

https://doi.org/10.26637/MJM0901/0201

Oscillatory and asymptotic behavior of solutions to second-order non-linear neutral difference equations of advanced type

C. Soundara Rajan^{1*} and A. Murugesan ²

Abstract

In this paper, necessary and sufficient conditions are obtained for oscillatory and asymptotic behavior of solutions to second-order non-linear neutral advanced difference equations of the form

$$
\Delta[\varphi(\zeta)(\Delta y(\zeta))^{\lambda}]+\sum_{i=1}^m\mu_i(\zeta)f(x(\zeta+\eta_i))=0;\quad \zeta\geq\zeta_0,
$$

where $y(\zeta) = x(\zeta) + p(\zeta)x(\zeta - \kappa),$ under the assumption $\sum_{\zeta = \zeta_0}^{\infty} \frac{1}{\frac{1}{\overline{\zeta}}}$ $\frac{1}{\varphi^{\frac{1}{\zeta}}}(\zeta)$ $=\infty$. Our main tool is Lebesgue's dominated

convergence theorem. Further, some illustrate examples showing the applicability of the new results are included.

Keywords

Oscillation, non-oscillation, neutral, second-order, non-linear, advanced, difference equations.

AMS Subject Classification

39A12, 39A13, 39A21.

¹*Department of Mathematics, Government Arts College (Autonomous)-636007, Tamil Nadu, India.* ²*Department of Mathematics, Government Arts College (Autonomous)-636007, Tamil Nadu, India.* ***Corresponding author**: ¹ socsrajan@gmail.com; ² amurugesan3@gmail.com **Article History**: Received **10** January **2021**; Accepted **27** March **2021** c 2021 MJM.

Contents

 [Introduction](#page-0-0) . 1160 [Preliminary Results](#page-1-0) . 1161 [Main Results](#page-1-1) . 1162 [References](#page-5-0) . 1165

1. Introduction

We consider the second-order non-linear neutral advanced difference equations of the form

$$
\Delta(\varphi(\zeta)(\Delta z(\zeta))^{\lambda}) + \sum_{i=1}^{m} \mu_i(\zeta) x^{\lambda} f(x(\zeta + \eta_i)) = 0; \quad \zeta \ge \zeta_0.
$$
\n(1.1)

where $y(\zeta) = x(\zeta) + p(\zeta)x(\zeta - \kappa)$ and Δ is the forward difference operator defined by $\Delta x(\zeta) = x(\zeta + 1) - x(\zeta)$. Throughout the paper, we use the following assumptions:

 (C_1) λ is a quotient of odd positive integers;

- (C_2) η_i (i=1,2,...,m) are positive integers;
- (C_3) κ is a positive integer;
- (C_4) { $\varphi(\zeta)$ } $\zeta = \zeta_0$ is sequence of positive real numbers;
- (*C*₅) for $i = 1, 2, ..., m$ { $\mu_i(\zeta)$ } $_{\zeta = \zeta_0}^{\infty}$ is a sequence of nonnegative real numbers and $\mu_i(\zeta) \neq 0$ for sufficiently large values of ζ ;
- (C_6) $f: R \to R$ is a continuous and strictly increasing function such that $uf(u) > 0$ for $u \in 0$;

(C₇)
$$
\sum_{\zeta=\zeta_0}^{\infty} \frac{1}{\varphi^{\frac{1}{\lambda}}(\zeta)} = \infty; \text{Letting}
$$

$$
R(\zeta, \zeta_0) = \sum_{s=\zeta_0}^{\zeta-1} \frac{1}{\varphi^{\frac{1}{\lambda}}(s)}
$$

and hence $R(\zeta, \zeta_0) \to \infty$ as $\zeta \to \infty$;

 (C_8) { $p(\zeta)$ } $\zeta = \zeta_0$ is a sequence of real numbers such that $-1 \leq p(\zeta) \leq 0.$

By a solution of [\(1.1\)](#page-0-1), we mean a real sequence $\{x(\zeta)\}\$ which is defined for all $\zeta \geq \zeta_0 - \kappa$ and satisfies equation [\(1.1\)](#page-0-1) for all $\zeta \in N(\zeta_0) = {\zeta_0, \zeta_0 + 1, \zeta_0 + 2, \ldots}$. A nontrivial solution $\{x(\zeta)\}\$ of equation [\(1.1\)](#page-0-1) is said to be oscillatory if it a neither eventually positive nor eventually negative and it is non-oscillatory otherwise.

In recent years, there has been an increasing interest in the study of oscillation and asymptotic behavior of solutions of nonlinear difference equations, see for example [\[1,](#page-5-1) [8,](#page-5-2) [11,](#page-5-3) [13,](#page-5-4) [16,](#page-5-5) [17\]](#page-5-6) and the references cited therein. Neutral difference and differential equations arise in many areas of applied mathematics, such as population dynamics [\[6\]](#page-5-7), stability theory [\[14,](#page-5-8) [15\]](#page-5-9), circuit theory[\[4\]](#page-5-10), bifurcation analysis [\[3\]](#page-5-11), dynamical behavior of delayed network system [\[18\]](#page-6-1), and so on. Therefore, these equations have attracted a great interest during the last few decades. For the general background of difference equations, one can refer to [\[1,](#page-5-1) [2,](#page-5-12) [7,](#page-5-13) [10\]](#page-5-14)

Murugesan et al. [\[12\]](#page-5-15) derived sufficient conditions for oscillation of all solutions of the second-order half-linear advanced difference equation

$$
\Delta(\varphi(\zeta)(\Delta x(\zeta))^{\lambda})+\mu(\zeta)x^{\lambda}(\zeta+\eta)=0,\quad \zeta\geq \zeta_0.
$$

Under the condition that $\sum_{\zeta=\zeta_0}^{\infty} \frac{1}{\zeta_0^{\frac{1}{2}}}$ $\frac{1}{\varphi \frac{1}{\lambda}(\zeta)} < \infty.$

Gopalakrishnan et al. [\[5\]](#page-5-16), we derived oscillatory conditions for the second-order noncanonical difference equation of the delay and advanced type

$$
\Delta(\varphi(\zeta)\Delta x(\zeta)) + \mu(\zeta)x(\zeta + \eta) = 0; \quad \zeta \ge \zeta_0.
$$

Jayakumar et al. [\[9\]](#page-5-17) investigated oscillatory and asymptotic behavior of a class of second-order non-linear delay difference equations

$$
\Delta(r(\zeta)(\Delta x(\zeta))^{\alpha})+q(\zeta)x^{\alpha}(\zeta-\sigma)=0, \quad \zeta\geq\zeta_o,
$$

and derived sufficient conditions under which every solution is either oscillatory or converges to zero.

2. Preliminary Results

Lemma 2.1. *If* $\{x(\zeta)\}\$ is an eventually positive solution of [\(1.1\)](#page-0-1)*, then* $\{y(\zeta)\}\$ *satisfies one of the following two posible cases;*

- (C_1) $y(\zeta) < 0$, $\Delta y(\zeta) > 0$ *and* $\Delta(\varphi(\zeta)(\Delta y(\zeta)))^{\lambda} < 0$ *for all large* ζ *;*
- (*C*2) *y*(ζ) > 0*,* ∆*y*(ζ) > 0 *and* ∆(ϕ(ζ)(∆*y*(ζ)))^λ < 0 *for all large* ζ *.*

Proof. Let $\{x(\zeta)\}\$ is an eventually positive solution of [\(1.1\)](#page-0-1). Then there exists a $\zeta_1 \geq \zeta_0$ such that $x(\zeta) > 0$ and $x(\zeta - \kappa) > 0$ 0 for all $\zeta \geq \zeta_1$. Then from [\(1.1\)](#page-0-1), we have

$$
\Delta(\varphi(\zeta)(\Delta y(\zeta))^{\lambda}) = -\sum_{i=1}^{m} \mu_i(\zeta) f(x(\zeta + \eta_i)) < 0, \text{ for all } \zeta \ge \zeta_1
$$

$$
(2.1)
$$

Consequently, $\{\varphi(\zeta)(\Delta y(\zeta))^{\lambda}\}\$ is nonincreasing for $\zeta \geq \zeta_1$. Since $\varphi(\zeta) > 0$, and thus either $\Delta y(\zeta) < 0$ or $\Delta y(\zeta) > 0$ for $\zeta \geq \zeta_2 \geq \zeta_1$.

If $\Delta y(\zeta) > 0$ for $\zeta \ge \zeta_2$, then we have (C_1) or (C_2) . We have prove that $\Delta y(\zeta) < 0$ cannot occur.

If $\Delta y(\zeta) < 0$ for $\zeta \ge \zeta_2$, then there exists $v > 0$ such that $\varphi(\zeta)(\Delta y(\zeta))^{\lambda} \leq -\nu$ for $\zeta \geq \zeta_2$.

$$
\Delta y(\zeta) \leq \frac{-\upsilon^{\frac{1}{\lambda}}}{\varphi^{\frac{1}{\lambda}}(\zeta)}.
$$

Sum the last inequality from ζ_2 to $\zeta - 1$, we have

$$
y(\zeta) \leq y(\zeta_2) - \upsilon^{\frac{1}{\lambda}} \sum_{s=\zeta_2}^{\zeta-1} \frac{1}{\varphi^{\frac{1}{\lambda}}(s)} \to \infty \text{ as } \zeta \to \infty.
$$

We consider now the following possibilities seperately.

If $\{x(\zeta)\}\$ is unbounded, then there exist a sequence $\{\zeta_k\}$ of positive integers such that $\zeta_k \to \infty$ as $k \to \infty$ and $x(\zeta_k) \to \infty$ as $k \to \infty$, where

$$
x(\zeta_k)=max\{x(s):\zeta_0\leq s\leq \zeta_k\}.
$$

Clearly, $x(\zeta_k - \kappa) \leq x(\zeta_k)$. Therefore, for all *k*,

$$
y(\zeta_k) = x(\zeta_k) + p(\zeta_k)x(\zeta_k - \kappa)
$$

\n
$$
\geq x(\zeta_k)(1 + p(\zeta_k)) > 0,
$$

which contradicts the fact that $\lim_{\zeta \to \infty} y(\zeta) = \infty$. If $\{x(\zeta)\}$ is bounded, then $\{y(\zeta)\}\$ is also bounded, which contradicts lim_{$\zeta \to \infty$} *y*(ζ) = −∞. Hence, {*y*(ζ)} satifies one of the (*C*₁) and (*C*₂). This completes the proof. and (C_2) . This completes the proof.

Remark 2.2. *If follows from* (*C*2) *of Lemma [2.1](#page-1-2) that there exists* $\theta > 0$ *such that* $y(\zeta) \geq \theta$ *for all large* ζ *.*

We assume that there exists a constant ν *such that* 0 < ν < λ *and*

$$
\frac{f(u)}{u^{\nu}} \ge \frac{f(v)}{v^{\nu}}, \text{ for } 0 < u < v. \tag{2.2}
$$

A typical example of a nonlinear function satisfying [\(2.2\)](#page-1-3) *is* $f(y) = |y|^{\xi} sgn(y)$ *with* $0 < \xi < v$.

Remark 2.3. *The condition* [\(2.2\)](#page-1-3) *implies that* $f(u)/u^v$ *is nonincreasing. We assume that there exists* ν < λ > 0 *such that*

$$
\frac{f(u)}{u^{\nu}} \le \frac{f(v)}{v^{\nu}}, \text{ for } 0 < u < v. \tag{2.3}
$$

A typical example of a nonlinear function satisfying [\(2.3\)](#page-1-4) *is* $f(y) = |y|^{\xi} sgn(y)$ *with* $v < \xi$.

Remark 2.4. *The condition* [\(2.3\)](#page-1-4) *implies that* $f(u)/u^v$ *is nondecreasing*

3. Main Results

Theorem 3.1. *Assume that* $\Delta \varphi(\zeta) \ge 0$ *and* [\(2.2\)](#page-1-3) *hold. If there exists a constant p such that* $-1 + (2/3)^{\frac{1}{\lambda}} \leq -p \leq p(\zeta) \leq 0$, *then every unbounded solution of* [\(1.1\)](#page-0-1) *oscillates if and only if*

$$
\sum_{\zeta=\zeta_0}^{\infty}\sum_{i=1}^{m}\mu_i(\zeta)f(\theta^{\frac{1}{\lambda}}R(\zeta+\eta_i))=+\infty, \forall \theta>0.
$$
 (3.1)

Proof. To prove sufficiency by contradiction, assume that ${x(\zeta)}$ is an unbounded non-oscillatory solution of [\(1.1\)](#page-0-1). Without loss of generality, we may suppose that $\{x(\zeta)\}\$ is an eventually positive solution of [\(1.1\)](#page-0-1). Then there exists $\zeta_1 \geq \zeta_0$ such that $x(\zeta) > 0$ and $x(\zeta - \kappa) > 0$. Then we have [\(2.1\)](#page-1-5). From Lemma [2.1,](#page-1-2) $\{y(\zeta)\}\$ satisfies one of the cases (C_1) and (C_2) for $\zeta \ge \zeta_2$, where $\zeta_2 \ge \zeta_1$. We consider each of two cases seperately.

Case 1. Let $\{y(\zeta)\}\$ satisfies (C_1) for $\zeta \geq \zeta_2$. As $\{x(\zeta)\}\$ is unbounded, there exists $N \ge \zeta_2$ such that $x(N) = max\{x(s):$ $\zeta_2 \le s \le N$ }. Then, $x(N) \le y(\zeta) + (1 - (2/3)^{\frac{1}{\lambda}})x(N - \kappa)$ *x*(*N*), which is a contradiction.

Case 2. Let $\{y(\zeta)\}\$ satisfies (C_2) for $\zeta \geq \zeta_2$. Since $\{\varphi(\zeta)(\Delta y(\zeta))^{\lambda}\}\$ is a positive, non-increasing, and

$$
\Delta y(\zeta) \le \left(\frac{\phi(\zeta_3)}{\phi(\zeta)}\right)^{\frac{1}{\lambda}}\Delta y(\zeta_3) \text{ for } \zeta \ge \zeta_3, \text{ where } \zeta_3 \ge \zeta_2.
$$

Summing this inequality from ζ_3 to $\zeta - 1$, we have

$$
y(\zeta) \leq y(\zeta_3) + \varphi^{\frac{1}{\lambda}}(\zeta_3) \Delta y(\zeta_3) R(\zeta, \zeta_3).
$$

Since $R(\zeta) \to \infty$ as $\zeta \to \infty$ there exists $\theta > 0$ and $\zeta_4 \geq \zeta_3$ such that

$$
y(\zeta) \le \theta^{\frac{1}{\lambda}} R(\zeta) \text{ for } \zeta \ge \zeta_4. \tag{3.2}
$$

Upon using $y(\zeta) \leq x(\zeta)$; [\(3.2\)](#page-2-0) and by the assumption [\(2.2\)](#page-1-3), we have

$$
f(x(\zeta + \eta_i)) \ge f(y(\zeta + \eta_i))
$$

=
$$
\frac{f(y(\zeta + \eta_i))}{y^{\nu}(\zeta + \eta_i)} y^{\nu}(\zeta + \eta_i)
$$

$$
\ge \frac{f(\theta^{\frac{1}{\lambda}} R(\zeta + \eta_i))}{(\theta^{\frac{1}{\lambda}} R(\zeta + \eta_i))^{\nu}} y^{\nu}(\zeta + \eta_i).
$$

Summing [\(1.1\)](#page-0-1) from ζ to ∞, we have

$$
\sum_{s=\zeta-\eta}^{\infty} \sum_{i=1}^{m} \mu_i(s) \frac{f(\theta^{\frac{1}{\lambda}} R(s+\eta_i))}{(\theta^{\frac{1}{\lambda}} R(s+\eta_i))^{\nu}} y^{\nu}(s+\eta_i)
$$

$$
\leq \varphi(\zeta) (\Delta y(\zeta))^{\lambda}, \quad \zeta \geq \zeta_4 \quad (3.3)
$$

Since $\Delta \varphi(\zeta) \geq 0$ and from [\(3.3\)](#page-2-1), we obtain,

$$
\Delta y(\zeta) \geq \left[\frac{1}{\varphi(\zeta + \eta)} \sum_{s=\zeta}^{\infty} \sum_{i=1}^{m} \mu_i(s) \frac{f(\theta^{\frac{1}{\lambda}} R(s + \eta_i))}{(\theta^{\frac{1}{\lambda}} R(s + \eta_i))^{\nu}} y^{\nu}(s + \eta_i) \right]^{\frac{1}{\lambda}}
$$

Summing the above inequality from ζ_4 to $\zeta - \eta - 1$, we obtain

$$
y(\zeta - \eta) - y(\zeta_4)
$$

\n
$$
\geq \sum_{u=\zeta_4}^{\zeta-\eta-1} \left[\frac{1}{\varphi(u+\eta)} \sum_{s=\zeta}^{\infty} \sum_{i=1}^{m} \mu_i(s) \frac{f(\theta^{\frac{1}{\lambda}} R(s+\eta_i))}{(\theta^{\frac{1}{\lambda}} R(s+\eta_i))^{\nu}} \right]
$$

\n
$$
\times y^{\nu}(s+\eta_i) \bigg|^{\frac{1}{\lambda}}.
$$

Using the increasing nature of $\{y(\zeta)\}\$ in the above inequality, we have

$$
y(\zeta) \geq \sum_{u=\zeta_4}^{\zeta-\eta-1} \left[\frac{1}{\varphi(u+\eta)} \sum_{s=\zeta}^{\infty} \sum_{i=1}^{m} \mu_i(s) \frac{f(\theta^{\frac{1}{\lambda}} R(s+\eta_i))}{(\theta^{\frac{1}{\lambda}} R(s+\eta_i))^v} y^v(s+\eta_i) \right]^{\frac{1}{\lambda}}.
$$
\n(3.4)

Set

$$
w(\zeta) = \sum_{s=\zeta}^{\infty} \sum_{i=1}^{m} \mu_i(s) \frac{f(\theta^{\frac{1}{\lambda}} R(s+\eta_i))}{(\theta^{\frac{1}{\lambda}} R(s+\eta_i))^v} y^v(s+\eta_i). \quad (3.5)
$$

From [\(3.4\)](#page-2-2) and [\(3.5\)](#page-2-3), and since $y(\zeta) > 0$, we obtain $y(\zeta) > 0$ $R(\zeta, \zeta_4 + \eta) w^{\frac{1}{\lambda}}(\zeta - \eta)$. Since $\lim_{\zeta \to \infty} R(\zeta) = \infty$, there exists $\zeta_5 \geq \zeta_4$ such that

$$
R(\zeta, \zeta_4 + \eta) \ge \frac{1}{2}R(\zeta) \text{ for } \zeta \ge \zeta_5. \tag{3.6}
$$

Then

$$
y(\zeta) > \frac{1}{2}R(\zeta)w^{\frac{1}{\lambda}}(\zeta - \eta) \text{ for } \zeta \ge \zeta_5,
$$
 (3.7)

and

$$
\frac{y^{\mathsf{V}}(\zeta)}{(\theta^{\frac{1}{\lambda}}R(\zeta))^{\mathsf{V}}} \geq \frac{w^{\frac{\mathsf{V}}{\lambda}}(\zeta-\eta)}{(2\theta^{\frac{1}{\lambda}})^{\mathsf{V}}}.
$$

Now,

$$
\Delta w(\zeta)
$$
\n
$$
= -\sum_{i=1}^{\zeta} \mu_i(\zeta) \frac{f(\theta^{\frac{1}{\lambda}} R(\zeta + \eta_i))}{(\theta^{\frac{1}{\lambda}} R(\zeta + \eta_i))^{\gamma}} y^{\gamma}(\zeta + \eta_i)
$$
\n
$$
\leq -\sum_{i=1}^{\zeta} \mu_i(\zeta) \frac{f(\theta^{\frac{1}{\lambda}} R(\zeta + \eta_i))}{(2\theta^{\frac{1}{\lambda}})^{\gamma}} w^{\frac{\gamma}{\lambda}}(\zeta - \eta + \eta_i) \leq 0.
$$

Thus, $\{w(\zeta)\}\$ is non-increasing and hence $w^{\frac{v}{\lambda}}(\zeta - \eta + \eta_i)/w^{\frac{v}{\lambda}}(\zeta) \ge 1$, and

$$
\Delta w^{1-\frac{\nu}{\lambda}}(\zeta) \leq \left(1-\frac{\nu}{\lambda}\right)w^{-\frac{\nu}{\lambda}}(\zeta)\Delta w(\zeta)
$$

$$
\leq -\frac{(1-\frac{\nu}{\lambda})}{(2\theta^{\frac{1}{\lambda}})^{\nu}}\sum_{i=1}^{m}\mu_{i}f(\theta^{\frac{1}{\lambda}}R(\zeta+\eta_{i})).
$$

Summing this inequality from ζ_5 to $\zeta - 1$, we get

$$
\left[w^{1-\frac{\nu}{\lambda}}(s)\right]_{s=\zeta_5}^{\zeta-1} \leq -\frac{(1-\frac{\nu}{\lambda})}{(2\theta^{\frac{1}{\lambda}})^{\nu}} \sum_{s=\zeta_5}^{\zeta-1} \sum_{i=1}^m \mu_i(s) f(\theta^{\frac{1}{\lambda}} R(s+\eta_i)).
$$

.

Since $\frac{v}{\lambda} < 1$ and $\{w(\zeta)\}\$ is positive and non-increasing, we have

$$
\sum_{s=\zeta_5}^{\zeta-1}\sum_{i=1}^m\mu_if(\theta^{\frac{1}{\lambda}}R(s+\eta_i))\leq\frac{(2\theta^{\frac{1}{\lambda}})^{\nu}}{(1-\frac{\nu}{\lambda})}w^{1-\frac{\nu}{\lambda}}(\zeta_5)<\infty.
$$

This contradicts [\(3.1\)](#page-2-4).

If $\{x(\zeta)\}\$ is eventually negative, then $x(\zeta) < 0$ for $\zeta \geq \zeta_1$. Then we set $y(\zeta) := -x(\zeta)$ for $\zeta \ge \zeta_1$ in [\(1.1\)](#page-0-1).

Using (C_6) , we find

$$
\Delta \left[\varphi(\zeta) \left[\Delta(y(\zeta) + p(\zeta)y(\zeta - \kappa)) \right]^{\lambda} \right] + \sum_{i=1}^{m} \mu_i(\zeta) g(y(\zeta + \eta_i)) = 0 \text{ for } \zeta \geq \zeta_1,
$$

where $g(u) = -f(-u)$ and *g* is also satifies (C_6). Then, proceeding as above, we find the same contradiction. This proves the oscillation of all solutions.

Next, we show that (3.1) is necessary. Suppose that (3.1) does not hold; so for some $\theta > 0$ the sum in [\(3.1\)](#page-2-4) is finite. Then there exists $N \geq \eta$ such that

$$
\sum_{\zeta=N}^{\infty}\sum_{i=1}^{m}\mu_{i}(\zeta)f(\theta^{\frac{1}{\lambda}}R(\zeta+\eta_{i}))\leq\frac{\theta}{3}
$$
\n(3.8)

we define the operator ϕ as follows:

For the sequence $\{x(\zeta)\}_{\zeta=N-\eta}^{\infty}$,

$$
(\phi x)(\zeta) = \begin{cases} (\phi x)(N); & N - \eta \le \zeta \le N \\ -p(\zeta)x(\zeta - \kappa) \\ + \sum_{u=N}^{\zeta - 1} \left[\frac{1}{\phi(u)} \left[\frac{\theta}{3} + \sum_{u=N}^{\infty} \frac{1}{\phi(u)} \left[\frac{\theta}{3} \right] \right] \right]^{\frac{1}{\zeta}}, & \zeta \ge N + 1 \\ + \sum_{u=N}^{\infty} \sum_{i=1}^{m} \mu_i(s) f(x(s + \eta_i)) \right]^{\frac{1}{\zeta}}, & \zeta \ge N + 1 \end{cases}
$$

Now, consider the sequence $\{v^{(k)}(\zeta)\}\$ of successive approximations defined by

$$
\nu^{(1)}(\zeta) = \begin{cases} 0, & N - \eta \le \zeta \le N \\ \left(\frac{\theta}{3}\right)^{\frac{1}{\lambda}} R(\zeta, N), & \zeta \ge N + 1 \end{cases}
$$

and for $k = 2, 3, \ldots$.

$$
v^{(k)}(\zeta)=(\phi v^{(k-1)})(\zeta)
$$

Clearly for $\zeta \geq N+1$,

$$
\left(\frac{\theta}{3}\right)^{\frac{1}{\lambda}}R(\zeta,N)\leq \nu^{(1)}(\zeta)\leq \theta^{\frac{1}{\lambda}}R(\zeta,N).
$$

For, $\zeta \geq N+1$,

$$
v^{(2)}(\zeta) = (\phi v^{(1)})(\zeta)
$$

= $-p(\zeta)v^{(1)}(\zeta - \kappa) + \sum_{u=N}^{\zeta-1} \left[\frac{1}{\phi(u)} \left[\frac{\theta}{3} + \sum_{s=u}^{m} \sum_{i=1}^{m} \mu_i(s) f(v^{(1)}(s + \eta_i)) \right] \right]^{\frac{1}{\lambda}}$

For $\zeta \ge N+1$, we have $v^{(1)}(\zeta) \le \theta^{\frac{1}{\lambda}} R(\zeta, N)$ and using the increasing nature of f in the above inequality we obtain

$$
\nu^{(2)}(\zeta) \leq p\theta^{\frac{1}{\lambda}}R(\zeta - \kappa, N) + \sum_{u=N}^{\zeta - 1} \left[\frac{1}{\varphi(u)} \left[\frac{\theta}{3} + \frac{\theta}{3} \right] \right]^{\frac{1}{\lambda}}
$$

\n
$$
\leq p\theta^{\frac{1}{\lambda}}R(\zeta, N) + \left(\frac{2\theta}{3} \right)^{\frac{1}{\lambda}} R(\zeta, N)
$$

\n
$$
= \left(p + \left(\frac{2}{3} \right)^{\frac{1}{\lambda}} \right) \theta^{\frac{1}{\lambda}}R(\zeta, N)
$$

\n
$$
\leq p\theta^{\frac{1}{\lambda}}R(\zeta, N)
$$

Thus, for $\zeta \geq N+1$, we have

$$
\left(\frac{\theta}{3}\right)^{\lambda}R(\zeta,N)\leq v^{(1)}(\zeta)\leq \theta^{\frac{1}{3}}R(\zeta,N).
$$

Now, for $\zeta \geq N+1$

$$
v^{(2)}(\zeta) = (\phi v^{(1)})(\zeta)
$$

=
$$
\sum_{u=N}^{\zeta-1} \left[\frac{1}{\phi(u)} \left[\frac{\theta}{3} + \sum_{s=u}^{\infty} \sum_{i=1}^{m} \mu_i(s) f(x(s+\eta_i)) \right] \right]^{\frac{1}{\lambda}}
$$

$$
\geq \sum_{u=N}^{\zeta-1} \left(\frac{1}{\phi(u)} \frac{\theta}{3} \right)^{\frac{1}{\lambda}}
$$

=
$$
\left(\frac{\theta}{3} \right)^{\frac{1}{\lambda}} R(\zeta, N)
$$

Thus, we have, for $\zeta \geq N+1$,

$$
\left(\frac{\theta}{3}\right)^{\frac{1}{\lambda}}R(\zeta,N)=\nu^{(1)}(\zeta)\leq \nu^{(2)}(\zeta)\leq \theta^{\frac{1}{\lambda}}R(\zeta,N).
$$

By mathematics induction, we can easily prove that for $k > 1$.

$$
\left(\frac{\theta}{3}\right)^{\frac{1}{\lambda}}R(\zeta,N)\leq \nu^{(k-1)}(\zeta)\leq \nu^{(k)}(\zeta)\leq \theta^{\frac{1}{\lambda}}R(\zeta,N)
$$

for $\zeta \geq N + 1$. Thus, $\{v^{(k)}(\zeta)\}\$ is a pointwise convergent to some sequence $v^* = \{v^*(\zeta)\}\$. By means of the Lebesgue dominated convergence theorem, we obtain

 $(\phi v^*)(\zeta) = v^*(\zeta)$. We can easily show that $\{v^*(\zeta)\}\$ is an eventually positive solution of the equation [\(1.1\)](#page-0-1) for $\zeta > N \eta$. This contradiction shows that [\(3.1\)](#page-2-4) is necessary condition. This completes the proof. \Box

Theorem 3.2. *Assume that* $\Delta \varphi(\zeta) \geq 0$ *and* [\(2.2\)](#page-1-3)*. If there exists a constant p such that* $-1 + \left(\frac{2}{3}\right)^{\frac{1}{\lambda}} \leq -p \leq p(\zeta) \leq 0$, *then every solution of* [\(1.1\)](#page-0-1) *oscillates or converges to zero if and only if* [\(3.1\)](#page-2-4) *holds for every* $\theta > 0$ *.*

Proof. To prove sufficiency by contradiction, we assume that ${x(\zeta)}$ is an eventually positive solution of [\(1.1\)](#page-0-1) which does not converges to zero. Then, there exist $\zeta_1 \geq \zeta_0$ such that $x(\zeta) > 0$, $x(\zeta - \kappa) > 0$ and $x(\zeta - \eta_i) > 0$ for $\zeta \geq \zeta_1$ and $i = 1, 2, ..., m$. Then we have [\(2.1\)](#page-1-5). From Lemma [2.1,](#page-1-2) $\{y(\zeta)\}$ satisfies one of the cases (C_1) and (C_2) for $\zeta \geq \zeta_2$, where $\zeta_2 \geq \zeta_1$. We consider each of two cases separately.

Case 1. Let $\{y(\zeta)\}\$ satisfies (C_1) for $\zeta \geq \zeta_2$. Therefore,

$$
0 \ge \lim_{\zeta \to \infty} y(\zeta) = \limsup_{\zeta \to \infty} y(\zeta)
$$

\n
$$
\ge \limsup_{\zeta \to \infty} (x(\zeta) - px(\zeta - \kappa))
$$

\n
$$
\ge \limsup_{\zeta \to \infty} x(\zeta) + \liminf_{\zeta \to \infty} (-px(\zeta - \kappa))
$$

\n
$$
= (1 - p) \limsup_{\zeta \to \infty} x(\zeta)
$$

implies that $\limsup_{\zeta \to \infty} y(\zeta) = 0$ and hence $\lim_{\zeta \to \infty} x(\zeta) = 0$ 0, which contradicts the assumption that $\{x(\zeta)\}\)$ does not converges to zero.

Case 2. Let $\{y(\zeta)\}\$ satisfies (C_2) for $\zeta \geq \zeta_2$. The case follows from Theorem [3.1.](#page-2-5) Hence [\(3.1\)](#page-2-4) is a sufficient condition.

The case where $\{x(\zeta)\}\$ is an eventually negative solution is similar and we omit it here.

The necessary part is the same as in the Theorem [3.1.](#page-2-5) Thus, the proof of the theorem is complete. \Box

Theorem 3.3. *Assume that* [\(2.3\)](#page-1-4) *hold and exists a constant p such that* $-1 \leq -p \leq p(\zeta) \leq 0$ *, hold. Suppose that*

$$
\sum_{\zeta=\zeta_0}^{\infty} \left[\frac{1}{\varphi(\zeta)} \sum_{s=\zeta}^{\infty} \mu_j(s) \right]^{\frac{1}{\lambda}} = +\infty \tag{3.9}
$$

for some j, then every solution of [\(1.1\)](#page-0-1) *is either oscillatory or converges to zero.*

Proof. To prove it by contradiction, suppose that $\{x(\zeta)\}\$ is an eventually positive solution of [\(1.1\)](#page-0-1) which does not converges to zero and we use same type of argument as in the proof of Theorem [3.2](#page-3-0) for the case (C_1) . Let us consider $\{y(\zeta)\}$ satisfies (C_2) for $\zeta \ge \zeta_2$. By Remark [2.2,](#page-1-6) there exist a constant $\theta > 0$ and $\zeta_3 \geq \zeta_2$ such that $y(\zeta + \eta_i) \geq \theta$ for $\zeta \geq \zeta_3$ and $i = 1, 2, 3, \ldots, m$.

Upon using $y(\zeta) \leq x(\zeta)$ and by assumption [\(2.3\)](#page-1-4), we have

$$
f(x(\zeta + \eta_i)) \ge f(y(\zeta + \eta_i))
$$

=
$$
\frac{f(y(\zeta + \eta_i))}{y^{\nu}(\zeta + \eta_i)} y^{\nu}(\zeta + \eta_i)
$$

$$
\ge \frac{f(\theta)}{\theta^{\nu}} y^{\nu}(\zeta + \eta_i).
$$

Summing [\(1.1\)](#page-0-1) from ζ to ∞, we have

$$
\lim_{A\to\infty}\Big[\varphi(\zeta)(\Delta y(\zeta))^{\lambda}\Big]_{\zeta}^{\infty}+\sum_{s=\zeta}^{\infty}\sum_{i=1}^{m}\mu_{i}(s)\frac{f(\theta)}{\theta^{\nu}}y^{\nu}(s+\eta_{i})\leq 0.
$$

$$
(3.10)
$$

Using that $\varphi(\zeta)(\Delta y(\zeta))^{\lambda}$ is positive and non-increasing, we have

$$
\sum_{s=\zeta}^{\infty}\sum_{i=1}^{m}\mu_i(s)\frac{f(\theta)}{\theta^{\nu}}y^{\nu}(s+\eta_i)\leq \varphi(\zeta)(\Delta y(\zeta))^{\lambda}
$$

for all $\zeta \geq \zeta_3$ and all $j \in \{1, 2, ..., m\}$. Therefore,

$$
\left[\frac{1}{\varphi(\zeta)}\sum_{s=\zeta}^{\infty}\sum_{i=1}^{m}\mu_i(s)\frac{f(\theta)}{\theta^{\nu}}y^{\nu}(s+\eta_i)\right]^{\frac{1}{\lambda}} \leq \Delta y(\zeta). \quad (3.11)
$$

Dividing by $y^{\frac{v}{\lambda}}(\zeta - \eta_j)$ and then summing from ζ_3 to ∞ , we have

$$
\begin{split}\n&\left(\frac{f(\theta)}{\theta^{\nu}}\right)^{\frac{1}{\lambda}} \sum_{u=\zeta_{3}}^{\infty} \left[\frac{1}{\varphi(\zeta)} \sum_{s=u}^{\infty} \sum_{i=1}^{m} \mu_{i}(s) \frac{y^{\nu}(s+\eta_{i})}{y^{\nu}(u+\eta_{j})}\right]^{\frac{1}{\lambda}} \\
&\leq \sum_{u=\zeta_{3}}^{\infty} \frac{\Delta y(u)}{y^{\frac{\nu}{\lambda}}(u+\eta_{j})} \\
&\leq \sum_{u=\zeta_{3}}^{\infty} \frac{\Delta y(u)}{y^{\frac{\nu}{\lambda}}(u+1)} \\
&\leq \frac{y^{1-\frac{\nu}{\lambda}}(\zeta_{3})}{\frac{\nu}{\lambda}-1}.\n\end{split}
$$

Since $\{y(\zeta)\}\$ is increasing sequence, for $s \ge u$ we have $y^v(s + \zeta)$ η_i) $\geq y^{\nu}(u + \eta_i)$. Note that the summands $y^{\nu}(s + \eta_i)/y^{\nu}(u + \eta_i)$ η_i) are positive for all *i*, *j* and equal to 1 when $i = j$. Hence, the above inequality becomes

$$
\left(\frac{f(\theta)}{\theta^{\nu}}\right)^{\frac{1}{\lambda}}\left[\sum_{u=\zeta_3}^{\infty}\frac{1}{\varphi(u)}\sum_{i=1}^{m}\mu_i(s)\right]^{\frac{1}{\lambda}}\leq \frac{y^{1-\frac{\nu}{\lambda}}(\zeta_3)}{\frac{\nu}{\lambda}-1}<\infty.
$$

This contradicts [\(3.9\)](#page-4-0). The case where $\{x(\zeta)\}\$ is eventually negative solution is omitted since it can be dealt similarly. This proves the oscillation of all solutions. □

Theorem 3.4. *Assume that there exists a constant p such that* $-1 < -p \le p(\zeta) \le 0$. If

$$
\sum_{\zeta=\zeta_0}^{\infty} \left[\frac{1}{\varphi(u)} \sum_{s=\zeta}^{\infty} \sum_{i=1}^{m} \mu_i(s) \right]^{\frac{1}{\lambda}} < \infty \tag{3.12}
$$

holds, then [\(1.1\)](#page-0-1) *admits a positive bounded solution.*

Proof. Due to [\(3.12\)](#page-4-1), it is possible to find $N \geq \eta$ such that

$$
\sum_{u=N}^{\infty} \left[\frac{1}{\varphi(u)} \sum_{s=u}^{\infty} \sum_{i=1}^{m} \mu_i(s) \right]^{\frac{1}{\lambda}} \leq \frac{1-p}{(5f(1))^{\frac{1}{\lambda}}}, \quad \theta > 0 \quad (3.13)
$$

 \mathcal{L}

We define the operator ϕ as follows: For the sequence $\{x(\zeta)\}_{\zeta=N-1}^{\infty}$

$$
(\phi x)(\zeta) = \begin{cases} (\phi x)(N); & \zeta_0 \le \zeta \le N \\ -p(\zeta)x(\zeta - \kappa) \\ +\frac{1-p}{5} \sum_{u=N}^{\zeta - 1} \left[\frac{1}{\phi(u)} \sum_{s=u}^{\infty} \sum_{i=1}^{m} \mu_i(s) \\ \times f(x(s + \eta_i)) \right]^{\frac{1}{\zeta}}, & \zeta \ge N + 1 \end{cases}
$$

Now, consider the sequence $\{v^{(k)}(\zeta)\}\$ of successive approximations defined by

$$
\nu^{(1)}(\zeta) \begin{cases} 0, & \zeta_0 \le \zeta \le N \\ \frac{1-p}{5}, & \zeta \ge N+1 \end{cases}
$$

and for $k = 2, 3, \ldots$

$$
v^{(k)}(\zeta) = (\phi v^{(k-1)})(\zeta).
$$

Clearly,

$$
\frac{1-p}{5} \le v^{(1)}(\zeta) \le 1, \text{ for } \zeta \ge N+1.
$$

Now $v^{(2)}(\zeta) = (\phi v^{(1)})(\zeta) \ge \frac{1-p}{5}$ $\frac{-p}{5}$, $\zeta \geq N+1$. Also for $\zeta \geq$ $N+1$,

$$
v^{(2)}(\zeta) = (\phi v^{(1)})(\zeta)
$$

= $-p(\zeta)v^{(1)}(\zeta - \kappa) + \frac{1-p}{5}$
 $+ \sum_{u=N}^{\zeta-1} \left[\frac{1}{\phi(u)} \sum_{s=u}^{\infty} \sum_{i=1}^{m} \mu_i(s) f(v^{(1)}(s + \eta_i)) \right]^{\frac{1}{\lambda}}$
 $\leq p + \frac{1-p}{5} + (f(1))^{\frac{1}{\lambda}} \sum_{u=N}^{\zeta} \left[\frac{1}{\phi(u)} \sum_{s=u}^{\infty} \sum_{i=1}^{m} \mu_i(s) \right]^{\frac{1}{\lambda}}$
= $p + \frac{1-p}{5} + \frac{1-p}{5}$.
= $\frac{3p+2}{5} < 1$.

Hence

$$
\frac{1-p}{5} \leq v^{(1)}(\zeta) \leq v^{(2)}(\zeta) \leq 1.
$$

By mathematical induction, we can easily show that for $k > 1$.

$$
\frac{1-p}{5} \le v^{(k-1)}(\zeta) \le v^{(k)}(\zeta) \le 1, \quad \zeta \ge N+1.
$$

The rest of the proof follows from Theorem [3.1.](#page-2-5) This completes the proof of the theorem. \Box

Acknowledgment

The author is thankful to the referee for his valuable suggestions which improved the presentation of the paper.

References

- [1] R. P. Agarwal, Difference Equations and Inequalities, Theory, Methods and Applications, Second Editions, Revised and Expanded, *New York, Marcel Dekkar*, (2000).
- [2] R. P. Agarwal, P. J. Y. Wong, Advanced Topics in Difference Equations, *Kluwer Academic Publishers, Drodrecht*, (1997).
- [3] A. G. Balanov, N. B. Janson, P. V. E. McClintock, R. W. Tucks and C.H. T. Wang; Bifurcation analysis of a neutral delay differential equation modelling the torsional motion of driven drill-string, Chaos, *Solitons and Fractals*, 15(2003), 381-394.
- [4] A. Bellen, N. Guglielmi and A. E. Ruchli; Methods for linear systems of circuit delay differential equations of neutral type, *IEEE Trans. Circ. Syst - I*, 46(1999), 212- 216.
- [5] P. Gopalakrishnan, A. Murugesan and C. Jayakumar, Oscillation conditions of the second order noncanonical difference equations, *J. Math. Computer Sci.*, (communicated).
- [6] K. Gopalsamy, Stability and Oscillations in Population Dynamics, *Kluwer Acad. Pub, Bostan*, (1992).
- [7] I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, *Clarendon Press, Oxford*, (1991).
- [8] X. Z. He, Oscillatory and asymptotic behaviour of second order nonlinear difference equations, *J. Math.Anal.Appl.*, 175 (1993), 482-495.
- [9] C. Jayakumar, A. Murugesan, C. Park and V. Govindan, Oscillation conditions of half-linear delay difference equations of second order, *Journal of Inequalities and Applications*, (communicated).
- [10] W. G. Kelley, A. C. Peterson, Difference Equations An Introduction with Applications, *New York, Academic Press*, (1991).
- [11] B. S. Lalli, Oscillation theorems for neutral difference equations, *Comput. Math. Appl.*, 28(1994), 191-204.
- [12] A. Murugesan and C. Jayakumar, Oscillation condition for second order half-linear advanced difference equation with variable coefficients, *Malaya Journal of Mathematik*, 8(4)(2020), 1872-1879.
- [13] E. Thandapani, Note on, Oscillation theorems for certain second order nonlinear difference equations, *J. Math. Anal. Appl.*, 224(1998), 349-355.
- [14] C. J. Tian and S. S. Cheng; Oscillation criteria for delay neutral difference equations with positive and negative coefficients, *Bul. Soc. parana Math.*, 21(2003), 1-12.
- [15] W. Xiong and J. Liang; Novel stability criteria for neutral systems with multiple time delays, Chaos, *Solitons and Fractals*, 32(2007), 1735-1741.
- [16] B. G. Zhang, Oscillation and asymptotic behaviour of second order nonlinear difference equations, *J. Math. Anal. Appl.*, 173(1993), 58-68.
- [17] Zhicheng Wang and Jianshe Yu, Oscillation criteria for second order nonlinear difference equations, *Funkcial.*

Oscillatory and asymptotic behavior of solutions to second-order non-linear neutral difference equations of advanced type — 1166[/1166](#page-6-0)

Ekvac., 34(1991), 313-319.

[18] J. Zhou, T. Chen and L. Xiang, Robust synchronization of delayed neutral networks based on adaptive control and parameters identification, *Chaos, Solitons and Fractals*, 27(2006), 905-913.

> $**********$ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 $\star\star\star\star\star\star\star\star\star$

