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Solution of non-linear integro-differential equations
by using modified Laplace transform Adomian
decomposition method
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Abstract
In last few decades, integro-differential equations are used in various fields of sciences and engineering. Recently
most of researchers have taken considerable effort to the study of exact and numerical solutions of the linear,
nonlinear ordinary, or partial differential equations. In this paper, we have discussed the Modified Laplace
Transform Adomian Decomposition Method (MLTADM) which is the combination of Laplace transform and
Adomian decomposition method to solve the second and third-order nonlinear integro-differential equations.The
main advantage of this method is that it gives an analytical solution. The method overcomes the difficulties
arising in calculating the Adomian polynomials. The efficiency of the method was tested on some numerical
examples, and the results show that the method is easier than many other numerical techniques. It is also
observed that (MLTADM) is a reliable tool for the solution of linear and nonlinear integro-differential equations.
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1. Introduction
In the recent decade, the use of integro-differential equa-

tions has become a powerful tool to solve problems in science
and technology, integro-differential equation which gives us
to provides efficiency for the description of many practical
problems arising in engineering and scientific disciplines such
as, physics, biology, economics, chemistry, electromagnetic,
control theory and viscoelasticity. In recent years, most of

researchers have developed numerical and analytical tech-
niques for fractional integro-differential equations. In this pa-
per, we have studied the nonlinear Volterra-Fredholm integro-
differential equations of the second kind.

The nonlinear Fredholm integro-differential equations are
given by

un(x) = f (x)+
∫ x

a
k(x, t)[Ru(t)+Nu(t)]dt

uk(x) = αk,0≤ k ≤ n−1, n≥ 0, (1.1)

and the nonlinear Volterra integrodifferential equations
are given by

un(x) = f (x)+
∫ b

a
k(x, t)[Ru(t)+Nu(t)]dt

uk(x) = αk,0≤ k ≤ n−1, n≥ 0, (1.2)
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where un(x) is the nth derivative of the unknown function
u(x) that has be determined, k(x, t) is the kernel of the inte-
gral equation, f (x) is an analytic function, R(u) and N(u) are
linear and nonlinear functions of u, respectively. For n = 0,
Equations (1.1) and (1.2) are the nonlinear Fredholm inte-
gral equations and the nonlinear Volterra integral equations
respectively.

M. Dehghan et. al. [1] had studied the solution of the lin-
ear fractional partial differential equations using the homotopy
analysis method. M. Hussain and M. Khan [2] have applied
modified Laplace decomposition method. S. Shahmorad [3]
have investigated numerical solution of the general form linear
Fredholm-Volterra integro- differential equations by the Tau
method with an error estimation. Later, N Bildik et.al. [4]
had work on a comparison between adomian decomposition
and Tau methods. Then, S. Alkan et.al. [5] have studied ap-
proximate solutions of Volterra-Fredholm integro-differential
equations of fractional order; M. Al-Mazmumy et.al. [6]
Some modifications of adomian decomposition methods for
nonlinear partial differential equations; S. Agarwal et al. [7]
had studied application of Mahgoub transform for solving
linear Volterra integral equations of first kind; R.B. Thete et.
al. [8] have investigated temperature distribution of an inverse
steady state thermo elastic problem of thin rectangular plate
by numerical method; Tarik M. Elzaki et.al. [9] had stud-
ied solution of volterra integro differential equation by triple
Laplace transform; R.B. Thete et.al. [10] had investigated esti-
mation of temperature distribution and thermal stress analysis
of composite circular rod by finite element method. Recently,
R.B. Thete and Arihant Jain [11] had studied analytical solu-
tion of linear volterra integro-differential equation of first and
second kind by Laplace transform. For additional detail, see
for instance [12, 13].

In this paper, we have discussed the modified Laplace
transform Adomian decomposition method ( MLTADM )
which is the combination of Laplace transform and Adomian
decomposition method to solve the second and third-order
nonlinear integro-differential equations. The main advantage
of this method is the fact that it gives an analytical solution.
The method overcomes the difficulties arising in calculating
the Adomian polynomials. The efficiency of the method was
tested on some numerical examples, and the results show that
the method is easier than many other numerical techniques.
It is also observed that ( MLTADM ) is a reliable tool for the
solution of linear and nonlinear integro-differential equations.

2. Modified Laplace Adomian
Decomposition Method

The purpose of this section is to discuss the use of mod-
ified Laplace decomposition algorithm for the integro dif-
ferential equations. Let us consider the most general form
of second order nonlinear partial differential equations with

initial conditions is of the form

Lu(x, t)+Ru(x, t)+Nu(x, t) = h(x, t),

u(x,0) = g(x), (1.3)

where L is the second order differential operator Lxx =
d2

dx2 ,
R is the linear operator, N represents a general non-linear
differential operator and h(x, t) represent the source term.

Taking Laplace transform on both sides of Equation (1.3)
we have

L[Lu(x, t)]+L[Ru(x, t)]+L[Nu(x, t)] = L[h(x, t)]

and by using the derivative property of Laplace transform we
get,

{s2L[u(x, t)]− s f (x)−g(x)}+L[Ru(x, t)]

+L[Nu(x, t)] = L[h(x, t)]

L[u(x, t)] =
1
s

f (x)+
1
s2 g(x)− 1

s2 L[Ru(x, t)]

− 1
s2 L[Nu(x, t)]+

1
s2 L[h(x, t)]. (1.4)

The next step in Laplace decomposition method is repre-
senting the solution as an infinite series given below

[u(x, t)] =
∞

∑
n=0

un(x, t). (1.5)

The nonlinear operator is decomposed as

[Nu(x, t)] =
∞

∑
n=0

An(x, t), (1.6)

where for every n ∈ N, the Adomian polynomial An is given
by

An =
1
n!

dn

dxn

[
N

∞

∑
n=0

τ
iui

]
τ=0

.

Using (1.4), (1.5) and (1.6) we get

∞

∑
n=0

L [un(x, t)] =
f (x)

s
+

g(x)
s2 −

1
s2 L[Ru(x, t)]

− 1
s2 L

[
∞

∑
n=0

An(x, t)

]
+

1
s2 L[h(x, t)]. (1.7)

Comparing equation (1.7) to both side we get,

L[u0(x, t)] = K1(x,s) (1.8)

L[u1(x, t)] = K2(x,s)−
1
s2 L [R0u(x, t)]− 1

s2 L [A0(x, t)]

(1.9)

L[un+1(x, t)] =−
1
s2 L [Rnu(x, t)]− 1

s2 L [An(x, t)] n≥ 1,

(1.10)
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where K1(x,s) and K2(x,s) are Laplace transform of K1(x, t)
and K2(x, t) respectively. Applying the inverse Laplace trans-
form to equations (1.8)-(1.10) gives us recursive relation is as
follows

u0(x, t) = K1(x, t), (1.11)
[u1(x, t)] = K2(x, t)

−L−1
[

1
s2 L [R0u(x, t)]− 1

s2 L [A0(x, t)]
]
,

(1.12)

[un+1(x, t)] =−L−1
[ 1

s2 L [Rnu(x, t)]

+
1
s2 L [An(x, t)]

]
, n≥ 1. (1.13)

The solution through the modified Adomian decomposi-
tion method highly depends upon the choice of K0(x, t) and
K1(x, t), where K0(x, t) and K1(x, t) represent the terms arising
from the source term and prescribed initial conditions.

3. Application of the Modified Adomian
Decomposition Method

Example 1. Let us consider the nonlinear integro differential

equation u′(x) =−1+
∫ x

0
u2(t)dt, u(0) = 0.

Applying the Laplace transform and by using the initial
condition, we have

sU(s) =−1
s
+L

[∫ x

0
u2(t)dt

]
U(s) =− 1

s2 +
1
s

L
[∫ x

0
u2(t)dt

]
Applying Inverse Laplace transform to both side

u(x) =−x+L−1
{

1
s

L
[∫ x

0
u2(t)dt

]}
. (1.14)

Now, we decompose the solution in the form of an infinite
sum given below

u(x) =
∞

∑
n=0

un(x). (1.15)

Using (1.15) on (1.14), we get

∞

∑
n=0

un(x) =−x+L−1

{
1
s

L

[∫ x

0

∞

∑
n=0

An(t)dt

]}
,

in which ∑
∞
n=0 u jun− j.

The recursive relation is given below

u0(x) =−x;

u1(x) =
x4

12
;

u2(x) =−
x7

252
.

By repeating the above procedure for n≥ 3, we get to the
approximate solution.
Example 2. Consider the second order nonlinear integro-
differential equation

u′′(x) = sinh(x)+ x−
∫ 1

0
x
[
cosh2(t)+u2(t)

]
dt,

u(0) = 0, u′(0) = 1.

Applying the Laplace transform and by using the initial
conditions, we obtain

s2U(s)−1 =
1

s2−1
+

1
s2 −L

[∫ 1

0
xcosh2(t)+u2(t)dt

]

U(s)=
1
s2 +

1
s2 (s2−1)

+
1
s4 −

1
s2 L

[∫ 1

0
xcosh2(t)+u2(t)dt

]
.

Applying the inverse Laplace transform we get

u(x) = sinhx+
x3

6
+L−1

{
1
s2 L

[∫ 1

0
xcosh2(t)+u2(t)dt

]}
.

Now we get the modified recursive relation is as given
below

u0(x) = sinhx,

u1(x) =
x3

6
+L−1

{
1
s2 L

[∫ 1

0
xcosh2(t)+u2

0(t)dt
]}

= 0

un+1(x) =
x3

6
+L−1

{
1
s2 L

[∫ 1

0
xcosh2(t)+An(t)dt

]}
= 0,n≥ 1,

in which
∞

∑
n=0

u jun− j where for every n≥ 1,An = 0.

Thus the exact solution is

u(x) = sinhx.

Example 3.
Let us consider the nonlinear integro differential equation

u′′′(x) = sinx− x−
∫ π

2

0
xtu′(t)dt,

u(0) = 1,u′(0) = 0,u′(0) = 1.

Applying the Laplace transform and by using the initial
condition, we have

s3U(s)− s2 +1 =
1

s2 +1
− 1

s2 −L
[∫ π

2

0
xtu′(t)dt

]

U(s) =
1
s
− 1

s3 +
1

s3 (s2 +1)
− 1

s5 −
1
s3 L

[∫ π
2

0
xtu′(t)dt

]
.
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Applying Inverse Laplace transform to both side

u(x) = cosx− 1
24x4 −L−1

{
1
s3 L

[∫ π
2

0
xtu′(t)dt

]}
.

Now we get the modified recursive relation is as given below

u0(x) = cosx

u1(x) =−
1

24x4 −L−1
{

1
s3 L

[
x
∫ π

2

n
tu′0(t)dt

]}
= 0

un+1(x) =−L−1
{

1
s3 L

[∫ π
2

0
xtu′n(t)dt

]}
= 0,n≥ 1.

So the exact solution of the above problem is given by

u(x) = cosx.

Example 4. Consider the nonlinear integro-differential equa-
tion

u′′(x) =
1
2

ex +
1
2

∫ x

0
ex−2tu2(t)dt,

u(0) = u′(0) = 1.

Taking the Laplace transform and by use the give initial
condition we get

sU(s) =−1
s
+L

[∫ x

0
u2(t)dt

]

U(s) =− 1
s2 +

1
s

L
[∫ x

0
u2(t)dt

]
.

Applying inverse Laplace transform to both sides

u(x) =−x+L−1
{

1
s

L
[∫ x

0
u2(t)dt

]}
. (1.16)

Now we decompose the solution in the form of an infinite sum
given below

u(x) =
∞

∑
n=0

un(x). (1.17)

Using (1.17) on (1.16), we get

∞

∑
n=0

un(x) =−x+L−1

{
1
s

L

[∫ x

0

∞

∑
n=0

An(t)dt

]}
,

in which
∞

∑
n=0

u jun− j the recursive relation is given below

u0(x) =−x,

u1(x) =
x4

12

u2(x) =−
x7

252
.

By repeating the above procedure for n≥ 3, we get to an
approximate solution.

4. Conclusion
In this paper, we have discussed new Modified Laplace

Transform Adomian Decomposition Methods to find solutions
of integro-differential equations (IDEs). We have success-
fully applied to find efficient numerical solutions of nonlinear
Volterra-Fredholm integro-differential equations. In the above
examples, we observed that the LADM with the initial ap-
proximation obtained from initial conditions gives us a good
approximation to the exact solution only in a few iterations.
The LADM gives approximate solutions with fewer computa-
tional steps in comparison with ADM. The results reveal that
the proposed method is simple to execute and effective from a
computational point of view.
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