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Oscillatory and asymptotic behavior of solutions to
second-order non-linear neutral difference
equations of advanced type
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Abstract
In this paper, necessary and sufficient conditions are obtained for oscillatory and asymptotic behavior of solutions
to second-order non-linear neutral advanced difference equations of the form

AR AYEOM + Y (O FGE+n) =0 £ >,
i=1

where y(&) = x(&) + p(£)x( — k), under the assumption 7 —— = 0. Our main tool is Lebesgue’s dominated
(9]

convergence theorem. Further, some illustrate examples showing the applicability of the new results are included.
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1. Introduction
We consider the second-order non-linear neutral advanced
difference equations of the form

(C¢) f:R— Risacontinuous and strictly increasing func-
tion such that uf(u) > 0 for u € 0;

m (€1) X%y, f = oo; Letting
A@( &) Az O+ Y (O F((C+mi)) =0, > 9% (0) B
i=1 B
(L.D) RE.0) =Y ;( :
where y(§) =x(8) + p(&)x(§ — k) and A is the forward differ- =b @
ence operator defined by Ax() = x(& + 1) —x(). Through- and hence R({,{y) — oo as { — oo

out the paper, we use the following assumptions: (Cs) {p( C>}°§°=Co is a sequence of real numbers such that

(C1) A is a quotient of odd positive integers; —-1<p(f) <o.
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By a solution of (1.1), we mean a real sequence {x({)}
which is defined for all { > {y — x and satisfies equation
(L.1)forall £ e N(&) = {&o, 6o+ 1,80+2,...}. A nontrivial
solution {x(&)} of equation (1.1) is said to be oscillatory if it
a neither eventually positive nor eventually negative and it is
non-oscillatory otherwise.

In recent years, there has been an increasing interest
in the study of oscillation and asymptotic behavior of so-
Iutions of nonlinear difference equations, see for example
[1,8, 11, 13, 16, 17] and the references cited therein. Neutral
difference and differential equations arise in many areas of
applied mathematics, such as population dynamics [6], stabil-
ity theory [14, 15], circuit theory[4], bifurcation analysis [3],
dynamical behavior of delayed network system [18], and so
on. Therefore, these equations have attracted a great interest
during the last few decades. For the general background of
difference equations, one can refer to [1, 2, 7, 10]

Murugesan et al. [12] derived sufficient conditions for
oscillation of all solutions of the second-order half-linear
advanced difference equation

A(@(E)AX(EN!) + 1Ot (E+1) =0,

Under the condition that Y5, —— < oo,
0 ko)
Gopalakrishnan et al. [5], we derived oscillatory condi-
tions for the second-order noncanonical difference equation

of the delay and advanced type
A(@(S)Ax(8)) +u(E)x(E+n)=0: ¢ =&

Jayakumar et al. [9] investigated oscillatory and asymp-
totic behavior of a class of second-order non-linear delay
difference equations

¢ > G-

A(r(E)(Ax(£)*) +q(E)x*(E—0) =0, £ =0,

and derived sufficient conditions under which every solution
is either oscillatory or converges to zero.

2. Preliminary Results

Lemma 2.1. If {x({)} is an eventually positive solution of
(1.1), then {y(&)} satisfies one of the following two posible
cases;

(1) ¥(&) <(:0, AY(§) > 0 and A(@($)(Ay(§)* <0 for all
large C;

(G2) ¥(&) >(:0, AY(§) > 0 and A(@($)(Ay(§)* < 0 for all
large C.

Proof. Let {x({)} is an eventually positive solution of (1.1).
Then there exists a §; > §p such that x({) > 0 and x({ — x) >
0 for all { > &;. Then from (1.1), we have

AP BYEN) = 3 () F((E+m)) <0, forall { > &
i=1

1161

advanced type — 1161/1166

2.1

Consequently, {¢(&)(Ay(£))*} is nonincreasing for & > {;.
Since @(&) > 0, and thus either Ay({) < 0 or Ay(&) > 0 for
£>6>40.

If Ay(§) > 0 for § > {5, then we have (C)) or (C2). We
have prove that Ay({) < 0 cannot occur.

If Ay() < 0 for § > &, then there exists v > 0 such that

P(O)My(E)} < —vfor § > .

e

AY(g) < ——.
% (0)

Sum the last inequality from § to § — 1, we have

L 8!
WO <y(G) -vi ¥
s=0 (pl(s)

—o0as § — oo,

We consider now the following possibilities seperately.

If {x({)} is unbounded, then there exist a sequence {;}
of positive integers such that § — oo as k — oo and x({;) — o0
as k — oo, where

x(&) = max{x(s) : §o < s < §}.
Clearly, x({ — k) < x(y). Therefore, for all k,

¥(&) = x(8&) + p(G)x (8 — )
> x(&)(1+p(&)) >0,

which contradicts the fact that limg_,., y({) = eo. If {x({)}
is bounded, then {y({)} is also bounded, which contradicts
limg_,,y(§) = —oco. Hence, {y({)} satifies one of the (Cy)
and (C,). This completes the proof. O

Remark 2.2. If follows from (Cy) of Lemma 2.1 that there
exists 0 > 0 such that y(§) > 0 for all large &.

We assume that there exists a constant V such that 0 <
v <A and

) _ 1)

" _V—v,f0r0<u<v. 2.2)

A typical example of a nonlinear function satisfying (2.2) is
F() = |yl*sgn(y) with 0 < & < v.

Remark 2.3. The condition (2.2) implies that f(u)/u" is non-
increasing. We assume that there exists v < A > 0 such that

fw) _ £

" v , forO <u <. 2.3)

A typical example of a nonlinear function satisfying (2.3) is
F) = [yI°sgn(y) with v < &.

Remark 2.4. The condition (2.3) implies that f(u)/u" is non-
decreasing
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3. Main Results

Theorem 3.1. Assume that A¢(&) > 0and (2.2) hold. If there

exists a constant p such that —1 + (2/3)% <-p<p) <0,
then every unbounded solution of (1.1) oscillates if and only

if
Z Zu,

{=Gi=1

Proof. To prove sufficiency by contradiction, assume that

FOFR(E+M:)) = 400, ¥ 0 >0. (3.1)

{x({)} is an unbounded non-oscillatory solution of (1.1).

Without loss of generality, we may suppose that {x({)} is
an eventually positive solution of (1.1). Then there exists
&1 > & such that x(§) > 0 and x(§ — k) > 0. Then we have
(2.1). From Lemma 2.1, {y({)} satisfies one of the cases (C})
and (C,) for § > &, where §, > &;. We consider each of two
cases seperately.

Case 1. Let {y({)} satisfies (Cy) for § > &,. As {x({)}
is unbounded, there exists N > &, such that x(N ) max{x(s) :
& < 5 <N} Then, x(V) < 5(§) + (1 - (2/3)F (N — ) <
x(N), which is a contradiction.

Case 2. Let {y({)} satisfies (C2) for § > &,.
{0(£)(Ay(£))*} is a positive, non-increasing, and

Since

My(E) < (‘(’;((%))) " MG for § > G, where & > 6.

Summing this inequality from {3 to { — 1, we have

V&) < W(G) + 07 (G)AVER(E. &)

Since R({) — o0 as § — oo there exists 8 > 0 and {4 > {3
such that

y(&) <67 R(C) for § > Gu. (3.2)
Upon using y(§) < x(&); (3.2) and by the assumption (2.2),

we have

F(E+m) = f((E+m))

s

_ (R +m))
~(BFR(E+m))Y
Summing (1.1) from

yW(E+mn).

£ to oo, we have

1

SR f(GTR(SJrTIz'))
2B oty
<o), =G

Since A@(&) > 0 and from (3.3), we obtain,

yW(s+mi)

(3.3)

f (02R(s+m;))

Ay(¢) >
TR(s+m;))Y

yW(s+mi)

ZZu,

) = (0

C+n
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Summing the above inequality from {4 to { — 1 — 1, we obtain

y(&—n)—y(&)
{-n-1 o m 1
f(mR(s+ni))
> DEASAELt Rl 2)
- u=4y [ (u+m) ;; (6ZR(s+m;))Y
(s m)]

Using the increasing nature of {y({)} in the above inequality,
we have

! x

e [ A A Caa (G 1) I
ye)= E@ <P(u+n)sg’c,»:zi”'(s)(e%le(ﬁm))vy ()
(3.4)
Set
oo m 61 ;
WC>=ZZ () LOREET) i m 3s)

(GiR<s+m))

From (3.4) and (3.5), and since y({) > 0, we obtain y({) >

R(¢, C4+T])w%(c —1). Since limg_,., R({) = oo, there exists
{s > &4 such that

R(G. G+ ) > SR(E) for £ > & (3.6
Then
§(Q) > AREWE (L~ for £ > &, (3.7)
and
W) whg—m)
OFRQ)Y T (0k)
Now,
Aw(C)
Y (@ EERE D)
SRR )Y
% JOTRE M) v |
< ;u 2oty (E—n+m) <0
Thus, {w({)} is non-increasing and  hence
wi (§—n+m;)/wi(§) > 1, and
aw' T (g) < (1 -3 w*%<c>Aw<c:>
3§ (ORI + ).
291)‘/1*1

Summing this inequality from {5 to § — 1, we get

wt) ) <o E)

-1 m
wi(s) (04 R(s+1:)).
(26%)”2@2 n
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Since ¥ < 1 and {w({)} is positive and non-increasing,
we have
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For { > N+ 1, we have v ({) < % R({,N) and using the
increasing nature of f in the above inequality we obtain

e 20%)Y |y
¥, L mf05R(m) < (2t (6 < |
e =% @) < pOIR N P o[e e1]x
7 - 242
This contradicts (3.1). V) S pOER(G — K, )+u=N Lp(u) [3 * 3”
If {x(&)} is eventually negative, then x({) < 0 for § > {;. o &
Then we set y(§) := —x({) for £ > & in (1.1). < pOIR({,N)+ (2) R({,N)
Using (Cg), we find 3
( 3) i) OER(C.N)
ﬂ, = p—|— — A B
A@(E)AG(E) +p(E(E ~ k)] 3
1
< pOiR({,N
+ZIJ'Z C"‘nl)):OforCZClv b (C )
Thus, for { > N+ 1, we have
where g(u) = — f(—u) and g is also satifies (Cg). Then, pro-
ceeding as above, we find the same contradiction. This proves
the oscillation of all solutions. o\* ) 1
Next, we show that (3.1) is necessary. Suppose that (3.1) <3> R(E,N) <v/(£) < 63R(E,N).
does not hold; so for some 6 > 0 the sum in (3.1) is finite.
Then there exists N > 7 such that Now, for { > N+ 1
0
Z Z“z QAR C‘Hh))ég (3.8) v(z)(C):( 1
{=Ni= ¢ 1
_ o m 0
we define the operator ¢ as follows: _ 1 4 ' ]
For the sequence {X(C)}?,Nf ’ P |fP(u 3 “rszuizzl.ut(s)f(x(S—F ni))
=N-7
/10
(9x)(N); N-n<{<N > POE
u=N
- (C) (C— K) 1
9 6\ *
00(0) = +250 | gt |4 9) e
1
z
+Yo Y wi(s) f(x(s+ n;))” , €>N+1 Thus, we have, for { > N+1,
Now, consider the sequence {v(¥) (£)} of successive approxi- o\ 7 1
mations defined by <3> R(G,N)=v)(8) <vP(8) < OZR(L,N).

M@{O’ nnEesn

(g)%R(C,N), (>N+1
and fork=2,3,....

©E) = (ov*)(©)
Clearly for { > N+1,

1

(2) “REN) < W) < 0FRELN).

For,{ > N+1,

@) =(ov)(£)
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By mathematics induction, we can easily prove that for k > 1.

1

(5) rem <t < < oir

R(E,N)
for £ > N+ 1. Thus, {v()({)} is a pointwise convergent to
some sequence v = {v*({)}. By means of the Lebesgue
dominated convergence theorem, we obtain

(pv*)(&) =v*(&). We can easily show that {v*({)} is an
eventually positive solution of the equation (1.1) for § > N —
1. This contradiction shows that (3.1) is necessary condition.
This completes the proof. O

Theorem 3.2. Assume that Ap({) > O and (2.2). If there

exists a constant p such that —1 + ( )l <-p<p(f) <o,
then every solution of (1.1) oscillates or converges to zero if
and only if (3.1) holds for every 6 > 0.
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Proof. To prove sufficiency by contradiction, we assume that
{x({)} is an eventually positive solution of (1.1) which does
not converges to zero. Then, there exist §; > {y such that
x(&) >0, x({ —x)>0and x({ —n;) >0 for { > &, and
i=1,2,...,m. Then we have (2.1). From Lemma 2.1, {y({)}
satisfies one of the cases (Cy) and (C;) for § > &, where
& > &1. We consider each of two cases separately.

Case 1. Let {y({)} satisfies (Cy) for { > §,. Therefore,

0> lim y(¢) = limsupy({)

{0 {—o0
> lirgnsup(X(C) —px(§ —x))
> limsupx({) —&-ligninf(—px(g —K))
{ven e
— (1= p)limsups()

§reo

implies that limsup;_,.,y(¢) = 0 and hence lim;_,,x(&) =
0, which contradicts the assumption that {x({)} does not
converges to zero.

Case 2. Let {y({)} satisfies (Cy) for { > §,. The case
follows from Theorem 3.1. Hence (3.1) is a sufficient condi-
tion.

The case where {x({)} is an eventually negative solution
is similar and we omit it here.

The necessary part is the same as in the Theorem 3.1.
Thus, the proof of the theorem is complete. O

Theorem 3.3. Assume that (2.3) hold and exists a constant p
such that —1 < —p < p(&) <0, hold. Suppose that

1

o 1 =
Z LD(C) sg wi(s)| =-eo (3.9)

=8

for some j, then every solution of (1.1) is either oscillatory
or converges to zero.

Proof. To prove it by contradiction, suppose that {x(&)} is an
eventually positive solution of (1.1) which does not converges
to zero and we use same type of argument as in the proof
of Theorem 3.2 for the case (C;). Let us consider {y({)}
satisfies (C,) for § > §,. By Remark 2.2, there exist a constant
6 > 0 and {3 > {; such that y({ +n;) > 6 for { > {3 and
i=1,2,3,....m
Upon using y(§) <

fx(E+m) >

x(&) and by assumption (2.3), we have

FO(E+mi)
_SOE+m) v
y (C +nl)
(

yW(C+m).

y(E+m)

0)
>

Summing (1.1) from § to e, we have

lim [@(£)(ax(

A—boo

yW(s+n;) <O0.
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(3.10)

Using that ¢(&)(Ay())* is positive and non-increasing, we

have

iﬁuf(s)f ) s m) < o0 av())?

forall { > {3 and all j € {1,2,...,m}. Therefore,

A
<Ay(£). (3.11)

1 o m

Dividing by yi (¢ —n;) and then summing from (3 to oo, we
have

) S (s )
1

FONF & = (s )
() £ g EEmesom )
> Ay(u)
< —
7u§é“3y1(u+nj)
Ay(u)

IA
=
ek
<
>l<

=

+

—_

<
>l<
—~

\
<

|
|

=y

<

>

Since {y(&)} is increasing sequence, for s > u we have y* (s +
n;i) > y¥(u+ ;). Note that the summands y¥ (s +1;)/y¥ (u+
1n;) are positive for all i, j and equal to 1 when i = j. Hence,
the above inequality becomes

() [k

This contradicts (3.9). The case where {x({)} is eventually
negative solution is omitted since it can be dealt similarly.
This proves the oscillation of all solutions. O

]1 PG
-

Theorem 3.4. Assume that there exists a constant p such that
—l<—p<p6)<0.If

1
A
‘| <°o

holds, then (1.1) admits a positive bounded solution.

o m

ZZM

?Cl

5 [ G2

=6

Proof. Due to (3.12), it is possible to find N > 1 such that

1

o | =om B py 1—p
z[(p(u)zz;u >] <l

u=N s=ui=1 Sf(l))%

6 >0 (3.13)

0007,
§§c%nﬂﬂ
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We define the operator ¢ as follows: For the sequence {x({) }Z°= N

—~

¢x)(N):; o<{<N
—p(O(E 1)
(090 =3 + 5255 |y Bt i

1
A

Xf(X(s+ni))} ; {>N+1

U

Now, consider the sequence {v(¥)({)} of successive approxi-
mations defined by

v(l)(C){Q <l<N

32, (>N+1
and for k =2,3
®(g) = (v N(0)
Clearly,
1_

?<v( J(Q) <1, for{ >N+1.

Now v (&) = (gv))(¢) > ?”, {>N+1. Also for § >
N+1,

= eI -R) 41T
el
+ T |t LE w6 m)|
u=N

(p(u S=Uj=

1-p R I & & 1
<P+T+(f(1))’1 Z [ ZZH:‘(S)]

(11

[2]

[31

[4]

(51

[6]

(71

[8]

91

[10]

u=N (P(l/t) s=uj=1 [11]
1— 1— P
P F 5 [12]
3p+2
=<1
5
Hence
[13]
S ECIRt
By mathematical induction, we can easily show that for k > 1. [14)
IZP ey <@y <1, E>N+1
5 = - - - [15]
The rest of the proof follows from Theorem 3.1. This com-
pletes the proof of the theorem. O (161
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