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Sharp sufficient conditions for oscillation of
second-order general noncanonical difference
equations

P. Gopalakrishnan'* and A. Murugesan 2

Abstract
We derive new oscillation conditions for the second-order noncanonical difference equation with deviating
argument of the form

A(r(§)(Ax(E)) +q(Ex* (6 +x) =05 & =&,

where v and ¢ are quotients of odd positive integers and « is an integer. Examples are provided to illustrate our
established results.
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Contents where A is called the forward difference operator and it is
_ given by Ax(§) =x(& +1) —x(&).
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1. Introduction (C3) s an integer;

Recently, there is a great attention to research the oscilla-  (C4) 7, 6 € { #: a and b are odd positive integers }.
tion and asymptotic behaviour of difference equations, one o '
may refer to [2, 5, 11, 16-18]. One may refer [1, 8, 9, 14] Let &y be a nonnegative integer that is fixed. A real se-

to the general theory of difference equations. Solutions to ~ quence {x(&)} deﬁped for & > mi’?{&)’ S +0o}and S?tiSﬁeS
second-order difference equations may have a variety of dy- the (1.- ) for & > & is calle.:d a SO]UUP“ of (I.1). A.“ osc1llat.0ry
namical behaviours. Here, we consider only sufficient condi- solution {x(&)} of (1.1) is a solution of (1.1) if K >0 is a

tions which ensures that the equation (1.1) is oscillatory. positive integer, then there exists an integer §>K with the
We investigate the second-order noncanonical difference ~ Property that x()x(& + 1) < 0. Otherwise {x(&)} is called
equations given by a nonoscillatory solution. If every solution of the equation

(1.1) are oscillatory, then the (1.1) said to be oscillatory” [12] .

A(r(E)AX(E))) +q(E)x0 (E+K)=0; & >&, (I1.1)
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We say that (1.1) is canonical if

©=Y
R = ;
s=& r7(s)

—oo as £ oo

and it is said to be noncanonical in the opposite case. We
define the sequence {¢ (&)} for noncanonical difference equa-
tion by

(1.2)

Li and Cheng [10], analyze the second-order difference
equation

Ap(E)(AX(E)) ) +a(E+1)f(¥(E+1))=0 £=0,1,2,....

(1.3)

where K is ratio of odd positive integers and derived conditions
which are sufficient for the oscillation of the above equation.

Zhang and Li [19], investigated the functional difference
equation of second-order with advanced argument

A(a(§)Ax(5)) +p(§)(x(g(5))) =0

and developed sufficient conditions for oscillations (1.4) under
the conditions

(1.4)

=

Peng et al. [15] investigated oscillatory properties of the
second-order difference equation

A(r(§ = D(AK(E = 1)) +4(8)f(¥(8)) =R(E) (1.5)

and given sufficient conditions for oscillation and asymptotic
properties of solutions of (1.5).

Dinakar et al. [6] established sufficient conditions under
which all solutions of the second-order half-linear advanced
difference equation

A(r(8)(Ax(§))") +4(&)x"(k(§)) =0,

are either oscillatory or tending to zero.

Chandrasekaran et al. [4] used a new improved method
and established oscillation criteria for the solutions to the
second-order advanced difference equation

& =& (L6)

A(r(§)Ax(§)) +4q(6)x(k(§)) =0, &=6  (1.7)
using the difference equation
A(r(§)Ax(§)) +4q(S)x(E+1) =0, &=G. (1.8)

We [13] also derived new oscillatory conditions for the
second-order noncanonical delay and advanced difference
equations of the form

A(r(6)Ax(8)) +4q(E)x(E+x) =0, §>6  (1.9)
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by creating monotonical properties of nonoscillatory solu-
tions.

Grace et al. [7] established new oscillation conditions for
all solutions of the following nonlinear second-order neutral
difference equations.

Aa(§)(Au(E)))+b(E)y" (& —t+1) +c(Ey (E+x+1)=0
(1.10)

and

A(a(&)(Au(§))") =b(&)y"(E—T+1)+c(E)yH (& +x+1),
(1.11)

where u(&) = y(§) +41(5)yP (§ —k) — 2(8)y° (€ —k).

In this paper, we establish sufficient conditions for oscilla-
tion of all solutions to the equation (1.1).

In the following section, we presume that if a functional
inequality is written without a domain of validity, it holds
eventually, for the sake of convenience.

2. Preliminaries

For the set of eventually positive solutions of (1.1), the fol-
lowing structure can be seen:

Lemma 2.1. An eventually positive solution {x(€)} of (1.1)
fulfils one of the following criteria.

(A1) - r(§)(Ax(§))" > 0,A(r(8)(Ax(§))") <.
(A2) - r(8)(Ax(§)) < 0,A(r(8)(Ax(§))") <O.

The following result demonstrates that the case (A.) is the
most significant.

Lemma 2.2. [f

2.1)

then every eventually positive solution {x(&)} of (1.1) satis-

fies (A,) of Lemma 2.1 and moreover {%} is an increasing

sequence.

Proof. We may suppose, on the contrary, that {x(£)} is an
eventually positive solution of (1.1) which satisfies the condi-
tion (A;) for & > & > &. Summing the (1.1) from &; to oo,
we get

oo

r(E)(Ax(E)) = Y q(s)x° (s + ).
5=

Since {x(&)} is a positive increasing sequence, then there is a
constant v > 0 with x(&) > v and x3 (& + x) > v eventually.
Therefore, we obtain

HE(A(E))T > v Zé 4(s),
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which contradicts (2.1) and this implies that {x(&)} satisfies
1
(A.). By the decreasing nature of {r? (&)Ax(&)}, we get

—n®<rﬂ®m@>ii%w=ﬁ@mn®w®.@m
Compute
HE)\  ri(E)AME)P(E) +x(E)
A = >0
(W@> r7(E)P(E)P(E +1)

and hence proved.
O

Lemma 2.3. If {x(&)} is an eventually positive solution of
(1.1) and

oo 1 u—1 Y
Y = (Z q(s)) = oo, (2.3)
u=E, 17 (u) \s=¢
holds, then
élim x(&) =0. 2.4

Proof. We can easily analyze that (2.3) gives (2.1) and by
Lemma 2.2, we ensure that the eventually positive solution
{x(&)} satisfies (A,) of Lemma 2.1. Hence {x(£)} is de-
creasing sequence and we conclude that there exists a finite
number g with limg_,,x(§) = 1 > 0. We claim that u = 0.
If not, then limg_,, x(&) > 1 > 0 and (x(& + )% >ud>0
eventually. A summation of (1.1) from & to & — 1 gives

E-1
—r(&)(Ax(&))T > u® Z}; q(s)

Sum the above inequality from &; to oo, we attain
5 &
x(&) = uy Z

u—1 %’
: (Z q(S)) 7
u==E& rY M) s=&;

which contradicts (2.3) and implies that x(§) — 0 as & —
oo, O

Lemma 24. If {x(§)} is an eventually positive solution of
(1.1) with (2.3) and

Y ()03 (s + ) = oo,
s=&;

2.5)

holds, then limg . ;i >) = oo,

Proof. We can easily analyze that (2.3) gives (2.1). Then
by Lemma 2.2, we see that the eventually positive solution
{x(&)} satisfies (A.) of Lemma 2.1. Applying Discrete
L’Hospital’s rule, we get

1143

lim (é)
£ 9(8)

=

= lim (—r7 (£)Ax(€))

§reo

1
and so it is sufficient to show that limg_,.,(—r7 (§)Ax(&))=co.
By contrary, assume that the positive increasing sequence

1
(—r7(&)Ax(§)) has a finite limit. Hence there exists a con-
stant M > 0 with the property that

—rT(E)Ax(E) <M < oo 2.6)
Summing (1.1) from &; to & — 1, we have
E-1
MY > —r(&)(Ax(§)) > Y a(s)x(s+K)
s=¢
> DEER T 630 @7)
R ECE R |
where, we used that {ﬁé)) } is a positive increasing sequence.
The above inequality (2.7) contradicts (2.5) which implies
that%%masé%oo. O

We now present oscillation conditions for (1.1).

3. Delay Equation

Theorem 3.1. Let k¥ < —1. Assume that ¥ > 8, and (2.3)
holds. If

limsup ¢¥(&)
-

3.1

£
Z q(s) >0

s=&
then (1.1) oscillates.

Proof. Letus suppose, on the contrary, that {x(&)} is a nonoscil-
latory solution of (1.1). Without lacking generality, we as-
sume that x(§) > 0 for £ > &;. The Condition (2.3) gives
(2.1) which assures that {x(£)} is from class (A.). Suppose

=
limsup¢?(§) Y- q(s) >0
§eo 5=

Then there is a positive constant K > 0 with the property that

1 (3.2)

Zq

s=6i

Summing (1.1) from &; to & — 1, we obtain

r@)(zq S+K>

<=

—AX(
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Sum the previous inequality from & to oo, we attain

1

x(‘g) > iélil (Zq H—K)y
= (L) (Zoowtorn)
£ ¥
= ¢(&) ( ;: q(s)x® (s + K))
> g(ENT(E+K—1) (Zq )
> G(E)T(E+K) (Zq )y. (33)

Since {x(§)} is positive decreasing sequence and lim _,,, x(&) =

r S _
0,x(£) <K37 andx? (& + k) > K for & > &,. By employ-
ing the above estimate in the inequality (3.3), we get

x(&) = 9(E)x(E+K)K (Zq >
= ¥
> K(ZW))
s=&
and
1 &l
252076 ¥ al

s=§

which contradicts (3.2) and thus we have (1.1) is oscillatory.
O

Theorem 3.2. Let k < —1. Assume that ¥y < 6, (2.3) and
(2.5) holds. If

E-1
limsup ¢”(£)¢°7(E+x) Y q(s) >0

E—roo s=&

34

then (1.1) oscillates.

Proof. Assume on the contrary that {x(&)} is a nonoscillatory
solution of (1.1) . We may suppose,without lacking generality,
that {x(&)} is an eventually positive solution of (1.1) with
x(&) > 0for & > & . By condition (2.1), we see that {x(§)}
is from class (A,). By

E-1
Jim OT(E)POT(E+K) Y q(s) >0
e s=§

1144

we arrive at the conclusion that there exists a constant L > 0
with

- 1
97(£)9°(§+x) Zé a(s) > 75 (35)
§=G]

Slnce{ o }1s positive increasing sequence and limg _,., x((?) =
oo, We have

x(§) S 155

$(5)
and

N E ) T E>&.

Summing (1.1) from &; to & — 1 as followed in the proof of
Theorem 3.1, one get (3.3). Using the above estimate in the
(3.3), we get

(E+x)L  for

x(§)

v

O(E)x(E+1)07 (E+K)L (Zq )

Y

P(E(E) T (E+ KL (Zq )
and

1

LY

> 97(E)p°(E +x) (Zq )

which contradicts (3.5). Thus, (1.1) is oscillatory.

4. Advanced Equation

Theorem 4.1. Let kK > 1. Assume that (2.3) holds and 'y > 8.
If

£-1
Z q(s)>0

s=61

then (1.1) oscillates.

limsup ¢¥(&)
Eoven

“.n

Proof. We may suppose, on the contrary and without lacking
generality, that {x(§)} is an eventually positive solution of
(1.1). We conclude that there is an integer &; > & such that
x(&) > 0 for & > &;. By condition (2.3), we have (2.1) and
we assures that {x(&)} is belongs to the class (A,). If

£-1
limsup¢”(& +x) Y q(s) >0,

Eoe s=61

then there is a positive constant k > 0 with

¢7(E+x) Zq
s=&1
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Summing (1.1) from &; to £ + x — 1, we obtain, we have

1
¥
s—i—K) .

k-1

Y als)x

5=

—Ax(E+K) > —— <
7(5+K)

Sum the above inequality from & to eo,0ne get

o E+x—1 %
x(E+x) > Z - (Z q(s S—I—K‘)
u=¢ 7(u+;<) s=¢)
© E+x—1 %
(g (g
u=Er? s=&;
E+k—1 %
= ¢(§+K)< Z;, q(s) (S+’<)>
£ ¥
> ¢(§+K)< q(S)xﬁ(SJrK))
s=¢
5 e\
> ¢(é+x)xv(s+:<)<2q(s)> .43
s=&1

Since {x(&)} is positive decreasing sequence and lim¢ _,., x(§)
03

x(&) <K
and
N ELR)>K, for E>§

Employing the previous estimate in the inequality (4.3), we
obtain

x(E+K) = ¢(E+x)x(E+K)K (Zq )
and

1
—>
K=

1
v
¢7(&+x) (Z q(s > ,
which contradicts (4.2) and thus, we have (1.1) is oscillatory.

O

Theorem 4.2. Let k > 1. Assume that y < 9, (2.3) and (2.5)
holds. If

Proof. We may suppose, on the contrary and without lacking
generality, that {x(&)} is an eventually positive solution of
(1.1). We conclude that there is an integer &; > & such that
x(&) > 0 for & > &;. By the condition (2.3), we have (2.1)
which assures that {x(&)} is from class (A,). Since

llm(]) (E+x) Zq
s=§

then we find a constant L > 0 with

3(E+x) Z q(s (4.5)
=&

Since {Lé)} is positive increasing sequence and lim {@} =

9 Eo=15()

x(S) o 5L

> Lo~

9(8) ~
and

d

XTNEFR) 20V ETRIL for Eé.

As followed in the proof of Theorem 4.1, sum (1.1) from &;
to & + k — 1, one have (4.3). By applying the above estimate
in (4.3), we derive

x(& +x)

Y]

(& +Kx(E+ k)97 (E+K)L (zq )

v

and

S(E+x) Zq
s=&;

which contradicts (4.5) and thus, we have (1.1) is oscillatory.
O

5. Examples

Example 5.1. Let us investigate the oscillation of the follow-
ing second-order difference equation

. (5.1

(2 @axEnt) + 288 g -1 =0; ¢

We have r(€) = 2% () =25 Kk=—1,7= 5, and § =
E—1 Also, (&) = 25%] We can easily show that
limsup ¢ (€ + k) Y a(s) >0, (4.4)
£ =& oo 1 u—1 l}’ oo 1 3
then (1.1) oscillates. u; 10! S; a(s) ,;1 < 2u-1 )
1145 'y
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and

28+1
3

16

+2§.

Y als)=2

So, by Theorem 3.1, (5.1) oscillates.

Example 5.2. Let us investigate the second-order difference
equation

1

A(z%(&(g))s)+25x%(§+1):0; E=0,1,2.... (52)

Here, k=1, r(&) = 2%, q(&) = 28, Y= % and 86 = % Also,

we have ¢ (&) = 25%1

uiér‘yé) (gq@)v X (1_2;1>5:°°

We can easily show that

s=0 u=0
and
1 &l
limsupg3(E+1) ) 2°>0.
E—roo s=0

So, all the constraints of the Theorem 4.2 are verified and thus,
the equation (5.2) is oscillatory.
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