

https://doi.org/10.26637/MJM0901/0201

Oscillatory and asymptotic behavior of solutions to second-order non-linear neutral difference equations of advanced type

C. Soundara Rajan^{1*} and A. Murugesan²

Abstract

In this paper, necessary and sufficient conditions are obtained for oscillatory and asymptotic behavior of solutions to second-order non-linear neutral advanced difference equations of the form

$$\Delta[\varphi(\zeta)(\Delta y(\zeta))^{\lambda}] + \sum_{i=1}^{m} \mu_i(\zeta) f(x(\zeta + \eta_i)) = 0; \quad \zeta \ge \zeta_0,$$

where $y(\zeta) = x(\zeta) + p(\zeta)x(\zeta - \kappa)$, under the assumption $\sum_{\zeta=\zeta_0}^{\infty} \frac{1}{\varphi^{\frac{1}{\zeta}}(\zeta)} = \infty$. Our main tool is Lebesgue's dominated

convergence theorem. Further, some illustrate examples showing the applicability of the new results are included.

Keywords

Oscillation, non-oscillation, neutral, second-order, non-linear, advanced, difference equations.

AMS Subject Classification

39A12, 39A13, 39A21.

¹Department of Mathematics, Government Arts College (Autonomous)-636007, Tamil Nadu, India.

² Department of Mathematics, Government Arts College (Autonomous)-636007, Tamil Nadu, India.

*Corresponding author: ¹ socsrajan@gmail.com; ² amurugesan3@gmail.com

Article History: Received 10 January 2021; Accepted 27 March 2021

©2021 MJM.

Contents

 1
 Introduction
 1160

 2
 Preliminary Results
 1161

 3
 Main Results
 1162

 References
 1165

1. Introduction

We consider the second-order non-linear neutral advanced difference equations of the form

$$\Delta(\varphi(\zeta)(\Delta z(\zeta))^{\lambda}) + \sum_{i=1}^{m} \mu_i(\zeta) x^{\lambda} f(x(\zeta + \eta_i)) = 0; \quad \zeta \ge \zeta_0.$$
(1.1)

where $y(\zeta) = x(\zeta) + p(\zeta)x(\zeta - \kappa)$ and Δ is the forward difference operator defined by $\Delta x(\zeta) = x(\zeta + 1) - x(\zeta)$. Throughout the paper, we use the following assumptions:

 (C_1) λ is a quotient of odd positive integers;

- (*C*₂) η_i (i=1,2,...,m) are positive integers;
- (C_3) κ is a positive integer;
- (C₄) $\{\varphi(\zeta)\}_{\zeta=\zeta_0}^{\infty}$ is sequence of positive real numbers;
- (C₅) for $i = 1, 2, ..., m \{\mu_i(\zeta)\}_{\zeta = \zeta_0}^{\infty}$ is a sequence of nonnegative real numbers and $\mu_i(\zeta) \neq 0$ for sufficiently large values of ζ ;
- (C₆) $f: R \to R$ is a continuous and strictly increasing function such that uf(u) > 0 for $u \in 0$;

(C₇)
$$\sum_{\zeta=\zeta_0}^{\infty} \frac{1}{\varphi^{\frac{1}{\lambda}}(\zeta)} = \infty$$
; Letting
$$R(\zeta,\zeta_0) = \sum_{s=\zeta_0}^{\zeta-1} \frac{1}{\varphi^{\frac{1}{\lambda}}(s)}$$

and hence $R(\zeta, \zeta_0) \rightarrow \infty$ as $\zeta \rightarrow \infty$;

 $(C_8) \ \{p(\zeta)\}_{\zeta=\zeta_0}^{\infty} \text{ is a sequence of real numbers such that} \\ -1 \le p(\zeta) \le 0.$

By a solution of (1.1), we mean a real sequence $\{x(\zeta)\}$ which is defined for all $\zeta \ge \zeta_0 - \kappa$ and satisfies equation (1.1) for all $\zeta \in N(\zeta_0) = \{\zeta_0, \zeta_0 + 1, \zeta_0 + 2, ...\}$. A nontrivial solution $\{x(\zeta)\}$ of equation (1.1) is said to be oscillatory if it a neither eventually positive nor eventually negative and it is non-oscillatory otherwise.

In recent years, there has been an increasing interest in the study of oscillation and asymptotic behavior of solutions of nonlinear difference equations, see for example [1, 8, 11, 13, 16, 17] and the references cited therein. Neutral difference and differential equations arise in many areas of applied mathematics, such as population dynamics [6], stability theory [14, 15], circuit theory[4], bifurcation analysis [3], dynamical behavior of delayed network system [18], and so on. Therefore, these equations have attracted a great interest during the last few decades. For the general background of difference equations, one can refer to [1, 2, 7, 10]

Murugesan et al. [12] derived sufficient conditions for oscillation of all solutions of the second-order half-linear advanced difference equation

$$\Delta(\varphi(\zeta)(\Delta x(\zeta))^{\lambda}) + \mu(\zeta)x^{\lambda}(\zeta + \eta) = 0, \quad \zeta \ge \zeta_0.$$

Under the condition that $\sum_{\zeta=\zeta_0}^{\infty} \frac{1}{\varphi^{\frac{1}{\lambda}}(\zeta)} < \infty$.

Gopalakrishnan et al. [5], we derived oscillatory conditions for the second-order noncanonical difference equation of the delay and advanced type

$$\Delta(\varphi(\zeta)\Delta x(\zeta)) + \mu(\zeta)x(\zeta + \eta) = 0; \quad \zeta \ge \zeta_0.$$

Jayakumar et al. [9] investigated oscillatory and asymptotic behavior of a class of second-order non-linear delay difference equations

$$\Delta(r(\zeta)(\Delta x(\zeta))^{lpha})+q(\zeta)x^{lpha}(\zeta-\sigma)=0, \quad \zeta\geq\zeta_o,$$

and derived sufficient conditions under which every solution is either oscillatory or converges to zero.

2. Preliminary Results

Lemma 2.1. If $\{x(\zeta)\}$ is an eventually positive solution of (1.1), then $\{y(\zeta)\}$ satisfies one of the following two posible cases;

- $\begin{array}{ll} (C_1) \ y(\zeta) < 0, \ \Delta y(\zeta) > 0 \ and \ \Delta(\varphi(\zeta)(\Delta y(\zeta)))^{\lambda} < 0 \ for \ all \\ large \ \zeta; \end{array}$
- $(C_2) \ y(\zeta) > 0, \Delta y(\zeta) > 0 \ and \ \Delta(\varphi(\zeta)(\Delta y(\zeta)))^{\lambda} < 0 \ for \ all \ large \ \zeta.$

Proof. Let $\{x(\zeta)\}$ is an eventually positive solution of (1.1). Then there exists a $\zeta_1 \ge \zeta_0$ such that $x(\zeta) > 0$ and $x(\zeta - \kappa) > 0$ for all $\zeta \ge \zeta_1$. Then from (1.1), we have

$$\Delta(\varphi(\zeta)(\Delta y(\zeta))^{\lambda}) = -\sum_{i=1}^{m} \mu_i(\zeta) f(x(\zeta + \eta_i)) < 0, \text{ for all } \zeta \ge \zeta_i$$

Consequently, $\{\varphi(\zeta)(\Delta y(\zeta))^{\lambda}\}$ is nonincreasing for $\zeta \ge \zeta_1$. Since $\varphi(\zeta) > 0$, and thus either $\Delta y(\zeta) < 0$ or $\Delta y(\zeta) > 0$ for $\zeta \ge \zeta_2 \ge \zeta_1$.

If $\Delta y(\zeta) > 0$ for $\zeta \ge \zeta_2$, then we have (C_1) or (C_2) . We have prove that $\Delta y(\zeta) < 0$ cannot occur.

If $\Delta y(\zeta) < 0$ for $\zeta \ge \zeta_2$, then there exists $\upsilon > 0$ such that $\varphi(\zeta)(\Delta y(\zeta))^{\lambda} \le -\upsilon$ for $\zeta \ge \zeta_2$.

$$\Delta y(\zeta) \leq \frac{-\upsilon^{\frac{1}{\lambda}}}{\varphi^{\frac{1}{\lambda}}(\zeta)}.$$

Sum the last inequality from ζ_2 to $\zeta - 1$, we have

$$y(\zeta) \leq y(\zeta_2) - v^{\frac{1}{\lambda}} \sum_{s=\zeta_2}^{\zeta-1} \frac{1}{\varphi^{\frac{1}{\lambda}}(s)} \to \infty \text{ as } \zeta \to \infty.$$

We consider now the following possibilities seperately.

If $\{x(\zeta)\}$ is unbounded, then there exist a sequence $\{\zeta_k\}$ of positive integers such that $\zeta_k \to \infty$ as $k \to \infty$ and $x(\zeta_k) \to \infty$ as $k \to \infty$, where

$$x(\zeta_k) = max\{x(s) : \zeta_0 \le s \le \zeta_k\}.$$

Clearly, $x(\zeta_k - \kappa) \le x(\zeta_k)$. Therefore, for all *k*,

$$y(\zeta_k) = x(\zeta_k) + p(\zeta_k)x(\zeta_k - \kappa)$$

$$\geq x(\zeta_k)(1 + p(\zeta_k)) > 0,$$

which contradicts the fact that $\lim_{\zeta \to \infty} y(\zeta) = \infty$. If $\{x(\zeta)\}$ is bounded, then $\{y(\zeta)\}$ is also bounded, which contradicts $\lim_{\zeta \to \infty} y(\zeta) = -\infty$. Hence, $\{y(\zeta)\}$ satisfies one of the (C_1) and (C_2) . This completes the proof.

Remark 2.2. If follows from (C_2) of Lemma 2.1 that there exists $\theta > 0$ such that $y(\zeta) \ge \theta$ for all large ζ .

We assume that there exists a constant ν such that $0 < \nu < \lambda$ and

$$\frac{f(u)}{u^{v}} \ge \frac{f(v)}{v^{v}}, \text{ for } 0 < u < v.$$
(2.2)

A typical example of a nonlinear function satisfying (2.2) is $f(y) = |y|^{\xi} sgn(y)$ with $0 < \xi < v$.

Remark 2.3. The condition (2.2) implies that $f(u)/u^{v}$ is nonincreasing. We assume that there exists $v < \lambda > 0$ such that

$$\frac{f(u)}{u^{\nu}} \le \frac{f(v)}{v^{\nu}}, \text{ for } 0 < u < v.$$
(2.3)

A typical example of a nonlinear function satisfying (2.3) is $f(y) = |y|^{\xi} sgn(y)$ with $\mathbf{v} < \xi$.

Remark 2.4. The condition (2.3) implies that $f(u)/u^{\vee}$ is nondecreasing

3. Main Results

Theorem 3.1. Assume that $\Delta \varphi(\zeta) \ge 0$ and (2.2) hold. If there exists a constant p such that $-1 + (2/3)^{\frac{1}{\lambda}} \le -p \le p(\zeta) \le 0$, then every unbounded solution of (1.1) oscillates if and only if

$$\sum_{\zeta=\zeta_0}^{\infty}\sum_{i=1}^{m}\mu_i(\zeta)f(\theta^{\frac{1}{\lambda}}R(\zeta+\eta_i)) = +\infty, \,\forall \,\theta > 0.$$
(3.1)

Proof. To prove sufficiency by contradiction, assume that $\{x(\zeta)\}$ is an unbounded non-oscillatory solution of (1.1). Without loss of generality, we may suppose that $\{x(\zeta)\}$ is an eventually positive solution of (1.1). Then there exists $\zeta_1 \geq \zeta_0$ such that $x(\zeta) > 0$ and $x(\zeta - \kappa) > 0$. Then we have (2.1). From Lemma 2.1, $\{y(\zeta)\}$ satisfies one of the cases (C_1) and (C_2) for $\zeta \geq \zeta_2$, where $\zeta_2 \geq \zeta_1$. We consider each of two cases seperately.

Case 1. Let $\{y(\zeta)\}$ satisfies (C_1) for $\zeta \ge \zeta_2$. As $\{x(\zeta)\}$ is unbounded, there exists $N \ge \zeta_2$ such that $x(N) = max\{x(s) : \zeta_2 \le s \le N\}$. Then, $x(N) \le y(\zeta) + (1 - (2/3)^{\frac{1}{\lambda}})x(N - \kappa) < x(N)$, which is a contradiction.

Case 2. Let $\{y(\zeta)\}$ satisfies (C_2) for $\zeta \ge \zeta_2$. Since $\{\varphi(\zeta)(\Delta y(\zeta))^{\lambda}\}$ is a positive, non-increasing, and

$$\Delta y(\zeta) \leq \left(\frac{\varphi(\zeta_3)}{\varphi(\zeta)}\right)^{\frac{1}{\lambda}} \Delta y(\zeta_3) \text{ for } \zeta \geq \zeta_3, \text{ where } \zeta_3 \geq \zeta_2.$$

Summing this inequality from ζ_3 to $\zeta - 1$, we have

$$y(\zeta) \leq y(\zeta_3) + \varphi^{\frac{1}{\lambda}}(\zeta_3) \Delta y(\zeta_3) R(\zeta,\zeta_3).$$

Since $R(\zeta) \to \infty$ as $\zeta \to \infty$ there exists $\theta > 0$ and $\zeta_4 \ge \zeta_3$ such that

$$y(\zeta) \le \theta^{\frac{1}{\lambda}} R(\zeta) \text{ for } \zeta \ge \zeta_4.$$
 (3.2)

Upon using $y(\zeta) \le x(\zeta)$; (3.2) and by the assumption (2.2), we have

$$f(x(\zeta + \eta_i)) \ge f(y(\zeta + \eta_i))$$

= $\frac{f(y(\zeta + \eta_i))}{y^{\nu}(\zeta + \eta_i)} y^{\nu}(\zeta + \eta_i)$
$$\ge \frac{f(\theta^{\frac{1}{\lambda}}R(\zeta + \eta_i))}{(\theta^{\frac{1}{\lambda}}R(\zeta + \eta_i))^{\nu}} y^{\nu}(\zeta + \eta_i).$$

Summing (1.1) from ζ to ∞ , we have

$$\sum_{s=\zeta-\eta}^{\infty} \sum_{i=1}^{m} \mu_i(s) \frac{f(\theta^{\frac{1}{\lambda}} R(s+\eta_i))}{(\theta^{\frac{1}{\lambda}} R(s+\eta_i))^{\nu}} y^{\nu}(s+\eta_i)$$
$$\leq \varphi(\zeta) (\Delta y(\zeta))^{\lambda}, \quad \zeta \geq \zeta_4 \quad (3.3)$$

Since $\Delta \varphi(\zeta) \ge 0$ and from (3.3), we obtain,

$$\Delta y(\zeta) \ge \left[\frac{1}{\varphi(\zeta+\eta)}\sum_{s=\zeta}^{\infty}\sum_{i=1}^{m}\mu_i(s)\frac{f(\theta^{\frac{1}{\lambda}}R(s+\eta_i))}{(\theta^{\frac{1}{\lambda}}R(s+\eta_i))^{\nu}}y^{\nu}(s+\eta_i)\right]^{\frac{1}{\lambda}}$$

Summing the above inequality from ζ_4 to $\zeta - \eta - 1$, we obtain

$$y(\zeta - \eta) - y(\zeta_4)$$

$$\geq \sum_{u=\zeta_4}^{\zeta - \eta - 1} \left[\frac{1}{\varphi(u + \eta)} \sum_{s=\zeta}^{\infty} \sum_{i=1}^{m} \mu_i(s) \frac{f(\theta^{\frac{1}{\lambda}} R(s + \eta_i))}{(\theta^{\frac{1}{\lambda}} R(s + \eta_i))^{\nu}} \times y^{\nu}(s + \eta_i) \right]^{\frac{1}{\lambda}}.$$

Using the increasing nature of $\{y(\zeta)\}$ in the above inequality, we have

$$y(\zeta) \ge \sum_{u=\zeta_4}^{\zeta-\eta-1} \left[\frac{1}{\varphi(u+\eta)} \sum_{s=\zeta}^{\infty} \sum_{i=1}^{m} \mu_i(s) \frac{f(\theta^{\frac{1}{\lambda}} R(s+\eta_i))}{(\theta^{\frac{1}{\lambda}} R(s+\eta_i))^{\nu}} y^{\nu}(s+\eta_i) \right]^{\frac{1}{\lambda}}.$$
(3.4)

Set

$$w(\zeta) = \sum_{s=\zeta}^{\infty} \sum_{i=1}^{m} \mu_i(s) \frac{f(\theta^{\frac{1}{\lambda}} R(s+\eta_i))}{(\theta^{\frac{1}{\lambda}} R(s+\eta_i))^{\nu}} y^{\nu}(s+\eta_i). \quad (3.5)$$

From (3.4) and (3.5), and since $y(\zeta) > 0$, we obtain $y(\zeta) > R(\zeta, \zeta_4 + \eta) w^{\frac{1}{\lambda}} (\zeta - \eta)$. Since $\lim_{\zeta \to \infty} R(\zeta) = \infty$, there exists $\zeta_5 \ge \zeta_4$ such that

$$R(\zeta, \zeta_4 + \eta) \ge \frac{1}{2} R(\zeta) \text{ for } \zeta \ge \zeta_5.$$
(3.6)

Then

$$y(\zeta) > \frac{1}{2}R(\zeta)w^{\frac{1}{\lambda}}(\zeta - \eta) \text{ for } \zeta \ge \zeta_5, \tag{3.7}$$

and

$$\frac{y^{\nu}(\zeta)}{(\theta^{\frac{1}{\lambda}}R(\zeta))^{\nu}} \geq \frac{w^{\frac{\nu}{\lambda}}(\zeta-\eta)}{(2\theta^{\frac{1}{\lambda}})^{\nu}}.$$

Now,

$$\begin{split} &\Delta w(\zeta) \\ &= -\sum_{i=1}^{\zeta} \mu_i(\zeta) \frac{f(\theta^{\frac{1}{\lambda}} R(\zeta + \eta_i))}{(\theta^{\frac{1}{\lambda}} R(\zeta + \eta_i))^{\mathbf{v}}} y^{\mathbf{v}}(\zeta + \eta_i) \\ &\leq -\sum_{i=1}^{\zeta} \mu_i(\zeta) \frac{f(\theta^{\frac{1}{\lambda}} R(\zeta + \eta_i))}{(2\theta^{\frac{1}{\lambda}})^{\mathbf{v}}} w^{\frac{\mathbf{v}}{\lambda}}(\zeta - \eta + \eta_i) \leq 0. \end{split}$$

 $\begin{array}{ll} \text{Thus,} \quad \{w(\zeta)\} \quad \text{is non-increasing} \quad \text{and} \quad \text{hence} \\ w^{\frac{\gamma}{\lambda}}(\zeta - \eta + \eta_i)/w^{\frac{\gamma}{\lambda}}(\zeta) \geq 1, \text{ and} \end{array}$

$$\begin{split} \Delta w^{1-\frac{\nu}{\lambda}}(\zeta) &\leq \left(1-\frac{\nu}{\lambda}\right) w^{-\frac{\nu}{\lambda}}(\zeta) \Delta w(\zeta) \\ &\leq -\frac{(1-\frac{\nu}{\lambda})}{(2\theta^{\frac{1}{\lambda}})^{\nu}} \sum_{i=1}^{m} \mu_{i} f(\theta^{\frac{1}{\lambda}} R(\zeta+\eta_{i})). \end{split}$$

Summing this inequality from ζ_5 to $\zeta - 1$, we get

$$\left[w^{1-\frac{\nu}{\lambda}}(s)\right]_{s=\zeta_5}^{\zeta-1} \leq -\frac{\left(1-\frac{\nu}{\lambda}\right)}{\left(2\theta^{\frac{1}{\lambda}}\right)^{\nu}} \sum_{s=\zeta_5}^{\zeta-1} \sum_{i=1}^m \mu_i(s) f(\theta^{\frac{1}{\lambda}} R(s+\eta_i)).$$

Since $\frac{v}{\lambda} < 1$ and $\{w(\zeta)\}$ is positive and non-increasing, we have

$$\sum_{s=\zeta_5}^{\zeta-1}\sum_{i=1}^m \mu_i f(\theta^{\frac{1}{\lambda}}R(s+\eta_i)) \leq \frac{(2\theta^{\frac{1}{\lambda}})^{\nu}}{(1-\frac{\nu}{\lambda})} w^{1-\frac{\nu}{\lambda}}(\zeta_5) < \infty.$$

This contradicts (3.1).

If $\{x(\zeta)\}$ is eventually negative, then $x(\zeta) < 0$ for $\zeta \ge \zeta_1$. Then we set $y(\zeta) := -x(\zeta)$ for $\zeta \ge \zeta_1$ in (1.1).

Using (C_6) , we find

$$\Delta \left[\varphi(\zeta) \left[\Delta(y(\zeta) + p(\zeta)y(\zeta - \kappa)) \right]^{\lambda} \right] + \sum_{i=1}^{m} \mu_i(\zeta) g(y(\zeta + \eta_i)) = 0 \text{ for } \zeta \ge \zeta_1,$$

where g(u) = -f(-u) and g is also satisfies (C₆). Then, proceeding as above, we find the same contradiction. This proves the oscillation of all solutions.

Next, we show that (3.1) is necessary. Suppose that (3.1)does not hold; so for some $\theta > 0$ the sum in (3.1) is finite. Then there exists $N > \eta$ such that

$$\sum_{\zeta=N}^{\infty}\sum_{i=1}^{m}\mu_{i}(\zeta)f(\theta^{\frac{1}{\lambda}}R(\zeta+\eta_{i})) \leq \frac{\theta}{3}$$
(3.8)

we define the operator ϕ as follows:

For the sequence $\{x(\zeta)\}_{\zeta=N-\eta}^{\infty}$,

$$(\phi x)(\zeta) = \begin{cases} (\phi x)(N); & N - \eta \le \zeta \le \\ -p(\zeta)x(\zeta - \kappa) \\ + \sum_{u=N}^{\zeta - 1} \left[\frac{1}{\varphi(u)} \left[\frac{\theta}{3} \\ + \sum_{s=u}^{\infty} \sum_{i=1}^{m} \mu_i(s) f(x(s + \eta_i)) \right] \right]^{\frac{1}{\lambda}}, \quad \zeta \ge N + 1 \end{cases}$$

Now, consider the sequence $\{v^{(k)}(\zeta)\}$ of successive approximations defined by

$$v^{(1)}(\zeta) = \begin{cases} 0, & N - \eta \le \zeta \le N \\ \left(\frac{\theta}{3}\right)^{\frac{1}{\lambda}} R(\zeta, N), & \zeta \ge N + 1 \end{cases}$$

and for k = 2, 3, ...

$$v^{(k)}(\zeta) = (\phi v^{(k-1)})(\zeta)$$

Clearly for $\zeta \ge N + 1$,

$$\begin{pmatrix} \frac{\theta}{3} \end{pmatrix}^{\frac{1}{\lambda}} R(\zeta, N) \le v^{(1)}(\zeta) \le \theta^{\frac{1}{\lambda}} R(\zeta, N).$$

For, $\zeta \ge N + 1$,
 $v^{(2)}(\zeta) = (\phi v^{(1)})(\zeta)$

For $\zeta \ge N+1$, we have $v^{(1)}(\zeta) \le \theta^{\frac{1}{\lambda}} R(\zeta, N)$ and using the increasing nature of f in the above inequality we obtain

$$\begin{split} v^{(2)}(\zeta) &\leq p\theta^{\frac{1}{\lambda}}R(\zeta-\kappa,N) + \sum_{u=N}^{\zeta-1} \left[\frac{1}{\varphi(u)} \left[\frac{\theta}{3} + \frac{\theta}{3}\right]\right]^{\frac{1}{\lambda}} \\ &\leq p\theta^{\frac{1}{\lambda}}R(\zeta,N) + \left(\frac{2\theta}{3}\right)^{\frac{1}{\lambda}}R(\zeta,N) \\ &= \left(p + \left(\frac{2}{3}\right)^{\frac{1}{\lambda}}\right)\theta^{\frac{1}{\lambda}}R(\zeta,N) \\ &\leq p\theta^{\frac{1}{\lambda}}R(\zeta,N) \end{split}$$

Thus, for $\zeta \ge N + 1$, we have

$$\left(\frac{\theta}{3}\right)^{\lambda} R(\zeta,N) \leq v^{(1)}(\zeta) \leq \theta^{\frac{1}{3}} R(\zeta,N).$$

Now, for $\zeta \ge N+1$

Ν

$$v^{(2)}(\zeta) = (\phi v^{(1)})(\zeta)$$

= $\sum_{u=N}^{\zeta-1} \left[\frac{1}{\varphi(u)} \left[\frac{\theta}{3} + \sum_{s=u}^{\infty} \sum_{i=1}^{m} \mu_i(s) f(x(s+\eta_i)) \right] \right]^{\frac{1}{\lambda}}$
 $\geq \sum_{u=N}^{\zeta-1} \left(\frac{1}{\varphi(u)} \frac{\theta}{3} \right)^{\frac{1}{\lambda}}$
= $\left(\frac{\theta}{3} \right)^{\frac{1}{\lambda}} R(\zeta, N)$

Thus, we have, for $\zeta \ge N+1$,

$$\left(\frac{\theta}{3}\right)^{\frac{1}{\lambda}}R(\zeta,N)=v^{(1)}(\zeta)\leq v^{(2)}(\zeta)\leq \theta^{\frac{1}{\lambda}}R(\zeta,N).$$

By mathematics induction, we can easily prove that for k > 1.

$$\left(\frac{\theta}{3}\right)^{\frac{1}{\lambda}}R(\zeta,N) \le v^{(k-1)}(\zeta) \le v^{(k)}(\zeta) \le \theta^{\frac{1}{\lambda}}R(\zeta,N)$$

for $\zeta \ge N+1$. Thus, $\{v^{(k)}(\zeta)\}$ is a pointwise convergent to some sequence $v^* = \{v^*(\zeta)\}$. By means of the Lebesgue dominated convergence theorem, we obtain

 $(\phi v^*)(\zeta) = v^*(\zeta)$. We can easily show that $\{v^*(\zeta)\}$ is an eventually positive solution of the equation (1.1) for $\zeta \geq N - \zeta$ η . This contradiction shows that (3.1) is necessary condition. This completes the proof.

Theorem 3.2. Assume that $\Delta \varphi(\zeta) \ge 0$ and (2.2). If there exists a constant p such that $-1 + \left(\frac{2}{3}\right)^{\frac{1}{\lambda}} \leq -p \leq p(\zeta) \leq 0$, then every solution of (1.1) oscillates or converges to zero if and only if (3.1) holds for every $\theta > 0$.

Proof. To prove sufficiency by contradiction, we assume that $\{x(\zeta)\}$ is an eventually positive solution of (1.1) which does not converges to zero. Then, there exist $\zeta_1 \ge \zeta_0$ such that $x(\zeta) > 0, x(\zeta - \kappa) > 0$ and $x(\zeta - \eta_i) > 0$ for $\zeta \ge \zeta_1$ and i = 1, 2, ..., m. Then we have (2.1). From Lemma 2.1, $\{y(\zeta)\}$ satisfies one of the cases (C_1) and (C_2) for $\zeta \ge \zeta_2$, where $\zeta_2 \ge \zeta_1$. We consider each of two cases separately.

Case 1. Let $\{y(\zeta)\}$ satisfies (C_1) for $\zeta \ge \zeta_2$. Therefore,

$$\begin{split} 0 &\geq \lim_{\zeta \to \infty} y(\zeta) = \limsup_{\zeta \to \infty} y(\zeta) \\ &\geq \limsup_{\zeta \to \infty} (x(\zeta) - px(\zeta - \kappa)) \\ &\geq \limsup_{\zeta \to \infty} x(\zeta) + \liminf_{\zeta \to \infty} (-px(\zeta - \kappa)) \\ &= (1 - p)\limsup_{\zeta \to \infty} x(\zeta) \end{split}$$

implies that $\limsup_{\zeta \to \infty} y(\zeta) = 0$ and hence $\lim_{\zeta \to \infty} x(\zeta) = 0$, which contradicts the assumption that $\{x(\zeta)\}$ does not converges to zero.

Case 2. Let $\{y(\zeta)\}$ satisfies (C_2) for $\zeta \ge \zeta_2$. The case follows from Theorem 3.1. Hence (3.1) is a sufficient condition.

The case where $\{x(\zeta)\}$ is an eventually negative solution is similar and we omit it here.

The necessary part is the same as in the Theorem 3.1. Thus, the proof of the theorem is complete. \Box

Theorem 3.3. Assume that (2.3) hold and exists a constant p such that $-1 \le -p \le p(\zeta) \le 0$, hold. Suppose that

$$\sum_{\zeta=\zeta_0}^{\infty} \left[\frac{1}{\varphi(\zeta)} \sum_{s=\zeta}^{\infty} \mu_j(s) \right]^{\frac{1}{\lambda}} = +\infty$$
(3.9)

for some j, then every solution of (1.1) is either oscillatory or converges to zero.

Proof. To prove it by contradiction, suppose that $\{x(\zeta)\}$ is an eventually positive solution of (1.1) which does not converges to zero and we use same type of argument as in the proof of Theorem 3.2 for the case (*C*₁). Let us consider $\{y(\zeta)\}$ satisfies (*C*₂) for $\zeta \ge \zeta_2$. By Remark 2.2, there exist a constant $\theta > 0$ and $\zeta_3 \ge \zeta_2$ such that $y(\zeta + \eta_i) \ge \theta$ for $\zeta \ge \zeta_3$ and i = 1, 2, 3, ..., m.

Upon using $y(\zeta) \le x(\zeta)$ and by assumption (2.3), we have

$$f(x(\zeta + \eta_i)) \ge f(y(\zeta + \eta_i))$$

= $\frac{f(y(\zeta + \eta_i))}{y^{v}(\zeta + \eta_i)} y^{v}(\zeta + \eta_i)$
 $\ge \frac{f(\theta)}{\theta^{v}} y^{v}(\zeta + \eta_i).$

Summing (1.1) from ζ to ∞ , we have

$$\lim_{A\to\infty} \left[\varphi(\zeta)(\Delta y(\zeta))^{\lambda} \right]_{\zeta}^{\infty} + \sum_{s=\zeta}^{\infty} \sum_{i=1}^{m} \mu_i(s) \frac{f(\theta)}{\theta^{\nu}} y^{\nu}(s+\eta_i) \leq 0.$$

Using that $\varphi(\zeta)(\Delta y(\zeta))^{\lambda}$ is positive and non-increasing, we have

$$\sum_{s=\zeta}^{\infty}\sum_{i=1}^{m}\mu_{i}(s)\frac{f(\theta)}{\theta^{\nu}}y^{\nu}(s+\eta_{i})\leq\varphi(\zeta)(\Delta y(\zeta))^{\lambda}$$

for all $\zeta \geq \zeta_3$ and all $j \in \{1, 2, ..., m\}$. Therefore,

$$\left[\frac{1}{\varphi(\zeta)}\sum_{s=\zeta}^{\infty}\sum_{i=1}^{m}\mu_{i}(s)\frac{f(\theta)}{\theta^{\nu}}y^{\nu}(s+\eta_{i})\right]^{\frac{1}{\lambda}} \leq \Delta y(\zeta). \quad (3.11)$$

Dividing by $y^{\frac{\nu}{\lambda}}(\zeta - \eta_j)$ and then summing from ζ_3 to ∞ , we have

$$\begin{split} &\left(\frac{f(\theta)}{\theta^{\nu}}\right)^{\frac{1}{\lambda}}\sum_{u=\zeta_{3}}^{\infty}\left[\frac{1}{\varphi(\zeta)}\sum_{s=u}^{\infty}\sum_{i=1}^{m}\mu_{i}(s)\frac{y^{\nu}(s+\eta_{i})}{y^{\nu}(u+\eta_{j})}\right]^{\frac{1}{\lambda}}\\ &\leq \sum_{u=\zeta_{3}}^{\infty}\frac{\Delta y(u)}{y^{\frac{\nu}{\lambda}}(u+\eta_{j})}\\ &\leq \sum_{u=\zeta_{3}}^{\infty}\frac{\Delta y(u)}{y^{\frac{\nu}{\lambda}}(u+1)}\\ &\leq \frac{y^{1-\frac{\nu}{\lambda}}(\zeta_{3})}{\frac{\nu}{\lambda}-1}. \end{split}$$

Since $\{y(\zeta)\}$ is increasing sequence, for $s \ge u$ we have $y^{\nu}(s + \eta_i) \ge y^{\nu}(u + \eta_i)$. Note that the summands $y^{\nu}(s + \eta_i)/y^{\nu}(u + \eta_j)$ are positive for all *i*, *j* and equal to 1 when i = j. Hence, the above inequality becomes

$$\left(\frac{f(\theta)}{\theta^{\nu}}\right)^{\frac{1}{\lambda}} \left[\sum_{u=\zeta_3}^{\infty} \frac{1}{\varphi(u)} \sum_{i=1}^{m} \mu_i(s)\right]^{\frac{1}{\lambda}} \leq \frac{y^{1-\frac{\nu}{\lambda}}(\zeta_3)}{\frac{\nu}{\lambda}-1} < \infty.$$

This contradicts (3.9). The case where $\{x(\zeta)\}$ is eventually negative solution is omitted since it can be dealt similarly. This proves the oscillation of all solutions.

Theorem 3.4. Assume that there exists a constant p such that $-1 < -p \le p(\zeta) \le 0$. If

$$\sum_{\zeta=\zeta_0}^{\infty} \left[\frac{1}{\varphi(u)} \sum_{s=\zeta}^{\infty} \sum_{i=1}^{m} \mu_i(s) \right]^{\frac{1}{\lambda}} < \infty$$
(3.12)

holds, then (1.1) admits a positive bounded solution.

Proof. Due to (3.12), it is possible to find $N \ge \eta$ such that

$$\sum_{u=N}^{\infty} \left[\frac{1}{\varphi(u)} \sum_{s=u}^{\infty} \sum_{i=1}^{m} \mu_i(s) \right]^{\frac{1}{\lambda}} \le \frac{1-p}{(5f(1))^{\frac{1}{\lambda}}}, \quad \theta > 0 \quad (3.13)$$

Ľ

We define the operator ϕ as follows: For the sequence $\{x(\zeta)\}_{\zeta=N-}^{\infty}$

$$(\phi x)(\zeta) = \begin{cases} (\phi x)(N); & \zeta_0 \le \zeta \le N \\ -p(\zeta)x(\zeta - \kappa) & \\ +\frac{1-p}{5}\sum_{u=N}^{\zeta-1} \left[\frac{1}{\varphi(u)}\sum_{s=u}^{\infty}\sum_{i=1}^{m}\mu_i(s) \\ \times f(x(s+\eta_i))\right]^{\frac{1}{\lambda}}, & \zeta \ge N+1 \end{cases}$$

Now, consider the sequence $\{v^{(k)}(\zeta)\}$ of successive approximations defined by

$$v^{(1)}(\zeta) \begin{cases} 0, & \zeta_0 \le \zeta \le N \\ \frac{1-p}{5}, & \zeta \ge N+1 \end{cases}$$

and for k = 2, 3, ...

$$v^{(k)}(\zeta) = (\phi v^{(k-1)})(\zeta).$$

Clearly,

$$\frac{1-p}{5} \le v^{(1)}(\zeta) \le 1$$
, for $\zeta \ge N+1$.

Now $v^{(2)}(\zeta) = (\phi v^{(1)})(\zeta) \ge \frac{1-p}{5}, \ \zeta \ge N+1$. Also for $\zeta \ge N+1$, N+1,

$$\begin{split} v^{(2)}(\zeta) &= (\phi v^{(1)})(\zeta) \\ &= -p(\zeta) v^{(1)}(\zeta - \kappa) + \frac{1 - p}{5} \\ &+ \sum_{u=N}^{\zeta - 1} \left[\frac{1}{\phi(u)} \sum_{s=u}^{\infty} \sum_{i=1}^{m} \mu_i(s) f(v^{(1)}(s + \eta_i)) \right]^{\frac{1}{\lambda}} \\ &\leq p + \frac{1 - p}{5} + (f(1))^{\frac{1}{\lambda}} \sum_{u=N}^{\zeta} \left[\frac{1}{\phi(u)} \sum_{s=u}^{\infty} \sum_{i=1}^{m} \mu_i(s) \right]^{\frac{1}{\lambda}} \\ &= p + \frac{1 - p}{5} + \frac{1 - p}{5}. \\ &= \frac{3p + 2}{5} < 1. \end{split}$$

Hence

$$\frac{1-p}{5} \le v^{(1)}(\zeta) \le v^{(2)}(\zeta) \le 1.$$

By mathematical induction, we can easily show that for k > 1.

$$\frac{1-p}{5} \le v^{(k-1)}(\zeta) \le v^{(k)}(\zeta) \le 1, \quad \zeta \ge N+1.$$

The rest of the proof follows from Theorem 3.1. This completes the proof of the theorem. $\hfill \Box$

Acknowledgment

The author is thankful to the referee for his valuable suggestions which improved the presentation of the paper.

References

- [1] R. P. Agarwal, Difference Equations and Inequalities, Theory, Methods and Applications, Second Editions, Revised and Expanded, *New York, Marcel Dekkar*, (2000).
- [2] R. P. Agarwal, P. J. Y. Wong, Advanced Topics in Difference Equations, *Kluwer Academic Publishers, Drodrecht*, (1997).
- ^[3] A. G. Balanov, N. B. Janson, P. V. E. McClintock, R. W. Tucks and C.H. T. Wang; Bifurcation analysis of a neutral delay differential equation modelling the torsional motion of driven drill-string, Chaos, *Solitons and Fractals*, 15(2003), 381-394.
- [4] A. Bellen, N. Guglielmi and A. E. Ruchli; Methods for linear systems of circuit delay differential equations of neutral type, *IEEE Trans. Circ. Syst - I*, 46(1999), 212-216.
- ^[5] P. Gopalakrishnan, A. Murugesan and C. Jayakumar, Oscillation conditions of the second order noncanonical difference equations, *J. Math. Computer Sci.*, (communicated).
- [6] K. Gopalsamy, Stability and Oscillations in Population Dynamics, *Kluwer Acad. Pub, Bostan*, (1992).
- [7] I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, *Clarendon Press*, *Oxford*, (1991).
- [8] X. Z. He, Oscillatory and asymptotic behaviour of second order nonlinear difference equations, *J. Math.Anal.Appl.*, 175 (1993), 482-495.
- [9] C. Jayakumar, A. Murugesan, C. Park and V. Govindan, Oscillation conditions of half-linear delay difference equations of second order, *Journal of Inequalities and Applications*, (communicated).
- [10] W. G. Kelley, A. C. Peterson, Difference Equations An Introduction with Applications, *New York, Academic Press*, (1991).
- ^[11] B. S. Lalli, Oscillation theorems for neutral difference equations, *Comput. Math. Appl.*, 28(1994), 191-204.
- [12] A. Murugesan and C. Jayakumar, Oscillation condition for second order half-linear advanced difference equation with variable coefficients, *Malaya Journal of Mathematik*, 8(4)(2020), 1872-1879.
- [13] E. Thandapani, Note on, Oscillation theorems for certain second order nonlinear difference equations, *J. Math. Anal. Appl.*, 224(1998), 349-355.
- [14] C. J. Tian and S. S. Cheng; Oscillation criteria for delay neutral difference equations with positive and negative coefficients, *Bul. Soc. parana Math.*, 21(2003), 1-12.
- [15] W. Xiong and J. Liang; Novel stability criteria for neutral systems with multiple time delays, Chaos, *Solitons and Fractals*, 32(2007), 1735-1741.
- [16] B. G. Zhang, Oscillation and asymptotic behaviour of second order nonlinear difference equations, *J. Math. Anal. Appl.*, 173(1993), 58-68.
- ^[17] Zhicheng Wang and Jianshe Yu, Oscillation criteria for second order nonlinear difference equations, *Funkcial*.

Oscillatory and asymptotic behavior of solutions to second-order non-linear neutral difference equations of advanced type — 1166/1166

Ekvac., 34(1991), 313-319.

[18] J. Zhou, T. Chen and L. Xiang, Robust synchronization of delayed neutral networks based on adaptive control and parameters identification, *Chaos, Solitons and Fractals*, 27(2006), 905-913.

> ******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

