
Malaya Journal of Matematik,, Vol. 7, No. 4, 709-715, 2019

https://doi.org/10.26637/MJM0704/0014

Remarks on the fractional abstract differential
equation with nonlocal conditions
Mohammed Benyoub1* Samir Benaissa 2 and Kacem Belghaba3

Abstract
In this paper, we study the existence and uniqueness of a solution to an initial value problem for a class of
nonlinear fractional involving Riemann-Liouville derivative with nonlocal initial conditions in Banach spaces. We
prove our main result by introducing a regular measure of noncompactness in the weighted space of continuous
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1. Introduction
Recently, fractional differential equations have attracted

considerable interest in both mathematics and applications,
since they have been proved to be valuable tools in modeling
many physical phenomena. There has been significant devel-
opment in fractional differential equations in recent years, see
the monographs of Samko et al.[27], Kilbas et al.[20], Miller
and Ross [22], Podlubny [26], and the references therein.
The definitions of Riemann-Liouville fractional derivatives
or integrals initial conditions play an important role, in some
practical problems. Heymans and Podlubny [19], have demon-
strated that it is possible to attribute physical meaning to initial
conditions expressed in terms of Riemann-Liouville fractional
derivatives or integrals on the field of the viscoelasticity, and
such initial conditions are more appropriate than physically

interpretable initial conditions. In [14], Gaston et al. studied
fractional order differential equations with Caputo derivative

Dqx(t) = f (t,x(t)); t ∈ [0,b];0 < α < 1,

with nonlocal condition

x(0)+g(x) = x0.

As indicated in Deng’s pioneering paper [11], the nonlocal
condition x(0) + g(0) = x0 can be applied in physics with
better effect than the classical Cauchy problem with initial
condition x(0) = x0. For instance the author used

g(x) = Σ
p
i=1cix(ti),

where ci = 1,2, · · ·, p are given constants and 0 < t1 < t2 <
· · ·< tp ≤ T . To describe the diffusion phenomenon of a small
amount in a transparent tube. In this case, the Cauchy problem
allows the additional measurements at ti, i = 1,2, · · ·, p.
In this work we consider the following Cauchy problem for
the nonlocal initial conditions fractional differential equation

LDα

0+x(t) = f (t,x(t)); t ∈ J′ := (0,b], (1.1)

(I1−α

0+ x)(0)+g(x) = x0, (1.2)
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where LDα

0+ is the Riemann-Liouville fractional derivative
of order α , I1−α

0+ is the Riemann-Liouville integral of order
1−α , 0 < α < 1.
This paper is organized in the following way. In Sect 2 we
introduce the notations, definitions, and preliminary facts that
will be used in remainder of this paper. In Sect 3 we prove the
main results. Finally an illustrative example is given in Sect
4.

2. Preliminaries
Let J := [0,b],b > 0 and (E,‖ · ‖) be a Banach space,

C(J,E) be the space of E-valued continuous functions on J
endowed with the uniform norm topology

‖x‖∞ = sup{‖x(t)‖, t ∈ J}.

Let L1(J,E) the space of E-valued Bochner integrable func-
tions on J with norm

‖ f‖L1 =
∫ b

0
‖ f (t)‖dt.

We consider the Banach space of continuous functions

C1−α(J,E) = {x ∈C(J′,E) : lim
t→0+

t1−α x(t) exists }.

A norm in this space is given by

‖x‖α = sup
t∈J

{
t1−α‖x‖E

}
,

it easy to see (C1−α(J,E),‖x‖α) is a Banach space. For Ω a
subset of the space C1−α(J,E), define Ωα by

Ωα = {xα ,x ∈Ω},

where

xα(t) =

{
t1−α x(t), if t ∈ (0,b],
lim

t→0+
t1−α x(t), if t = 0.

It is clear that xα ∈C(J,E).

Lemma 2.1. [19] A set Ω⊂C1−α(J,E) is relatively compact
if and only if Ωα is relatively compact in C(J,E).

Definition 2.2. Let 0 < α < 1. A function x : J → E has a
fractional integral if the following integral

Iα x(t) =
1

Γ(α)

∫ t

0
(t− s)1−α x(s)ds,

is defined for t ≥ 0, where Γ(·) is the Gamma function.
The Reimann-Liouville derivative of x of order α is defined as

LDα x(t) =
1

Γ(1−α)

d
dt

∫ t

0
(t−s)−α x(s)ds =

d
dt

I1−α x(t),

provided it is well defined for t ≥ 0. The previous integral is
taken in Bochner sense. Let φα(t) : R→ R defined by

φα =


t1−α

Γ(α)
, if t > 0,

0, if t ≤ 0.

Then
Iα x(t) = (φα ∗ x)(t),

and
LDα x(t) =

d
dt
(φ1−α ∗ x)(t).

Lemma 2.3. [12] Let α,β ∈ R+. Then∫ 1

0
tα−1(1− t)β−1dt =

Γ(α)Γ(β )

Γ(α +β )
,

and hence∫ x

0
tα−1(x− t)β−1dt = xα+β−1 Γ(α)Γ(β )

Γ(α +β )
.

The integral in the first equation of Lemma 2.3 is known
as Beta function B(α,β ).
Next, we recall some definitions and properties of measure
of noncompactness, for more details, we refer the reader to
[[3],[5],[6],[13][17],[28]].

Definition 2.4. Let E be a Banach space, P(E) denote the
collection of all nonempty subsets of E, and (A ,≥) a partially
ordered set A map β : P(E) −→ A is called a measure of
noncompactness on E, MNC for short, if

β (coΩ) = β (Ω)

for every Ω ∈P(E), where coΩ is the closure of convex hull
of Ω.

Definition 2.5. A measure of noncompactness β is called
(1) monotone if for each Ω0,Ω1 ∈P(E),from Ω0 ⊂ Ω1 fol-
lows β (Ω0)≤ β (Ω1).
(2) nonsingular, if for each a ∈ E and each Ω ∈P(E) we
have β ({a}∪Ω) = β (Ω).
If A is a cone in Banach space, the MNC β is called:
(3) regular, if β (Ω) = 0 is equivalent to the relative compact-
ness of Ω ∈P(E),
(4) real, if A is the set of all real numbers R with the natural
ordering.
As the example of a real MNC obeying all above properties,
we can consider the Hausdorff MNC χ(Ω):

χ(Ω) = inf{ε > 0, for which Ω has a finite ε-net in E}.

Notice that the Hausdorff MNC satisfies the semi-homogeneity
condition, i.e.:

χ(λΩ) = |λ |χ(Ω),

for each λ ∈ R and each Ω ∈P(E).
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For any W ⊂C(J,E), we define∫ t

0
W (s)ds =

{∫ t

0
x(s)ds : x ∈W, for t ∈ J = [0,b]

}
,

where W (s) = {x(s) ∈ E : x ∈ w}.

Lemma 2.6. If W ⊂C(J,E) is bounded and equicontinuous
then β (W (t)) is continuous on J and

β

(∫ t

0
W (s)ds

)
≤
∫ t

0
β (W (s))ds, for t ∈ [0,b].

Definition 2.7. A continuous map F : E ⊂ X → X is said to
be condensing with respect to a MNCβ (β -condensing) if for
every bounded set Ω ⊂ E that is not relatively compact, we
have

β (F(Ω))� β (Ω).

Lemma 2.8. [7] If {un}∞
n=1 ⊂ L1(J,E) satisfies ‖un(t)‖ ≤

κ(t) a.e. on J for all n≥ 1 with some κ ∈ L1(J,R+). then the
function χ({un}∞

n=1) be long to L1(J,R+) and

χ

{(∫ t

0
un(s)ds : n≥ 1

})
≤ 2

∫ t

0
χ(un(s)ds : n≥ 1).

According to Lemma 2.4 in [25], we can obtain the re-
sults immediately. The map F : B ⊆ Y → Y is said to be an
β -contraction if there exists a positive constant k < 1 such that
β (F(B0))≤ kβ (B0) for any bounded closed subset B0 ⊆ B.

Theorem 2.9. [6](Darbo-Sadovskii’s fixed point theorem). If
B is a bounded, closed and convex subset of a Banach space
Y , and the continuous map F : B→ B is an β -contraction,
then the map F has at least one fixed point in B.

3. Main Results
We investigate in our the Cauchy problem for the frac-

tional differential equation above with the following assump-
tions.

(H1) f : [0,b]×E→ E is continuous function.

(H2) ‖ f (t,x)− f (t,y)‖ ≤ L‖x− y‖, ∀t ∈ [0,b],x,y ∈ E.

(H3) g :C1−α([0,b],E)→E is continuous and ‖g(x)−g(y)‖≤
Lg‖x− y‖α .

Theorem 3.1. Under assumptions (H1-H3), if Lg <
1
2

and

L≤ Γ(2α)

2bα Γ(α)
.

Then (1.1)-(1.2) has a unique solution.

Proof. Defined T : C1−α(J,E)→C1−α(J,E) by:

T (x)(t) = tα−1(x0−g(x))+
1

Γ(α)

∫ t

0
(t− s)α−1 f (s,x(s))ds.

Let Br = {x ∈C1−α(J,E),‖x‖α ≤ r}, where

r ≥ 2
[
(‖x0‖+g∗)+

Mb
Γ(α +1)

]
.

Then we can show that T (Br) ⊂ Br. So that x ∈ Br and set
g∗ = supx∈C1−α (J,E) ‖g(x)‖, M = sup

t∈J
‖ f (t,0)‖ then we get

t1−α‖T (x)(t)‖ ≤ ‖(x0−g(x))‖

+
t1−α

Γ(α)

∫ t

0
(t− s)α−1‖ f (s,x(s))‖ds

≤ (‖x0‖+g∗)+
b1−α

Γ(α)

[∫ t

0
(t− s)α−1(‖ f (s,x(s))− f (s,0)‖

+‖ f (s,0)‖)ds
]

≤ (‖x0‖+g∗)+
Mb1−α

Γ(α)

∫ t

0
(t− s)α−1ds

+
b1−α

Γ(α)

∫ t

0
(t− s)α−1sα−1s1−α‖ f (s,x(s))− f (s,0)‖ds

≤ (‖x0‖+g∗)+
Mb

Γ(α +1)

+
b1−α

Γ(α)

∫ t

0
(t− s)α−1sα−1‖ f (s,x(s))− f (s,0)‖α ds

≤ (‖x0‖+g∗)+
Mb

Γ(α +1)
+

Lbα B(α,α)

Γ(α)
r ≤ r.

Now take x,y ∈C1−α(J,E), we get

t1−α‖T (x)(t)−T (y)(t)‖

≤ ‖g(x)−g(y)‖+ t1−α

Γ(α)

∫ t

0
(t− s)α−1‖ f (s,x(s))− f (s,y(s))‖ds

≤ Lg‖x− y‖α +
Lb1−α

Γ(α)

∫ t

0
(t− s)α−1sα−1s1−α‖x− y‖ds

≤ Lg‖x− y‖α +
Lb1−α

Γ(α)

∫ t

0
(t− s)α−1sα−1‖x− y‖α ds

≤ Lg‖x− y‖α +
Lbα Γ(α)

Γ(2α)
‖x− y‖α

≤
(

Lg +
Lbα Γ(α)

Γ(2α)

)
‖x− y‖α

≤ΩL,Lg ,b,α‖x− y‖α ,

where ΩL,Lg,b,α :=
(

Lg +
Lbα Γ(α)

Γ(2α)

)
, which depends only

on the parameters involved in the problem. And since
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ΩL,Lg,b,α < 1, then T is contraction mapping. Therefor, for by
Banach’s contraction principle T has a unique fixed point.

Our next result is based on the following the now assume

(H4) there exists a constant c1 > 0 such that

‖ f (t,x)‖≤ c1(1+t1−α‖x(t)‖) for all t ∈ [0,b],and x∈E.

(H5) there exists a constant L̂> 0 such that for each nonempty,
bounded set Ω⊂C1−α(J,E)

χ( f (t,Ω))≤ L̂χ(Ω(t)), for all t ∈ J,

where χ is the Hausdorff measure of noncompactness
in E.

For brevity, let

M1 =
c1b

Γ(α +1)
,

M2 = (‖x0‖+g∗)+
c1b

Γ(α +1)
.

Define an operator T on C1−α(J,E) by

(T x)(t) = tα−1(x0−g(x))

+
1

Γ(α)

∫ t

0
(t− s)α−1 f (s,x(s))ds t ∈ (0,b],

for any x∈C1−α(J,E), let (T x)(t)= (T1x)(t)+(T2x)(t), where

(T1x)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s,x(s))ds,

(T2x)(t) = tα−1(x0−g(x)).

Assume that M1 < 1, and let

Br = {x ∈C1−α(J,E) : ‖x‖α ≤ r}, where r ≥ M2

1−M1
.

Lemma 3.2. If the assumptions (H1),(H4) are satisfied with
M1 < 1, and (H5). Then T1(Br) is relatively compact set in
C1−α(J,E).

Proof. Using (H4) we can easily prove that T1x ∈C1−α(J,E)
for any x∈C1−α(J,E). Then T1 is well defined on C1−α(J,E).
We divide the proof into a sequence of steps.
Step 1. T1 is continuous.
Let {xn} be a sequence such that xn→ x in C1−α(J,E). Then

t1−α‖T1(xn)(t)−T1(x)(t)‖

≤ t1−α

Γ(α)

∫ t

0
(t− s)α−1‖ f (s,xn(s))− f (s,x(s))‖ds

≤ t1−α

Γ(α)

∫ t

0
(t− s)α−1sα−1s1−α‖ f (s,xn(s))− f (s,x(s))‖ds

≤ t1−α

Γ(α)

∫ t

0
(t− s)α−1sα−1‖ f (·,xn(·))− f (·,x(·))‖α ds.

Using hypothesis (H4) we have

‖T1(xn)−T1(x)‖α ≤
bα

Γ(α)
B(α,α)‖ f (·,xn(·))− f (·,x(·))‖α .

Hence

‖T1(xn)−T1(x)‖α → 0, as n→+∞.

Step 2. T1 maps bounded sets into bounded sets in C1−α(J,E).
Indeed, it is enough to show that there exists a positive con-
stant l such that for each x∈Br = {x∈C1−α(J,E) : ‖x‖α ≤ r}
one has ‖T1(x)‖α ≤ l.

t1−α‖T1(x)(t)‖ ≤
b1−α

Γ(α)

∫ t

0
(t− s)α−1‖ f (s,x(s))‖ds

≤ b1−α

Γ(α)

∫ t

0
(t− s)α−1c1(1+ s1−α‖x(s)‖)ds

≤ c1b1−α

Γ(α)

∫ t

0
(t− s)α−1(1+ r)ds

≤ c1b
Γ(α +1)

(1+ r) := l.

Step 3. T1 maps bounded sets into equicontinuous sets.

‖t1−α

2 T1(x)(t2)− t1−α

1 T1(x)(t1)‖

≤
(t1−α

2 − t1−α

1 )

Γ(α)

∥∥∥∥∫ t1

0
[(t2− s)α−1− (t1− s)α−1] f (s,x(s))ds

∥∥∥∥
+

t1−α

2

Γ(α)

∥∥∥∥∫ t2

t1
(t2− s)α−1 f (s,x(s))ds

∥∥∥∥
≤

(t1−α

2 − t1−α

1 )

Γ(α)

∫ t1

0
[(t2− s)α−1− (t1− s)α−1]c1(1+ s1−α‖x(s)‖)ds

+
t1−α

2
Γ(α)

∫ t2

t1
(t2− s)α−1c1(1+ s1−α‖x(s)‖)ds

≤
(t1−α

2 − t1−α

1 )

Γ(α)
c1(1+ r)

∫ t1

0
[(t2− s)α−1− (t1− s)α−1]ds

+
t1−α

2

Γ(α)
c1(1+ r)

∫ t2

t1
(t2− s)α−1ds.

Thus

‖t1−α

2 T1(x)(t2)− t1−α

1 T1(x)(t1)‖

≤
(t1−α

2 − t1−α

1 )

Γ(α +1)
c1(1+ r)[(t2− t1)α +(tα

1 − tα
2 )]

+
t1−α

2
Γ(α +1)

c1(1+ r)(t2− t1)α .
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As t2→ t1, the right-hand side of above expression tends to
zero. Then T1(Br) is equicontinuous.
Step 4. T1 is ν-condensing. We consider the measure of
noncompactness defined in the following way. For every
bounded subset Ω⊂C1−α(J,E).

ν(Ω) = max
Ω∈∆(Ω)

(γ(Ω), mod C1−α
(Ω)), (3.1)

∆(Ω) is the collection of all countable subsets of Ω and the
maximum is taken in the sense of the partial order in the cone
R2
+, γ is the damped modules of fiber noncompactness

γ(Ω) = sup
t∈J

e−µt
χ(Ωα(t)), µ ≥ 0, (3.2)

where Ωα(t) = {xα(t) : x(t) ∈ Ω} and mod C1−α
(Ω) is the

modulus of equicontinuity of the set of functions Ω given by
formula

mod C1−α
(Ω) = lim

δ→0
sup
x∈Ω

max
|t1−t2|≤δ

‖xα(t1)−xα(t2)‖. (3.3)

Let

σ(µ) = sup
t∈J

∫ t

0
(t− s)α−1sα−1e−µ(t−s)ds. (3.4)

It is clear that

sup
t∈[0,b]

∫ t

0
(t− s)α−1sα−1e−µ(t−s)ds→ 0 as µ →+∞.

We can choose µ such that

σ =
2L̂b1−α

Γ(α)
σ(µ)< 1. (3.5)

From Lemma , the measure ν is well defined and give a mono-
tone, nonsingular and regular measure of noncompactness in
C1−α(J,E).
Let Ω⊂C1−α(J,E) be a bounded subset such that

ν(T1(Ω))≥ ν(Ω). (3.6)

We will show that (3.6) implies that Ω is relatively compact.
Let the maximum on the left-hand side of the inequality (3.6)
be a chieved for the countable set {yn}+∞

n=1 with

yn(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 fn(s)ds, {xn}+∞

n=1 ⊂Ω, (3.7)

and fn(t) = f (t,xn(t)).
We give now an upper estimate for γ({yn}+∞

n=1. By using (H5)
we have

χ({(t− s)α−1 fn(s)}+∞

n=1)≤ (t− s)α−1L̂χ({xn(s)}+∞

n=1)

≤ L̂(t− s)α−1sα−1s1−α χ({xn(s)}+∞

n=1)

= L̂(t− s)α−1sα−1χ({xn
α(s)}+∞

n=1)

≤ L̂(t− s)α−1sα−1eµs sup
0≤s≤t

e−µsχ({xn
α(s)}+∞

n=1)

= L̂(t− s)α−1sα−1eµsγ({xn}+∞

n=1),

for all t ∈ [0,b], s≤ t. Then applying Lemma 2.8, we obtain

χ({yn}+∞

n=1)≤
2L̂b1−α

Γ(α)
sup

t∈[0,b]

∫ t

0
(t−s)α−1sα−1eµs

γ({xn}+∞

n=1).

Taking (3.5) and (3.7) into account, we derive

γ({yn}+∞

n=1)≤ σγ({xn}+∞

n=1).

Combining the last inequality with (3.6), we have

γ({xn}+∞

n=1)≤ σγ({xn}+∞

n=1).

Therefore
γ({xn}+∞

n=1) = 0.

Furthermore, from step 3, we know that
mod C1−α

(T1(Ω)) = 0 and (3.6) yields mod C1−α
(Ω) = 0. Fi-

nally,
ν(Ω) = (0,0),

which prove the relative compactness of set Ω.

Theorem 3.3. Assume that (H1), (H3), (H4), (H5) hold, with
M1 < 1. Then (1.1)-(1.2) has least one solution.

Proof. Using (H1), (H4) can be prove that T x ∈C1−α(J,E)
for any x ∈C1−α(J,E). Then T is well defined on C1−α(J,E).
We will show that T satisfies all conditions of Theorem 3.1,
the proof will be given in several steps.
For any x ∈ Br and t ∈ J, taking into account the imposed
assumptions, we obtain

t1−α‖(T x)(t)‖ ≤ (‖x0‖+g∗)

+
b1−α

Γ(α)

∫ t

0
(t− s)α−1‖ f (s,x(s))‖ds

≤ (‖x0‖+g∗)+
b1−α

Γ(α)

∫ t

0
(t− s)α−1c1(1+ s1−α‖x(s)‖)ds

≤ (‖x0‖+g∗)+
c1b1−α(1+ r)

Γ(α)

∫ t

0
(t− s)α−1ds

≤ (‖x0‖+g∗)+
c1b(1+ r)
Γ(α +1)

≤ r.

Then T is maps Br into Br.
Next, we will show that T is continuous in Br.
By (H3), for Lg < 1 it is clear that T2 is a contraction mapping.
This means that T is continuous in Br.
According to Lemma 3.2, T1(Br) is relatively compact in
C1−α(J,E), then χ(T1(Br)) = 0. For any x1,x2 ∈ Br, we have

t1−α‖T2x2(t)−T2x1(t)‖ ≤ ‖g(x2)−g(x1)‖

which implies that

‖T2x2−T2x1‖α ≤ Lg‖x2− x1‖α .
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Hence

β (T2(Br))≤ Lgβ (Br).

Therefore

χ(T (Br))≤ χ(T1(Br))+χ(T2(Br))

≤ Lgχ(Br).

Noting that Lg < 1, we find that the operator T is an χ-
contraction in Br. Then problem (1.1)-(1.2) has at least one
solution in Br. The proof is complet.

4. An example

In section, we discuss an example to illustrate our results.
Let us consider the fractional differential equation nonlocal

LDα

0+x(t) =
1

et2
+1

{
ln(|xk|+1)+

1
k2

}∞

k=1
, t ∈ J = [0,1],

(4.1)

(I1−α

0+ x)(0)+g(x) = x0, (4.2)

c0 represents the space of all sequences converging to zero,
which is a Banach space with respect to the norm

‖x‖= sup
k
|xk|.

Let t ∈ J and x = {xk}k ∈ c0, we have

‖ f (t,x)‖∞ =
1

et2
+1
‖ ln(|xk|+1)+ 1

k2 ‖∞

≤ 1
et2

+1

(
sup

k
|xk|+1

)

≤ 1
et2

+1
(1+‖x‖∞).

Hence conditions (H1), (H4) are satisfied with p(t) =
1

et2
+1

,

for all t ∈ [0,1].
We recall that the measure of noncompactness χ in space c0
can be computed by means of the formula

χ(Ω) = lim
n→+∞

sup
x∈Ω

‖(I−Pn)x‖∞.

Where Ω is a bounded subset in c0 and Pn is the projection
onto the linear span of n vectors, we get

χ( f (t,Ω))≤ η(t)χ(Ω(t)) for all t ∈ [0,1],

with η(t) = (et2
+1)−1. Hence (H5) is satisfied.

Denote g(x) =
m
∑

i=1
cix(ti), then for any x = {xk}k,y = {yk}k ∈

c0, one has

‖g(x)−g(y)‖∞ ≤
m

∑
i=1
|ci|‖x− y‖∞.

Clearly, Lg =
m
∑

i=1
|ci| and choose ci such that Lg < 1.

Assume that (H1), (H3), (H4), (H5) is satisfied and M1 < 1.
Then by Theorem 3.3 the fractional problem (4.1)-(4.2) has
least one solution.
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