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Oscillation result for half-linear delay difference
equations of second-order
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Abstract
We obtained new single-condition criteria for the oscillation of second-order half-linear delay difference equation

∆(φ(ζ )(∆x(ζ ))ν)+ρ(ζ )xν(ζ −η) = 0; ζ ≥ ζ0.

Even in the linear case, the sharp result is new and, to our knowledge, improves all previous results. Furthermore,
our method has the advantage of being simple to prove, as it relies just on sequentially improved monotonicities
of a positive solution. Examples are provided to illustrate our results.
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1. Introduction
We take into consideration a second-order half-linear de-

lay difference equation of the type

∆(φ(ζ )(∆x(ζ ))ν)+ρ(ζ )xν(ζ −η) = 0; ζ ≥ ζ0. (1.1)

The forward difference operator ∆ is defined by ∆x(ζ ) =
x(ζ +1)− x(ζ ).

The following conditions are assumed throughout the pa-
per:

(A1) η is a non-negative integer;

(A2) {φ(ζ )}∞

ζ=ζ0
is a positive real sequence;

(A3) {ρ(ζ )}∞

ζ=ζ0
is a sequence of non-negative real numbers

and ρ(ζ ) 6≡ 0 for infinitely many values of ζ ;

(A4) ν ∈ { a
b : a and b are odd integers};

(A5) The equation (1.1) is in so-called noncanonical form,

i.e.,

θ(ζ ) :=
∞

∑
s=ζ

1

φ
1
ν (s)

< ∞. (1.2)

A solution of (1.1) is a real sequence {x(ζ )} which is
defined for ζ ≥−η and satisfies (1.1) for ζ ≥ ζ0. A solution
{x(ζ )} is said to be oscillatory, if the terms {x(ζ )} of the
solution are not eventually positive or eventually negative.
Otherwise the solution is called nonoscillatory.

The oscillation theory of delay differential equations has
been significantly developed in recent decades. In recent
years, the oscillation theory of discrete analogues of delay
differential equations has received much interest (see, for
example, [1, 10, 12, 15, 20, 21]) and the references referenced
therein are recommended to the reader.

For the second-order difference equations, oscillation and
nonoscillation problems have recently received considerable
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attention. This is likely due to the similarity of such phenom-
ena to equivalent differential equations. Furthermore, these
equations have a wide range of applications in physics and
other domains (see [3–5, 11, 14] ), including neutral and delay
terms equations [17–19, 22]. They’re often used, for example,
in the research of distributed networks with lossless transmis-
sion lines. The reader is referred to [2, 3, 6, 8] for a basic idea
of these equations.

In [16], we established that the second-order noncanonical
advanced difference equation

∆(φ(ζ )(∆x(ζ ))ν)+ρ(ζ )xν(ζ +η) = 0; ζ ≥ ζ0 (1.3)

is oscillating if

∞

∑
ζ=ζ0

(
1

φ(ζ )

ζ−1

∑
s=ζ0

θ
ν(s+η)ρ(s)

) 1
ν

= ∞.

The goal of this study is to find the best single-condition
oscillation criterion possible for (1.1). The concepts are based
on some of the most recent ones from [9] for linear equations.

∆(φ(ζ )∆x(ζ ))+ρ(ζ )x(ζ −η) = o; ζ ≥ ζ0 (1.4)

Theorem A. [9] Assume that

∞

∑
ζ=ζ0

θ(s+1)ρ(s) = ∞, (1.5)

and there exists a δ0 > 0 such that

ρ(ζ )θ(ζ +1)θ(ζ )r(ζ )≥ δ0 (1.6)

eventually. Suppose that there exists a k ∈ N such that δ j < 1
for j = 0,1,2, . . . ,k−1, and

liminf
ζ→∞

ζ−1

∑
s=ζ−η

ρ(s)θ(s+1)
1−δk

>

(
η

η +1

)η+1

, (1.7)

where

δk = δ0
λ δk−1

1−δk−1
.

Then (1.4) is oscillatory.
In this study, we derive new single-condition constraints

for the oscillation of all unimprovable constant solutions to
(1.1). Even in the linear situation, this sharp conclusion is
unique and, to our knowledge, improves all previous results
in the literature. Moreover, in the linear case, we can express
comparable results for canonical equations.

Our established results are discrete analogues of some
well-known results due to J. Džurina and I. Jadlovská [7].

The following is the paper’s structure: We proved some
auxiliary lemmas in section 2. Then, the paper’s main results
are stated and established in section 3. Finally, two examples
are offered in section 4 to demonstrate our results.

2. Some useful lemmas
Let us define

δ∗ = liminf
ζ→∞

1
ν

φ
1
ν (ζ )θ ν+1(ζ +1)ρ(ζ ) (2.1)

and

µ∗ = liminf
ζ→∞

θ(ζ −η)

θ(ζ )
< ∞. (2.2)

The proofs rely on the existence of positivity δ∗, which is also
required for Theorems 3.1 and 3.4 to be valid. Then there is
a ζ1 ≥ ζ0 for every arbitrary fixed δ ∈ (0,δ∗) and µ ∈ [1,µ∗)
such that

1
ν

ρ(ζ )φ
1
ν (ζ )θ ν+1(ζ +1)≥ δ

and

θ(ζ −η)

θ(ζ )
≥ µ, ζ ≥ ζ0. (2.3)

In the following section, we presume that all functional
inequalities are satisfied; eventually, that is, for all ζ large
enough.

Using the procedure used in [[8], Theorem 2], one can
prove the following result.

Lemma 2.1. Suppose that

∞

∑
ζ=ζ0

1

r
1
ν (ζ )

(
ζ−1

∑
s=ζ0

ρ(s)

) 1
ν

= ∞. (2.4)

If {x(ζ )} is eventually positive solution of (1.1), then ∆x(ζ )<
0 and limζ→∞ x(ζ ) = 0.

Lemma 2.2. Let δ∗ > 0. If (1.1) has an eventually positive
solution {x(ζ )}, then

(i) {x(ζ )} is eventually decreasing with limζ→∞ x(ζ ) = 0;

(ii) { x(ζ )
θ(ζ )
} is eventually nondecreasing.

Proof. (i) By using (1.2), (2.3) and the decreasing nature of
{θ(ζ )}, we have

ζ−1

∑
u=ζ1

1

r
1
ν (u)

(
u−1

∑
s=ζ1

ρ(s)

) 1
ν

≥ ν
√

δ

ζ−1

∑
u=ζ1

1

r
1
ν (u)

(
u−1

∑
s=ζ1

ν

r
1
ν (s)θ ν+1(s+1)

) 1
ν

≥ ν
√

δ

ζ−1

∑
u=ζ1

1

r
1
ν (u)

(
−ν

u−1

∑
s=ζ1

θ(s)
θ ν+1(s+1)

) 1
ν
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≥ ν
√

δ

ζ−1

∑
u=ζ1

1

r
1
ν (u)

(
1

θ ν(u)
− 1

θ ν(n1)

) 1
ν

.

Since θ−ν(ζ )→ ∞ as ζ → ∞, for any l ∈ (0,1) and ζ large
enough, we have θ−ν(ζ )−θ−ν(ζ1)≥ lν θ−ν(ζ ) and hence

ζ−1

∑
u=ζ1

1

r
1
ν (u)

(
u−1

∑
s=ζ1

ρ(s)

) 1
ν

≥ l ν
√

δ

ζ−1

∑
u=ζ1

1

r
1
ν (u)θ(u)

≥ l ν
√

δ ln
θ(ζ1)

θ(ζ )
→ ∞ as ζ → ∞.

By Lemma 2.1, the conclusion follows.
(ii) Using the fact that {r 1

ν (n)∆x(n)} is nonincreasing, we
obtain

x(ζ )≥−
∞

∑
s=ζ

1

r
1
ν (s)

r
1
ν (s)∆x(ζ )

≥−r
1
ν (ζ )∆x(ζ )

∞

∑
s=ζ

1

r
1
ν (s)

=−r
1
ν (ζ )∆x(ζ )θ(ζ ),

i.e.,

∆

(
x(ζ )
θ(ζ )

)
=

r
1
ν (ζ )∆x(ζ )θ(ζ )+ x(ζ )

r
1
ν (ζ )θ(ζ )θ(ζ +1)

≥ 0.

The proof is complete.

To develope the (i) - part of Lemma 2.2, let us define a
sequence {δk} by

δ0 =
ν
√

δ∗

δk =
δ0µ

δk−1
∗

ν
√

1−δk−1
, k ∈ N. (2.5)

We can easily show by induction that if for any k ∈ N, δi < 1,
i = 0,1,2, . . . ,k, . then δk+1 exists and

δk+1 = ξkδk > δk, (2.6)

where lk is defined by

ξ0 =
µ

δ0
∗

ν
√

1−δ0
(2.7)

ξk+1 = µ
δ0(ξk−1)
∗

ν

√
1−δk

1−ξkδk
, k ∈ N0. (2.8)

Lemma 2.3. Let δ∗ > 0 and µ∗ < ∞. If (1.1) has an eventu-
ally positive solution {x(ζ )}, then for any k ∈ N, { x(ζ )

θ
δk (ζ )
} is

eventually decreasing.

Proof. Let {x(ζ )} be an eventually positive solution of (1.1).
Then there exists a ζ1 ≥ ζ0 such that x(ζ −η)> 0 for ζ ≥ ζ1.
Summing (1.1) from ζ1 to ζ −1, we have

−φ(ζ )(∆x(ζ ))ν =−φ(ζ1)(∆x(ζ1))
ν +

ζ−1

∑
s=ζ1

ρ(s)xν(s−η).

(2.9)

By (i) of Lemma 2.2, {x(ζ )} is decreasing and x(ζ −η) ≥
x(ζ ) for ζ ≥ ζ1. Therefore,

−φ(ζ )(∆x(ζ ))ν ≥−φ(ζ1)(∆x(ζ1))
ν +

ζ−1

∑
s=ζ1

ρ(s)xν(s−η)

≥−φ(ζ1)(∆x(ζ1))
ν + xν(ζ )

ζ−1

∑
s=ζ1

ρ(s).

Using (2.3) in the above inequality, we get

−φ(ζ )(∆x(ζ ))ν ≥−φ(ζ1)(∆x(ζ1))
ν

+δxν(ζ )
ζ−1

∑
s=ζ1

c

φ
1
ν (s)θ ν+1(s+1)

−φ(ζ )(∆x(ζ ))ν ≥−φ(ζ1)(∆x(ζ1))
ν

+δ
xν(ζ )

θ ν(ζ )
−δ

xν(ζ )

θ ν(ζ1)
. (2.10)

From (i)-part of Lemma 2.2, we have that limζ→∞ x(ζ ) = 0.
Hence, there is a ζ2 ≥ ζ1 such that

−φ(ζ1)(∆x(ζ1))
ν −δ

xν(ζ )

θ ν(ζ1)
> 0, ζ ≥ ζ2.

Thus,

−φ(ζ )(∆x(ζ ))ν > δ
xν(ζ )

θ ν(ζ )
(2.11)

or

−φ
1
ν (ζ )∆x(ζ )θ(ζ )> ν

√
δx(ζ ) = ε0δ0x(ζ ),

where ε0 =
ν
√

δ

δ0
is an arbitrary constant from (0,1). Therefore,

∆

(
x(ζ )

θ
ν
√

δ (ζ )

)
=

φ
1
ν (ζ )∆x(ζ )θ

ν
√

δ (ζ )+
ν
√

δθ
ν
√

δ−1(ζ )x(ζ )

φ
1
ν (ζ )θ

ν
√

δ (ζ )θ
ν
√

δ (ζ +1)

=
θ

ν
√

δ−1(ζ )(
ν
√

δx(ζ )+θ(ζ )φ
1
ν (ζ )∆x(ζ ))

φ
1
ν (ζ )θ

ν
√

δ (ζ )θ
ν
√

δ (ζ +1)
≤ 0, ζ ≥ ζ2.

(2.12)
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Summing (1.1) from ζ2 to ζ −1 and using that { x(ζ )

θ
ν√

δ (ζ )
} is

decreasing, we have

−φ(ζ )(∆x(ζ ))ν

≥−φ(ζ2)(∆x(ζ2))
ν +

(
x(ζ −η)

θ
ν
√

δ (ζ −η)

)ν

×
ζ−1

∑
s=ζ2

ρ(s)θ
ν
√

δ (s−η)

≥−φ(ζ2)(∆x(ζ2))
ν +

(
x(ζ )

θ
ν
√

δ (ζ )

)ν

×
ζ−1

∑
s=ζ2

ρ(s)
(

θ(s−η)

θ(s)

) ν
√

δ

θ
ν
√

δ (s).

By virtue of (2.3), we see that

−φ(ζ )(∆x(ζ ))ν ≥−φ(ζ2)(∆x(ζ2))
ν +δ

(
x(ζ )

θ
ν
√

δ (ζ )

)ν

×
ζ−1

∑
s=ζ2

ν

(
θ(s−η)

θ(s)

) ν
√

δ

φ
1
ν (s)θ ν+1−ν

ν
√

δ (s+1)

−φ(ζ )(∆x(ζ ))ν ≥−φ(ζ2)(∆x(ζ2))
ν

+
δ

1− ν
√

δ
µ

ν
ν
√

δ

(
x(ζ )

θ
ν
√

δ (ζ )

)ν

×
ζ−1

∑
s=ζ2

ν(1− ν
√

δ )

φ
1
ν (s)θ ν+1−ν

ν
√

δ (s+1)
(2.13)

−φ(ζ )(∆x(ζ ))ν ≥−φ(ζ2)(∆x(ζ2))
ν

+
δ

1− ν
√

δ
µ

ν
ν
√

δ

(
x(ζ )

θ ν
ν
√

δ (ζ )

)ν

×

(
1

θ ν(1− ν
√

δ )(ζ )
− 1

θ ν(1− ν
√

δ )(ζ2)

)
.

(2.14)

Now, we claim that limζ→∞

x(ζ )

θ
ν√

δ (ζ )
= 0. It sufficies to show

that there is ε > 0 such that
{

x(ζ )

θ
ν√

δ+ε (ζ )

}
is eventually de-

creasing sequence. Since {θ(ζ )} tends to zero, there exists is
a constant.

ξ ∈

(
ν
√

1− ν
√

δ

µ
ν
√

δ
,1

)

and a ζ3 ≥ ζ2 such that

1

θ ν(1− ν
√

δ )(ζ )
− 1

θ ν(1− ν
√

δ )(ζ2)
> ξ

ν 1

θ ν(1− ν
√

δ )(ζ )
, ζ ≥ ζ3.

Using the above inequality in (2.14) yields

−φ(ζ )(∆x(ζ ))ν ≥ ξ ν δ

1− ν
√

δ )
µ

ν
ν
√

δ

(
x(ζ )
θ(ζ )

)ν

,

i.e.,

−φ
1
ν (ζ )∆x(ζ )≥

(
ν
√

δ + ε

) x(ζ )
θ(ζ )

, (2.15)

where

ε =
ν
√

δ

(
ξ µ

ν
√

δ

ν
√

1− ν
√

δ

−1

)
> 0.

Then, from (2.15),

∆

(
x(ζ )

θ
ν
√

δ+∈(ζ )

)
≤ 0, ζ ≥ ζ3,

and hence the claim holds. Therefore, for ζ4 ≥ ζ3,

−φ(ζ2)(∆x(ζ2))
ν − δ

1− ν
√

δ
µ

ν
ν
√

δ

×

(
x(ζ )

θ
ν
√

δ (ζ )

)ν

1

θ ν−ν
ν
√

δ (ζ2)
> 0, ζ ≥ ζ4.

Returning to (2.14) and applying the above inequality,

−φ(ζ )(∆x(ζ ))ν

≥−φ(ζ2)(∆x(ζ2))
ν

+
δ

1− ν
√

δ
µ

ν
ν
√

δ

(
x(ζ )
θ(ζ )

)ν

− δ

1− ν
√

δ
µ

ν
ν
√

δ

(
x(ζ )

θ
ν
√

δ (ζ )

)ν

1

θ ν−ν
ν
√

δ (ζ2)

>
δ

1− ν
√

δ
µ

ν
ν
√

δ

(
x(ζ )
θ(ζ )

)ν

,

or

−φ
1
ν (ζ )∆x(ζ )θ(ζ )>

ν
√

δ

ν
√

1− ν
√

δ

µ
ν

ν
√

δ x(ζ )

= ε1δ1x(ζ ), ζ ≥ ζ4,

where

ε1 =
ν

√
δ (1− ν

√
δ∗)

δ∗(1− ν
√

δ )

µ
ν
√

δ

µ
ν
√

δ∗
∗

is an arbitrary constant from (0,1) tends to 1 if δ → δ∗ and
µ → µ∗. Hence,

∆

(
x(ζ )

θ ε1δ1(ζ )

)
< 0, ζ ≥ ζ4.
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By induction, one can show that for any k ∈ N0 and ζ large
enough,

∆

(
x(ζ )

θ εkδk(ζ )

)
< 0,

where εk given by ε0 =
ν

√
δ

δ∗

εk+1 = ε0
ν

√
1−δk

1− εkδk

µεkδk

µ
δk
∗

, k ∈ N0

is an arbitrary constant from (0,1) tends to 1 if δ → δ∗ and

µ→ µ∗. Now, we assert that from any k ∈N0,
{

x(ζ )
θ

εk+1δk+1 (ζ )

}
decreasing implies that { x(ζ )

θ
δk
} is a decreasing sequence as

well. Using (2.6) and the fact that εk+1 is arbitrarly closed to
1, we see that

εk+1δk+1 > δk.

Then, for ζ sufficiently large enough,

−φ
1
ν (ζ )∆x(ζ )θ(ζ )> εk+1δk+1x(ζ )> δkx(ζ )

and so for any ζ ∈ N0 and ζ large enough,

∆

(
x(ζ )

θ δk(ζ )

)
< 0.

The proof is complete.

3. Main Results
Theorem 3.1. Let

µ∗ := liminf
ζ→∞

θ(ζ −η)

θ(ζ )
< ∞. (3.1)

If

liminf
ζ→∞

φ
1
ν (ζ )θ ν+1(ζ +1)ρ(ζ )

> max{c(ω) : νω
ν(1−ω)µ−νω

∗ : 0 < ω < 1},
(3.2)

then (1.1) is oscillatory.

Proof. Assume that {x(ζ )} is an eventually positive solution
of (1.1). Lemma 2.2 and 2.3 ensure that ∆{ x(ζ )

θ(ζ )
} ≥ 0 and

∆{ x(ζ )
θ

δk (ζ )
}< 0 for any k ∈N0 and ζ sufficiently large enough.

This case occurs when δk < 1 for any k ∈ N0.
Thus, the sequence {δk} given by (2.5) is increasing and

bounded sequence from above which implies that there ex-
ists a finite limit liminfk→∞ δk = ω , where ω is the smallest
positive root of the equation

c(ω) = liminf
ζ→∞

φ
1
ν (ζ )θ ν+1(ζ +1)ρ(ζ ). (3.3)

Because of (3.2), equation (3.3) cannot have a positive solu-
tion.

This contradiction completes the proof.

Corollary 3.2. By simple computations, we obtain

max{c(ω) : 0 < ω < 1}= c(max),

where

ωmax =


ν

ν+1 , for µ∗ = 1
−
√

(νφ+ν+1)2−4ν2φ+νφ+ν+1
2νφ

,

for µ∗ 6= 1 and φ = ln µ∗,

and c(ω) is defined by (3.2).
We get the following result when (3.1) is failed.

Theorem 3.3. Let

lim
ζ→∞

θ(ζ −η)

θ(ζ )
= ∞. (3.4)

If

liminf
ζ→∞

φ
1
ν (ζ )θ ν+1(ζ +1)ρ(ζ )> 0 (3.5)

then (1.1) is oscillatory.

Proof. Let {x(ζ )} be an eventually positive solution of (1.1).
Then there exists a ζ1 ≥ ζ0 such that x(ζ −η)> 0 for ζ ≥ ζ1.
By virtue of (3.4), we see that for any M > 0 there exists a ζ

sufficiently large enough such that

θ(ζ −η)

θ(ζ )
≥
(

M
ν
√

δ

) 1
ν√

δ

. (3.6)

As in the proof of Lemma 2.3, we can show that
{

x(ζ )

θ
ν√

δ (ζ )

}
is decreasing eventually, say for ζ ≥ ζ2 ≥ ζ1. Using this
monotonicity in (2.9), we have

−φ(ζ )(∆x(ζ ))ν

=−φ(ζ2)(∆x(ζ2))
ν +

ζ−1

∑
s=ζ2

ρ(s)xν(s−η)

≥−φ(ζ2)(∆x(ζ2))
ν +Mν xν(ζ )

×
ζ−1

∑
s=ζ2

ν

φ
1
ν (s)θ ν+1(s+1)

−φ(ζ )(∆x(ζ ))ν > Mν

(
x(ζ )
θ(ζ )

)ν

,

from which we derive that { x(ζ )
θ M(ζ )

} is decreasing sequence.

From the fact that M is a arbitrary, we have { x(ζ )
θ(ζ )
} is non-

decreasing sequence.This is a contradiction with (ii)-part of
Lemma 2.2 and this completes the proof.
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Now, we convert the oscillation behavior from (1.1) to the
canonical equations in linear case ν = 1

∆(φ̃(ζ )∆u(ζ ))+ ρ̃(ζ )u(ζ −η) = 0, ζ ≥ ζ0, (3.7)

where {φ̃(ζ )} is a positive real sequence and {ρ̃(ζ )} is a
nonnegative real sequence with ρ(ζ ) 6≡ 0 for infinitely many
values of ζ , and

R(ζ ) =
ζ−1

∑
s=ζ0

1

φ̃(s)
→ ∞ as ζ → ∞.

Theorem 3.4. Let

δ∗ := liminf
ζ→∞

R(ζ )
R(ζ −η)

< ∞.

If

liminf
ζ→∞

(
φ̃(ζ )ρ̃(ζ )R(ζ )R(ζ −η)

)
> max{ω(1−ω)δ−ω

∗ : 0 < ω < 1},

then (3.7) is oscillatory.

Proof. we can readily check that the canonical equation (3.7)
is equivalent to a noncanonical equation (1.1) with ν = 1,

φ(ζ ) = φ̃(ζ )R(ζ )R(ζ +1)
ρ(ζ ) = ρ̃(ζ )R(ζ +1)R(ζ −η)

and

x(ζ ) =
u(ζ )
R(ζ )

> 0.

Now,

θ(ζ ) =
∞

∑
s=ζ

1
φ(s)

=
∞

∑
s=ζ

∆R(s)
R(s)R(s+1)

=
1

R(ζ )
.

The result derives from Theorem 3.1 immediately.

Theorem 3.5. Let

lim
ζ→∞

R(ζ )
R(ζ −η)

= ∞.

If

liminf
ζ→∞

{φ̃(ζ )ρ̃(ζ )R(ζ )R(ζ −η)}> 0,

then (3.7) is oscillatory.

Proof. By applying the equivalent noncanonical representa-
tion of (3.7) as in the proof of Theorem 3.4, the claim follows
from Theorem 3.3.

4. Examples
Example 4.1. Let us discuss the second-order difference
equation

∆((ζ (ζ +1))
1
3 (∆x(ζ ))

1
3 )+λ0

(ζ +1)
1
3

ζ
x

1
5 (ζ −1) = 0;

ζ = 1,2,3, . . . (4.1)

Here, we have φ(ζ ) = (ζ (ζ +1))
1
3 , ρ(ζ ) = λ0

(ζ+1)
1
3

ζ
, ν = 1

3
and η = 1.

By simple computation, we obtain

θ(ζ ) =
1
ζ
,

λ∗ = liminf
ζ→∞

θ(ζ −1)
θ(ζ )

= 1,

liminf
ζ→∞

φ
1
ν (ζ )θ ν+1(ζ +1)ρ(ζ ) = λ0,

and

max{c(ω) : νω
ν(1−ω) : 0 < ω < 1}= 1

4 3√4
.

Thus, by Theorem 3.1, every solution of (4.1) is oscillatory if
λ0 >

1
4 3√4

Example 4.2. Let us investigate the oscillatory behavior of
the second-order linear difference equation

∆

(
1
ζ

∆x(ζ )
)
+

4λ0

(ζ −2)(ζ −1)2 x(ζ −1) = 0;

ζ = 1,2,3, . . . (4.2)

We have φ̃(ζ ) = 1
ζ

, ρ̃(ζ ) = 4λ0
(ζ−2)(ζ−1)2 and η = 1. We can

easily show that

R(ζ ) =
ζ (ζ −1)

2
, δ∗ = 1,

liminf
ζ→∞

φ̃(ζ )ρ̃(ζ )R(ζ )R(ζ −1) = λ0,

and

max{ω(1−ω) : 0 < ω < 1}= 1
4
.

Hence, by Theorem 3.4, the equation (4.2) is oscillatory
for λ0 >

1
4 .
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