for d = 4. Then by
Theorems 2.5 and 2.6, n is odd and a is even.
Since d = 4 and a is even, for all the weights wi in the graph
G, either wi ≡ 0(mod 4) or wi ≡ 2(mod 4). By theorem 2.7,
n≡ 1(mod 4). Hence, |V (G)|= mn = 4s+2 for some integer
s. It is clear that there are 2s+ 1 vertices with even labels
and 2s+1 vertices with odd labels. As per the reason given
in Theorem 2.4, there are exactly

m
2

copies of Kn having

even labels of vertices and exactly
m
2

copies of Kn having

odd labels of vertices. Now we focus on
m
2

copies of Kn

having only even labels of vertices. Since m ≡ 2(mod 4),
m
2

is an odd number. Let
m
2

= 2t + 1 for some integer t.
Observe that among 2t + 1 copies there is no copy of Kn
having vertices with labels congruent to 0 mod 4 as well as
no vertices with labels congruent to 2 mod 4. For, if there

exists such a copy then it contains both the types of weights
which is not possible. Now the number of vertices of 2t +1
copies of Kn are (2t +1)n. After labeling (2t +1)n vertices
by keeping parity of labels of vertices in a copy, there must
be t copies having vertices with labels congruent to 0 mod 4
and t copies having vertices with labels congruent to 2 mod
4. Remaining one copy of Kn must contain both the types
of vertices and hence it contains both the types of weights
wi that is, wi ≡ 0(mod 4) and wi ≡ 2(mod 4) which gives a
contradiction. So, our assumption is wrong. Hence, G is not
(a,d)-distance antimagic if m≡ 2(mod 4).

3. Conclusion
Here, we have shown that circulant graph Circ(2n,{1,n})

is (a,d)-distance antimagic for all odd n and nK2n+1 is (a,d)-
distance antimagic for all odd n. we gave some necessary
conditions for mKn to be a (a,d)-distance antimagic for even
values of d. One can investigate sufficient conditions for mKn
to be a (a,d)-distance antimagic for even values of d.
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[8] K. Sugeng, D. Fronĉek, J. Ryan, M. Miller and J. Walker,
On distance magic labeling of graphs, Journal of Com-
binatorial Mathematics and Combinatorial Computing,
71(2009), 39-48.

1121



(a,d)-distance antimagic labeling for some regular graphs — 1122/1122

[9] M. Miller, C. Rodger and R. Simanjuntak, Distance
magic labeling of graphs, Australasian Journal of Combi-
natorics, 28(2003), 305-315.

?????????
ISSN(P):2319−3786

Malaya Journal of Matematik
ISSN(O):2321−5666

?????????

1122

http://www.malayajournal.org

	Introduction and Definitions
	Main Results
	Conclusion
	Acknowledgment
	References

