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Necessary and sufficient conditions for oscillation
of solutions to second-order non-linear difference
equations with delay argument
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Abstract

half-linear delay difference equation of the form

A(@(E)(Ax(£))%) + 1" (n(§) =0; =&,

95 (C)
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1. Introduction

The main feature of this paper is having an oscillation
condition that is necessary and sufficient at the same time. We
mainly consider the following second-order half-linear delay
difference equation

Alp($)(Ax(£))%) +r(§)x" (n(£)) = 0;

by considering two cases & > v and £ < v, where A is the
forward difference operator defined by Ax({) =x({+1) —
x(&). We suppose that the following assumptions hold:

¢>0, (1D

(A1) & and v are quotient of odd positive integers ;

(A2) {o(C )}"g: ¢, is @ sequence of positive real numbers;

(A3) {u() }Z": ¢, is @ sequence of non-negative real numbers
and p(§) is not identically zero for sufficiently large
values of {;

(Ag) {n(&) }?z ¢, 18 @ sequence of positive integers such that
An(§) = 0and n(¢) < & for &> Goandlimg ., n(8) =

o0
>

=co. Letting R() = ¥7_¢, ——, we

(As) Y5, —1— T
“=%0 0% (0)

9% ()
have R(§) — o0 as § — oo,

By a solution of (1.1), we mean a real sequence {x({)} satisfy-
ing equation (1.1) for all § > {o — M where M = inf;> ¢ {1(i) }.
A nontrival solution {x({)} is said to be nonoscillatory if it is
either eventually positive or eventually negative, and it is os-
cillatory otherwise. We will say that an equation is oscillatory
if all its solution are oscillatory.
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The problem of determining the oscillation and nonoscilla-
tion of solution of difference equations has been a very active
area of research in the last ten years, and for surveys of recent
results, we refer the reader to the monographs by Agarwal
[2] and Agarwal and Wong [4]. Half-linear equations derive
their name from the fact that if {x({)} is a solution, then
sois {(x({))} for any constant c. Half-linear equations and
their generalizations have received a good bit of attention in
the literature in the last few years, and we cite as recent con-
tributions the papers of Chen et al. [6, 7], Li and Yeh [11],
Thandapani et al. [15-20], and Wong and Agarwal [22]. The
oscillation theory of discrete analogues of delay differential
equation has also attracted growing attention in the recent few
years. The reader is referred to [1, 5, 10, 12, 14, 21] and the
reference cited there in. For the general theory of second-order
difference equation, the reader is referred to [2—4].

In [8], Dinakar et al. established sufficient conditions
for oscillation of all solutions of second-order half-linear ad-
vanced difference equation

Ala()(Ax(8))") +u(§)x"

under the condition that Y7 C=t T o C) < oo,
Murugesan and Jayakumar [13] determined sufficient con-

dition for the oscillation of all solution of second-order half-
linear advanced difference equations of the form

A(P(E)Ax()") +u(E)x" =4

under the condition that ):2": G R
v (

(§+n)=0,

Gopalakrishan et al. [9] derived new oscillatory conditions
for the second-order noncanonical difference equations of the

type

A(@(E)Ax(8)) +p(E)x(E+1) =0,

where 1] is an integer.

In this paper, we derive necessary and sufficient condition
for oscillation of all solutions to (1.1). Under the assumption
ZC % = oo, we consider the cases when £ > v and

E<v.

In the following sections, we presume that all functional
inequalities are satisfied, eventually, that is, for all § large
enough.

¢ > o,

E(C)

2. Main Results

Lemma 2.1. Assume that (A1) — (As) hold. If {x({)} is an
eventually positive solution of (1.1), then {x({)} satisfies
Ax(§) > 0 and

A(@(8)(Ax(8))Y) <0  foralllarge €. 2.1
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Proof. Since {x({)} is an eventually positive solution of (1.1),
then there exists an integer §; > §y such that x({) > 0 and
x(n(&)) >0for £ > &;. From (1.1), it follows that

Alp(0)(Ax(£))*) = —u(E)x" (n(£)) <0,

This shows that {@({)(Ax({))%} is non-increasing se-
quence. We claim that ¢(¢)(Ax($)) > 0 for > ¢;. On
the contrary, assume that ¢(&)(Ax(&))® < 0 for some { > ¢,
then we can find §* > &) and k; > 0 such that ¢(§)(Ax(§)) <

—k; forall § > *. Summing the inequality Ax(§) > (ﬁé‘))
from {*to § — 1 (§ > £*), we obtain

>0 22

wre|—

x(¢) <

& FZ T — o0,a8 § — oo,
s=0* @& (s)

This contradicts {x({)} being a positive solution. So,
@(0)(Ax(£))% > 0for & > & Since, (&) > 0 then Ax({) >
0 for § > ¢. O

2.1 TheCase & > v.
In this subsection we assume that there exists a constant 3
such that 0 < v < < € and

W B >vB o for o<u<v. (2.3)
Lemma 2.2. Assume that (A1) — (As) hold. If {x({)} is an
eventually positive solution of (1.1), then there exists §; > {
and k > 0 such that for £ > §y, the following holds

() <kER(C) 2.4)
s 1 v—_ %
(RE)—R(L) [ZC (s) (kéR(n@») xﬁ(n(s))] <x(0)
2.5)

Proof. By Lemma 2.1, {@({)(Ax({))*%} is positive and non-
increasing sequence. Then there exists k > 0 and §; > {p such
that

P()(Ax(E))> <k.

Summing the above inequality from {; to { — 1, we have

*(§) < x(&) +KE (RIE) —R(G))).

Since limg _,, R({) = oo, then the last inequality becomes
that
1

x($) <KkER(E) for ¢ > &, which is (2.4).
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By (2.4) and the assumption (2.3), we have
(M) =x"P 0P (n({))
1 v-p

> (KR@))  F e

Summing (1.1) from { to e, we have

!

lim |¢(¢)(Ax(¢))*

[—o0

s 1 v—P
LY u(@) <k¢R(n(C))) B0 <o.
=

t

Using that {¢(£)(Ax({))%} is positive and non-increasing,
we have

=t
B(s) < o)A, for C>0

Therefore,
Ax(E) > Iy KER v_ﬁﬁ ¢
“)—[wszg“(”( (n(C))> x(n(s»].

X(2)
S N . b ¢
) l(p@) L) (KR x (n(s))]
oo 1 v—B
> (R(O)~R(L)) [Z u(s) (k5R<n<s>>)
=t
xxﬁm(s))} g
which is (2.5). O

Theorem 2.3. Assume that the (A1) — (As) hold. The even
solution of (1.1) is oscillatory if and only if

o

Y 1R (M(E)) = +ee.
5=

Q2.7

Proof. To prove sufficiency by contradiction, assume that
{x(§)} is a non-oscillatory solution of (1.1). Without loss
of generality, we may assume that {x({)} is an eventually
positive. Then Lemma 2.1 and 2.2 hold for { > ;. So,

(8) > (RE) —REG)WE)  forall >0,
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where
s 1 v—B
w(@) =Y uis) (kéR(n@))) Bn(s) > 0.
=t

Since limg_,., R({) = oo, there exists {, > i, such that R({) —
R(C) > LR(C) for £ > &. Then

X(Q) > SRQWEQ) for $26,

and
1 B 1
xﬁ/(kéR@)) > w(0)) kb,

Taking the difference of w({), we have

Therefore, {w({)} is non-increasing so wg (&) /we (&) >
1, and

s(v @) < (1-8) vt

< (1 - fg) 2B LR (L)),

Summing this inequality from {, to { — 1, we have

B B
WEHO —w ()
B B - v
<—(1-%|27Pk ¢ p(s)RY(n(s))
(gL

Since g < 1 and {w({)} is a positive and non-increasing
sequence, we have

&l BTk
¥ u(oR"(n(s) < 278
(-9)

This contradicts (2.7) and proves the oscillation of all solu-
tions.

Next, we show that (2.7) is necessary. Suppose that (2.7)
does not hold; so for given o > 0 there exists an integer
N > { such that

f;NMs)RV(n(s)) <& 2.8)

020
s
sz
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We define the operator ¢ as follows: For the sequence

(07

0, H<EL<N-1,
(0x)(©)=3F { [2 )
SEm )| N
Now, consider the sequence {v*)({)} of successive approxi-
amately defined by
v(l)(c):{o’ i COSCSN—L
()¢ R(E)—RWN)], ¢>N.
and for k =2,3,...
vi(L) = (evF)(0).

Clearly, for { > N

an t I

(%) R - R < vI(€) < o [R() —R(V)).

For { > N,

Also, for { > N, we have v(1)({) < (X%R(C) and
(vI(M(2))" < (@ R(N(£)))"- Then using (2.8), for § > N

@)= (ev)(0)

¢-1 3
<Xl 5451
=at [R({) —R(N)]

Thus, we have

(%)5m@)meﬂgﬂ”@)éﬂ”@)éa%W@>*MNﬂ

By induction principle, we can easily show that fork=2,3,...

(5)° REQ)~RW)] < vED(E)

<vi9(¢) < at [R(E) — R(N)].
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Thus {v(¥)({)} is a pointwise convergent to some sequence
v¥ = {v*({)}. By means of the Lebesgue dominated con-
vergence theorem, are obtain (¢v*)(§) = v*({). We can
easily show that {v*({)} is an eventually positive solution
of the equation (1.1). This contradiction shows that (2.7) is a
necessary condition. This completes the proof.

O

2.2 Forthecase & < v
In this subsection, we assume that there exists v > f > & >0
such that

u B <yB for 0<u<wv.

Lemma 2.4. Assume that (A1) — (As) hold. If {x({)} is an
eventually positive solution of (1.1) then there exists an inte-
ger &y > §o such that for £ > {1, the following holds:

2 ((0) = kPP (n(Q)).

Proof. By Lemma 2.1, if follows that Ax({) > 0, so {x({)}
is increasing and x(&§) > x(&p) for £ > . Thus

x(n(8)) 2 x(n(&)):=x>0 for &>

From (2.9), we have

(2.9)

(2.10)

- )
> k" PP (n(Q)) for ¢ > &,
which is (2.10) H

Theorem 2.5. Assume that (A}) — (As) hold and Ao () > 0.
Then every solution of (1.1) is oscillatory if and only if

L

Proof. To prove sufficiency by contradiction, assume that
{x({)} is a non-oscillatory solution of (1.1). Without loss of
generality we may assume that {x({)} is eventually positive.
Then by Lemma 2.1 and 2.4 hold for { > {;. Using (2.10) in
(1.1) and then summing the fixed inequality from { + 1 to oo,
we have

Zli

S u+1

u+1 ——|—oo,f0rallN>Co. (2.11)

P Y (B (n(s) <o.
s=C+1

tim [Ag(&)(Ax(0))¢].

[—o0 E+1

Using that {¢(£)(Ax({))%} is positive and non-increasing,
and A@({) > 0, we have

)) < @(n+1)(Ax(£))*

K’ B i ww(s)xP

s=C+1
< @(§)(Ax(£))* < e(n(£))(Ax(n(£)))*
< @(§)(Ax(n(£))° < 9§+ 1)(Ax(n(§)))°

o
00,
S5272
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for all { > ;. Therefore,

p(E+1) A

implies that

s [ ] e ¢ n(0))
R H(s)] < (2.12)
o(C+1) ? M +1))

Summing (2.12) from &} to e, we have

[ £

§+] s u+1

] 5 E (u))
=t g<n<u+1>>
(2.13)

Let y(t) = x(n(u))

+(t—u)Ax(n(u)),u <t <u+1. Then
y(u) =x(n(u)), y(u 1)(:
y

x(N(u+1)) andy'(r) = Ax(n (u)),
u <t <u+1. Thus y(r) is continuous and increasing for

u > ;. Now,

This implies that

mnt) L 1o
((u+1))

Taking k — oo, we have

k—1
L
x$

o 1-4
u=_y x¢& E

(n(u+1)) -1

Using (2.14) in (2.13), we have

1
¢
< oo,

which contradicts (2.11) and proves the oscillation of all solu-
tions.

oo

)y

u=g;

Zu

u+l s=u+1
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Next, we show that (2.11) is necessary. Suppose that
(2.11) does not hold; So for each a > 0, there exists N > {,

such that
1 A4
oo 13 al*E
< — .
5o S| <5 e
We define the operator ¢ as follows:
For the sequence {x({ )}2": &
g, fo<E<N+I1,
a -2 1
ooi) = I [
1
- g
XZqurl:u(s)xv(n(s))] 9 C ZN—’_Z

Now, consider the sequence {v¥)({)} of successive approxi-

mations defined by

and fork=2.3...

(V(8) = (ev*)(©).

Clearly § < y( )(C) <a,
Also,

vi2(8) = (ov")(8)
For {y < { < { <N-+1, we have

¢ > .

and for §{ > N +2,

*r—

a7 v

0=5+ % |y, £ vy

é

e
su+1

(2.16)
Using (2.15) in (2.16), we obtain
Vi) <a

Hence, we have

SV OV <a

By induction, we can easily prove that

IS

igka

5 () <vi(@) <a, k=23,...

020
s
sz
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Thus, {v(¥)(£)} is a pointwise convergent to some se-
quence v* = {v*({)}.

By means of the Lebesgue dominated convergence theo-
rem, we obtain (¢v*)(§) = v*({). We can easily show that
{v*(£)} is an eventually positive solution of the equation
(1.1) for { > N+ 1. This contradiction shows that (2.11) is
necessary condition. This completes the proof. U

Remark 2.6. The result of this paper also hold for equation
of the form

>0

(2.17)

Alp(&)(Ax(£))%) + iuj(ﬁf)xvj(nj(é)) =0;
-

where {9(0)}, {1y(Q)}, v, and ;(8) (j=123.....m)
satify the assumptions in (A1) to (As), (2.3) and (2.5). In
order to extend Theorem 2.3 and Theorem 2.5, there exists an
index j such that {u;({)}, vj and {n;({)} fulfiles (2.7) and
(2.11).
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