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Relatively prime restrained geodetic number of
graphs
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Abstract
In this paper we introduce relatively prime restrained geodetic set of graphs G. A set S ⊆ V (G) is said to be
relatively prime restrained geodetic set in G if S is a relatively prime geodetic set and < V (G)− S > has no
isolated vertices. The relatively prime restrained geodetic set is denoted by grpr(G)- set. The minimum cardinality
of relatively prime restrained geodetic set is the relatively prime restrained geodetic number and it is denoted by
grpr(G).
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1. Introduction
By a graph G = (V,E) we mean a finite, connected, undi-

rected graph with neither loops nor multiple edges. The order
|V | and size |E| of G are denoted by p and q respectively.
For graph theoretic terminology we refer to West [7]. In a
connected graph G, the distance between two vertices x and y
is denoted by d(x,y) and is defined as the length of a shortest
x− y path in G. If e = {u,v} is an edge of a graph G with
deg(u) = 1 and deg(v)> 1, then we call e a pendant edge, u a
pendent vertex and v a support vertex. A set of vertices is said
to be independent if no two vertices in it are adjacent. A vertex
v of G is said to be an extreme vertex if the subgraph induced
by its neighborhood is complete. For any set S of points of
G, the induced subgraph < S > is the maximal subgraph of G
with point set S. Thus two points of S are adjacent in < S >
if and only if they are adjacent in G. An acyclic connected

graph is called a tree. An x–y path of length d(x,y) is called
geodesic. A vertex v is said to lie on a geodesic P if v is an
internal vertex of P. The closed interval I[x,y], consists of x,y
and all vertices lying on some x–y geodesic of G and for a
non empty set S⊆V (G), I[S] =

⋃
x,y∈S I[x,y].

A set S⊆V (G) in a connected graph is a geodetic set of G
if I[S] =V (G). The geodetic number of G denoted by g(G), is
the minimum cardinality of a geodetic set of G. The geodetic
number of a disconnected graph is the sum of the geodetic
number of its components. A geodetic set of cardinality g(G)
is called g(G) – set. Various concepts inspired by geodetic set
are introduced in [2, 4].

2. Definitions and Known results
Definition 2.1. [5] The line graph L(G) of a graph G is the
graph whose vertices are the edges of G and two vertices
in L(G) are adjacent if the corresponding edges of G are
adjacent.

Definition 2.2. [1] A geodetic set S⊆V (G) of a graph G =
(V,E) is a restrained geodetic set if the subgraph G[V−S] has
no isolated vertex. The minimum cardinality of a restrained
geodetic set is the restrained geodetic number.

Definition 2.3. [3] The total graph T (G) of a graph G is a
graph such that the vertex set of T corresponds to the vertices
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and edges of G and two vertices adjacent in T iff if their
corresponding elements are either adjacent or incident in G.

Theorem 2.4. [6] Every end vertices of a graph G belongs
to relatively prime geodetic set of G.

Theorem 2.5. [6] Every relatively prime geodetic set of a
graph contains its extreme vertices.

Theorem 2.6. [6] For a star graph K1,n, grp(K1,n)

=

{
3 f or n = 2
0 f or n > 3

.

Theorem 2.7. [6] For a connected graph G of order n if
grp(G) exists, then g(G)≤ grp(G)≤ n.

Theorem 2.8. [6] For a wheel graph W1,n(n > 3),

grp(W1,n) =


4 i f n = 3
3 i f n = 4
0 otherwise

.

Definition 2.9. [6] Let G be a connected graph. A set S⊆V
is said to be a relatively prime geodetic set if it is a geodetic
set with at least three elements and the shortest distance
between any two pairs of vertices in S is relatively prime. The
relatively prime geodetic set of G is denoted by grp(G)-set.
The cardinality of a minimum relatively prime geodetic set
is the relatively prime geodetic number and it is denoted by
grp(G).

3. Relatively Prime Restrained Geodetic
Number of Graphs

Definition 3.1. A set S⊆V (G) is said to be relatively prime
restrained geodetic set in G if S is a relatively prime geodetic
set and <V (G)−S > has no isolated vertices. The relatively
prime restrained geodetic set is denoted by grpr(G)- set. The
minimum cardinality of relatively prime restrained geodetic
set is the relatively prime restrained geodetic number and it is
denoted by grpr(G).

Example 3.2. Consider the graph in Figure 1. The set S =
{v4,v5} is a minimum geodetic set and S

′
= {v4,v5,v6} is a

minimum relatively prime geodetic set. But <V (G)−S
′
>=

K3 ∪K1 has isolated vertex of v7 and hence S
′

cannot be a
relatively prime restrained geodetic number. Now consider
S
′′
= {v4,v5,v6,v7}. Then S

′′
is a relatively prime geodetic set

and <V (G)−S
′′
>= K3 has no isolated vertices. Hence S

′′

is a relatively prime restrained geodetic set of G. Moreover
it has the minimum cardinality with this property and hence
grpr(G) = 4.

Figure 1

v4 v5

v6 v7

v2 v3

v1

Theorem 3.3. Let G be a connected graph of order n. Then
(i) Each relatively prime restrained geodetic set of G con-

tains its extreme vertices.
(ii) Each end vertex of G belongs to relatively prime re-

strained geodetic set of G.

Proof. Let G be a connected graph of order n. By definition,
each relatively prime restrained geodetic set is a relatively
prime geodetic set.

(i) Hence by Theorem 2.4, each relatively prime restrained
geodetic set of G contains its extreme vertices.

(ii) Further by Theorem 2.5, each end vertex of G belongs
to relatively prime restrained geodetic set of G.

Theorem 3.4. For the complete graph Kn (n> 3), grpr(Kn) =
n .

Proof. In a complete graph Kn, every vertex is an extreme ver-
tex and by Theorem 3.3, the vertex set V (Kn) is the unique rel-
atively prime restrained geodetic set of Kn. Hence grpr(Kn) =
n.

Theorem 3.5. Let G be connected graph of order n. If grpr(G)
exists, then g(G)≤ grp(G)≤ grpr(G)≤ n.

Proof. Let G be a connected graph of order n, such that
grpr(G) exists. Since every relatively prime restrained geode-
tic set is a relatively prime geodetic set, it follows that grp(G)≤
grpr(G). Also any relatively prime restrained geodetic set can
have atmost n vertices and hence grpr(G) ≤ n. By Theo-
rem 2.7, g(G)≤ grp(G). Hence g(G)≤ grp(G)≤ grpr(G)≤
n.
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Remark 3.6. For the complete graph Kn (n > 3), g(Kn) =
grp(Kn) = grpr(Kn) = n. Hence all the inequalities in Theorem
3.5 become sharp. Now consider the graph G given in Figure 1.
The set S = {v4,v5} is a geodetic set of G and so g(G) = 2. The
set S

′
= {v4,v5,v6} is a minimum relatively prime geodetic

set of G and so grp(G) = 3. The set S
′′

= {v4,v5,v6,v7} is a
minimum relatively prime nonsplit geodetic set of G and so
grpr(G) = 4. Thus g(G) < grp(G) < grp(G) < n, and hence
all the inequalities in Theorem 3.5 become strict.

Theorem 3.7. For cycle Cn of even order n,grpr(Cn) ={
3 i f n > 8
0 i f n = 4,6

.

Proof. Let v1v2...vnv1 be the cycle Cn of order n. Clearly
S = {vi,vi+ n

2
} where the sufficies modulo n is a minimum

geodetic set of Cn and so g(Cn) = 2.
Case 1. n = 4

Any minimum geodetic set of C4 is {vi,vi+2} where the
sufficies modulo 4. To get a relatively prime geodetic set,
we add one more vertex with {vi,vi+2}. The possible rela-
tively prime restrained geodetic set are {vi,vi+1,vi+2} and
{vi,vi+2,vi+3} where the sufficies modulo 4. In each case
< V (Cn)−S >= K1 has an isolated vertex and so S is not a
restrained geodetic set. The only possible restrained geodetic
sets with at least four vertices are either {vi,vi+1,vi+2,vi+3}
or {v1,v2,v3,v4} where the sufficies modulo 4, which are not
relatively prime and hence grpr(C4) = 0.
Case 2. n = 6

Any minimum geodetic set of C6 is {vi,vi+3} where the
sufficies modulo 6. To get a relatively prime geodetic set, we
add one more vertex with {vi,vi+3}. The possible relatively
prime restrained geodetic set are {vi,vi+1,vi+3},{vi,vi+2,vi+4},
{vi,vi+3,vi+4} and {vi,vi+3,vi+5} where the sufficies modulo
6. In each case < V (Cn)− S >= K2 ∪K1 has an isolated
vertex and so S is not a restrained geodetic set. The only
possible restrained geodetic sets with at least four vertices are
either {vi,vi+1,vi+2,vi+3} or {v1,v2,v3,v4,v5,v6} where the
sufficies modulo 6, which are not relatively prime and hence
grpr(C6) = 0.
Case 3. n > 8

Clearly S = {vi,vi+ n
2
} where the sufficies modulo n is a

minimum geodetic set of Cn and so g(Cn) = 2. To get rela-
tively prime geodetic we must add one more vertex to S. Let
S
′
= {vi,vi+1,vi+ n

2
} where the sufficies modulo n. Then S

′

is a geodetic set and <V (Cn)−S
′
>= Kd n

3 e∪Kd n
3+1e which

has no isolated vertex implies that S
′

is a restrained geode-
tic set. Now d(vi,vi+1) = 1,d(vi,vi+ n

2
) = n

2 ,d(vi+1,vi+ n
2
) =

n
2 − 1 and (1, n

2 ) = ( n
2 ,

n
2 − 1) = 1. Therefore, S

′
is a mini-

mum relatively prime restrained geodetic set of Cn and hence
grpr(Cn) = 3.

The result follows from cases 1, 2 and 3.

Theorem 3.8. For the path Pn of order (n > 3), grpr(Pn) ={
0 i f n = 4
3 otherwise

.

Proof. Let v1v2...vn be the path Pn. By Theorem 2.4, the end
vertices v1 and vn must in any relatively prime geodetic set.
Case 1. n = 3

Clearly S = {v1,v2,v3} is the only relatively prime re-
strained geodetic set of P3 and hence grpr(P3) = 3.
Case 2. n = 4

Any relatively prime geodetic set S with three vertices is
either {v1,v2,v4} or {v1,v3,v4}. Since < V (P4)− S >= K1,
S cannot be restrained geodetic set of P4. The only restrained
geodetic set S of P4 is V (P4) which is not relatively prime since
(d(v1,v3),d(v2,v4)) = (2,2) = 2 6= 1. This gives grpr(P4) =
0.
Case 3. n > 5

The set S = {v1,v2,vn} is a minimum geodetic set with
three vertices of Pn. Now d(v1,v2) = 1,d(v2,vn) = n− 2,
d(v1,vn) = n−1 and (1,n−2) = (n−1,n−2) = 1. Also
< V (Pn)− S > is the path v3,v4, ...,vn−1, which has no iso-
lated vertex. Hence S is a minimum relatively prime restrained
geodetic set of Pn and hence grpr(Pn) = 3.

The result follows from cases 1, 2 and 3.

Theorem 3.9. For a star graph K1,n,grpr(K1,n)=

{
3 i f n = 2
o i f n > 3

.

Proof. Let v,v1,v2, ...,vn be the vertices of a star graph K1,n
with centeal vertex v. We consider the following two cases
depends on n.
Case 1. n = 2

In this case K1,2 = P3. By Theorem 3.8, grpr(K1,3) = 3.
Case 2. n > 3

By Theorem 3.3(ii), the end vertices v1,v2, ...,vn must
be in any relatively prime restrained geodetic set S. If S =
{v1,v2, ...,vn}, then <V (K1,n)−S >= K1 and hence S cannot
be a restrained geodetic set. The only possiblitity for S is
V (K1,n). In this case, (d(v1,v2),d(v1,v3)) = (2,2) 6= 1 and
hence K1,n has no relatively prime restrained geodetic set.
Thus grpr(K1,n) = 0.

The result follows from cases 1 and 2.

Theorem 3.10. For a jelly fish graph J(m,n),grpr(J(m,n)) ={
3 i f m = n = 1
o otherwise

.

Proof. Consider a 4-cycle v1,v2,v3,v4 and join v1 and v3 with
an edge. Append m pendent edges to v2 and n pendent edges to
v4. The resultant graph is J(m,n) with vertex set V (J(m,n)) =
{vk,v2i,v4 j/1 ≤ i ≤ m,1 ≤ j ≤ n,1 ≤ k ≤ 4} and edge set
E(J(m,n)) = {vkvk+1,v1v4,v1v3,v2v2i,v4v4 j/1 ≤ i ≤ m,1 ≤
j ≤ n,1≤ k ≤ 4}
Case 1. m = n = 1

Clearly S= {v21,v2,v41} is a geodetic set. Now d(v21,v2)=
1,d(v2,v41) = 4,d(v21,v41) = 3 and (1,4) = (4,3) = (1,3) =
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1. Also < V (J(m,n))−S >= K3 which has no isolated ver-
tices and hence S is a minimum relatively prime restrained
geodetic set. Therefore, grpr(Jm,n) = 3.
Case 2. m = 1,n > 2 or m > 2,n = 1

By Theorem 3.3(ii), v21,v41, ...,v4n must be in relatively
prime restrained geodetic set. Now (d(v21,v41),d(v21,v42))=
(4,4) = 4 6= 1 and so J(m,n) cannot have a relatively prime
restrained geodetic set. Thus grpr(J(m,n)) = 0
Case 3. m,n > 2

By Theorem 3.3(ii), v21,v22, ...,v2m,v41,v42, ...,v4n must
be in any relatively prime restrained geodetic set. Since
d(v2i,v4 j) = 4 for 1≤ i≤ m,1≤ j ≤ n, we have (d(v21,v41),
d(v22,v42)) = 4 6= 1, and hence J(m,n) ha no relatively prime
restrained geodetic set. Thus grpr(J(m,n)) = 0.

The result follows from cases 1, 2 and 3.

Theorem 3.11. For a fan graph F1,n,grpr(F1,n) =


3 i f n = 2
4 i f n = 3
0 otherwise

.

Proof. Let Pn be the path v1v2...vn and K1 be the vertex v.
By definition, F1,n = Pn +K1. Then V (F1,n) = {v,vi/1≤ i≤
n} and E(F1,n) = {vvi,vivi+1,vvn/1 ≤ i ≤ n− 1}. Now we
consider the following three cases depends on n.
Case 1. n = 2

In this case F1,2 ∼= K3. By Theorem 3.5, grpns(F1,2) = 3.
Case 2. n = 3

Clearly S = {vi,vi+2} is a minimum geodetic set of F1,n
and so g(F1,n) = 2. To get relatively prime geodetic we must
add one more vertex to S. Let S

′
= {vi,vi+2,v}. Then S

′
is

a geodetic set and < V (F1,n)− S
′
>= K1 which has an iso-

lated vertex and so S is not a restrained geodetic set. The
only possible restrained geodetic sets with at least four ver-
tices are {vi,vi+1,vi+2,v} is a minimum restrained geode-
tic set. Now d(vi,vi+1) = 1,d(vi,vi+2) = 2,d(vi+1,vi+2) =
1,d(vi,v)= 1,d(vi+1,v)= 1,d(vi+2,v)= 1 and (1,2)= (1,1)=
1. Also <V (F1,n)−S > which has no isolated vertex. Hence
S is a minimum relatively prime restrained geodetic set of F1,n.
Therefore, grpr(F1,n) = 4.
Case 3. n > 4

Any minimum geodetic set S of F1,n must contain b n
2c+1

vertices of {vi/1≤ i≤ n} and for any pair of vertices u,v ∈ S,
we have d(u,w) is 1 for only one pair and 2 for the remaining
pairs. This implies that F1,n has no relatively prime restrained
geodetic set and so grpr(F1,n) = 0.

The result follows from cases 1, 2 and 3.

Theorem 3.12. For the ladder graph Ln,grpr(Ln) = 3.

Proof. Let Ln be a ladder graph. Then the vertex V (Ln) =
{ui,vi/1≤ i≤ n} and E(Ln) = {vivi+1,uiui+1,viui,vnun/1≤
i ≤ n− 1}. Clearly S = {v1,un} is a minimum geodetic set.
To get a relatively prime restrainead geodetic set we must
add one more vertex to S. Now S

′
= {v1,u1,un} is a geode-

tic set and < V (Ln)− S
′
> has no isolated vertex. Also

d(v1,u1) = 1,d(v1,un) = n,d(v2,un) = n− 1 and (1,n) =
(1,n−1) = (n,n−1) = 1. Hence S

′
is a minimum relatively

prime restrained geodetic set of Ln and so grpr(Ln) = 3.

Theorem 3.13. For cycle Cn of odd order n, grpr(T (Cn)) = 3.

Proof. Let v1v2...vnv1 be a cycle of order n and T (Cn) be the
total graph of cycle graph. Denote ei by vivi+1,1≤ i≤ n wher
the sufficies modulo n. Then V (T (Cn)) = {vi,ei/1≤ i≤ n}
and E(T (Cn)) = {vivi+1,eiei+1,viei,viei+1/1 ≤ i ≤ n}. For
1≤ i≤ n, Si = {vi,ei+b n

2 c,ei+d n
2 e} is a geodetic set and

<V (T (Cn))−Si > has no isolated vertex. Also d(vi,ei+b n
2 c)=

b n
2c,d(vi,ei+d n

2 e) = d
n
2e,d(ei+b n

2 c,ei+d n
2 e) = 1 and (1,b n

2c) =
(1,d n

2e) = (b n
2c,d

n
2e) = 1. Hence Si is a minimum relatively

prime restrained geodetic set of T (Cn) and so grpr(T (Cn)) =
3.

Theorem 3.14. Let L(Cn) be the line graph of Cn of even
order n. Then grpr(L(Cn)) = 3 for n > 8.

Proof. We have L(Cn) =Cn. Now the theorem follows from
Theorem 3.7.

Theorem 3.15. Let L(Pn) be the line graph of Pn. Then
grpns(L(Pn)) = 3, for n≥ 4, nd n 6= 5.

Proof. We have L(Pn)=Pn−1. By Theorem 3.8, grpr(L(Pn))=
grpr(Pn−1) = 3 for n−1 > 3, and n−1 6= 4 and hence n > 4,
and n 6= 5.

Theorem 3.16. Let L(K1,n) be the line graph of K1,n. Then
grpr(L(K1,n)) = n.

Proof. We have L(K1,n)=Kn. By Theorem 3.4, grpr(L(K1,n))=
grpr(Kn), hence L(K1,n) = n.

4. Conclusion
In this paper, we have found the relatively prime restrained
geodetic number of some standard graphs like cycle graph,
path graph, wheel graph, jelly fish graph, star graph complete
graph, fan graph and ladder graph.
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