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Unique isolate domination in graphs
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Abstract
A dominating set S of a graph G is said to be an isolate dominating set of G if the induced subgraph < S > has at
least one isolated vertex [6].
A dominating set S of a graph G is said to be an unique isolate dominating set(UIDS) of G if < S > has exactly
one isolated vertex. An UIDS S is said to be minimal if no proper subset of S is an UIDS. The minimum cardinality
of a minimal UIDS of G is called the UID number, denoted by γU

0 (G). This paper includes some properties of
UIDS and gives the UID number of paths, complete k-partite graphs and disconnected graphs. Finally, the role
played by UIDS in the domination chain has been discussed in detail.
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1. Introduction
In this paper, we consider only finite, non-trivial and undi-

rected graphs with no loops and no multiple edges. For graph
theoretic terminology, we refer to [2].

Let G=(V,E) be a simple connected graph. For v∈V , the
open neighborhood N(v) is the set of all vertices which are ad-
jacent to v. The closed neighborhood of v is N[v] =N(v)∪{v}.
The degree of a vertex v is defined by deg(v) = |N(v)|. The
minimum and maximum degree of G is defined by δ (G) =
min
v∈V
{deg(v)} and ∆(G) = max

v∈V
{deg(v)} respectively.

A set S ⊆ V is called a dominating set if every vertex in
V is either an element of S or adjacent to an element of S.
A dominating set S is minimal if no proper subset of S is a
dominating set. The minimum and maximum cardinality of a
minimal dominating set of G are called the domination num-

ber γ(G) and the upper domination number Γ(G) respectively.

In 2016, Hameed and Balamurugan [6] introduced the
concept of isolate domination in graphs. Further, in [5], they
characterized unicycle graphs on which the order equals the
sum of the isolate domination number and its maximum de-
gree. A dominating set S of a graph G is said to be an isolate
dominating set if < S > has at least one isolated vertex [6].
An isolate dominating set S is said to be minimal if no proper
subset of S is an isolate dominating set. The minimum and
maximum cardinality of a minimal isolate dominating set of G
are called the isolate domination number γ0(G) and the upper
isolate domination number Γ0(G) respectively. An isolate
dominating set of cardinality γ0 is called a γ0-set.

By using the above concept of isolate domination, we de-
fine a new concept called ”Unique Isolate Domination(UID)”.
A dominating set S of G is said to be an UIDS of G if < S >
has exactly one isolated vertex. An UIDS S is said to be
minimal if no proper subset of S is an UIDS. The minimum
and maximum cardinality of a minimal UIDS of G are called
the UID number γU

0 (G) and the upper UID number ΓU
0 (G)

respectively. An UIDS of cardinality γU
0 is called a γU

0 -set.
Note that the cycle C4 does not admit UIDS but it admits
isolate dominating sets. So many differences between these
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two domination parameters that we have discussed in the next
section. This paper includes some basic properties of UIDS
and the role played by UIDS in the domination chain has been
discussed.

2. Extended domination chain
A set S ⊆ V of vertices is called an independent domi-

nating set if S is a dominating set and the induced subgraph
< S > is totally disconnected. The independent domination
number i(G) of a graph G equals the minimum cardinality
of a independent dominating set in G. The independence
number β0(G) of a graph G is the maximum cardinality of an
independent set of G.

For a set S of vertices, a vertex v is said to be a private
neighbor of a vertex u ∈ S with respect to S if N[v]∩S = {u}.
A set S of vertices is irredundant if every vertex in S has at
least one private neighbor with respect to S. The minimum and
maximum cardinality of a maximal irredundant set are called
the irredundance number ir(G) and the upper irredundance
number IR(G) respectively. An inequality chain connecting
these parameters was established in [3] as given below:

ir(G)≤ γ(G)≤ i(G)≤ β0(G)≤ Γ(G)≤ IR(G). (2.1)

A detailed study of this domination chain can be found in
[4]. Extending this chain by new parameters whose values lie
between any two parameters in the chain is one direction of
research.
In [6], Hameed extend this domination chain and obtained the
following:

ir(G)≤ γ(G)≤ γ0(G)≤ i(G)≤ β0(G)

≤ Γ0(G)≤ Γ(G)≤ IR(G). (2.2)

In this section, we study the position of γU
0 in the domina-

tion chain.

Theorem 2.1. For any graph G, we have γ0(G)≤ γU
0 (G).

Proof. Since every UIDS of G is also an isolate dominating
set of G, we have γ0(G)≤ γU

0 (G).

Remark 2.2. Consider the following graphs G1 and G2.

bb b b b b b b
b b bb

b

b
bbb
bb

G1 G2

From the following table, it is concluded that the pa-
rameter γU

0 (G) is non-comparable with all these parameters
i(G),β0(G),Γ(G),Γ0(G) and IR(G).

Parameter Graphs
G1 G2

γU
0 3 3

i 2 7
β0 2 12
Γ 2 12
Γ0 2 12
IR 2 12

From Theorem 2.1 and Remark 2.2, we arrived a new
domination chain as given below. For any graph G, we have

ir(G)≤ γ(G)≤ γ0(G)≤ γ
U
0 (G)≤ Γ

U
0 (G). (2.3)

3. Basics of unique isolate domination

In this section, the UID number of paths and complete
k−partite graphs have been obtained. Also some properties
of UIDS are given.

Remark 3.1. If S is an UIDS of a graph G, then the induced
subgraph < S > has exactly one isolated vertex and all other
vertices of S has a neighbor in S.

Lemma 3.2. Let S be any UIDS of a graph G such that every
non-isolated vertex of < S > has a private neighbor with
respect to S. Then S is minimal.

Proof. Let v ∈ S. If v is the isolated vertex in < S >, then
S−{v} will not dominate the vertex v. If v is non isolated
vertex of < S >, then there exist w ∈ S such that w is the
private neighbor of v in S. In this case, S−{v} will not
dominate the vertex w. Thus S is minimal.

The corona of two graphs G and H, denoted by G ◦H,
is the graph obtained by taking one copy of G of order n
and n copies of H, and then joining the i-th vertex of G to
every vertex in the i-th copy of H [1]. For every v ∈ V (G),
we denote by Hv the copy of H whose vertices are joined or
attached to the vertex v.

Remark 3.3. The converse of Lemma 3.2 is not true. For
example, let G =C4 ◦K1, where V (C4) = {ai|1≤ i≤ 4} and
for 1≤ i≤ 4, let bi be the newly added vertex adjacent to ai.
Then S = {a1,a2,a3,b4} is a minimal UIDS but the vertex a1
has no private neighbor in S.

Remark 3.4. (a). If a graph G has a full vertex, say x, then
{x} is an UIDS and γU

0 (G) = 1. Thus the complete graphs,
wheels and stars admit UIDS.
(b). Since any UIDS S of a graph G contains exactly one
isolated vertex in < S >, γU

0 (G) 6= 2.
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Lemma 3.5. Let Pn be a path of n vertices for n≥ 1. Then
(a). γU

0 (Pn) = 2t +1 if n = 4t +1 or 4t +2 or 4t +3 for some
integer t ≥ 0.
(b). γU

0 (P4) = 3.
(c). γU

0 (Pn) = 2t if n = 4t for some integer t ≥ 2.

Proof. (a). Let V (Pn) = {v1,v2, . . . ,vn}.
Suppose n = 4t +1 or 4t +2 or 4t +3 for some integer t ≥ 0.
When t = 0, each of the graphs P1, P2 and P3 has a full vertex
and hence by Remark 3.4(a), γU

0 (P1) = γU
0 (P2) = γU

0 (P3) =
1 = 2t +1.
Suppose n = 4t +1 for some integer t ≥ 1.
Let S be any UIDS of Pn and x be the isolated vertex in < S >.
Note that the vertex x can dominate a maximum of 3 vertices.
Thus the remaining n−3 vertices of Pn must be dominated by
S−{x}. Also every vertex of S−{x} is adjacent to at least
one other vertex of S−{x} and any two adjacent vertices of
S−{x} can dominate a maximum of 4 vertices.
Since n = 4t +1 = 3+4(t−1)+2, to dominate the 3+4(t−
1) vertices, S must have 1+2(t−1) = 2t−1 vertices. Let va
and vb be two vertices of Pn which are not dominated by these
2t−1 vertices.
Case 1: If va and vb are adjacent, then there exists a path P
with at least 3 vertices such that va,vb ∈ P and P∩S = φ . If
we choose one vertex of this path to dominate all the vertices
of P, then it must be isolated in < S >, a contradiction to S is
uniquely isolated. Thus we need at least two more vertices in
S to dominate all the vertices of P.
Case 2: Suppose va and vb are not adjacent. Suppose there
exists a vertex vc such that vc is adjcacent with both va and vb.
Then vc /∈ S and there exists a path P with at least 3 vertices
such that va,vb ∈ P and P∩S = φ . In this case, as discussed
above, we need at least two more vertices in S to dominate all
the vertices of Pn. In the other case, to dominate va and vb, we
need at least two more vertices in S.
Thus in all the cases, S must have 1+ 2(t − 1) + 2 = 2t +
1 vertices and hence γU

0 (Pn) ≥ 2t + 1. Also the set {v1}∪
{v3+4i,v4(i+1) : i = 0,1,2, . . . , t− 1} is an UIDS with 2t + 1
vertices and so γU

0 (Pn)≤ 2t +1.
By using the facts 4t+2= 3+4(t−1)+3 and 4t+3= 3+4t
, we can prove that γU

0 (Pn)= 2t+1 if n= 4t+2 and n= 4t+3
respectively.
(b). When n = 4, {v1,v3,v4} is a γU

0 -set of P4.
(c). Let n = 4t for some integer t ≥ 2. Since n = 4t = 3+
4(t−1)+1, as discussed in (a), S must have 1+2(t−1)+1=
2t vertices. Thus γU

0 (Pn) ≥ 2t. Also the set {v2,v4t−1} ∪
{v4i+1,v4i+2/i = 1,2, . . . , t− 1} is an UIDS with 2t vertices
and so γU

0 (Pn)≤ 2t.

Lemma 3.6. Let k ≥ 2 be an integer and G = Km1,m2,...,mk =
(M1,M2, . . . ,Mk) be a complete k−partite graph. Then G
admits an UIDS if, and only if, mi = 1 for some integer i with
1≤ i≤ k.

Proof. Suppose G admits an UIDS, say S. On the contrary,
assume that mi ≥ 2 for all 1≤ i≤ k.

Let x be the isolated vertex of < S >. Without loss of gener-
ality, assume that x ∈ M1. Since |M1| ≥ 2, we can choose
a vertex y ∈ M1 such that y 6= x. Note that no vertex of
M2∪M3∪ . . .∪Mk will be in S(otherwise x will not be isolated
in < S >). Thus to dominate the vertex y, S must include y
and hence < S > has more than one isolated vertex, namely y,
a contradiction.
The converse part follows from Remark 3.4(a).

Lemma 3.7. Let H be a graph of order n(≥ 3) such that H
has a maximum of one isolated vertex and G = H ◦K1. Then
γU

0 (G) = γ(G) = n.

Proof. Since every pendant vertex or its support should be
included in any dominating set and all the n pendant vertices
together forms a dominating set, we have γ(G) = n and hence
γU

0 (G)≥ n.
If H has an isolated vertex, let it be v. Let v′ be the newly
added vertex which is adjacent to v. Then V (H) is an UIDS
of G with n elements and v is the only isolated vertex in
<V (H)>. If H does not have isolated vertices, then (V (H)−
{v})∪{v′} is an UIDS of G with n elements for each v∈V (H)
and so γU

0 (G)≤ n.

In the above Lemma, if we let n = 2, then H is isomorphic
to the complete graph K2. In this case, G is a path on four
vertices with γU

0 (G) = 3 and γ(G) = 2.
When n = 1, H is isomorphic to the complete graph K1 and
G is the path on two vertices and hence by Remark 3.4(a),
γU

0 (G) = γ(G) = 1.

Theorem 3.8. Let n≥ 2 be an integer and let G be a discon-
nected graph with n components G1,G2, . . . ,Gn such that the
first r components G1,G2, . . . ,Gr admit UIDS. Then γU

0 (G) =

min
1≤i≤r

{ti}, where ti = γU
0 (Gi)+

n
∑

j=1, j 6=i
γt(G j) for 1≤ i≤ r.

Proof. With out loss of generality, let t1 = min
1≤i≤r

{ti}.

Let S be a γU
0 - set of G1 and Di be a γt - set of Gi for each i with

2≤ i≤ n. Then S∪ (
n⋃

i=2
Di) is an UIDS of G with cardinality

γU
0 (G1)+

n
∑

i=2
γt(Gi) and so γU

0 (G)≤ γU
0 (G1)+

n
∑

i=2
γt(Gi) = t1.

Let S be a minimal UIDS of G. Then S must intersect V (Gi)
for each 1 ≤ i ≤ n. Further, there exists an integer j such
that S∩V (G j) is a minimal UIDS of G j and 1≤ j ≤ r. Also
for each 1≤ i≤ n, i 6= j, the set S∩V (Gi) is a minimal total
dominating set of Gi.

Therefore |S| ≥ γU
0 (G j)+

n
∑

i=1,i 6= j
γt(Gi)≥ t1 and hence γU

0 (G)=

min
1≤i≤r

{ti}.

Theorem 3.9. Let k ≥ 1 be an integer such that k 6= 2. Then
there exists a graph G such that γ(G) = γU

0 (G) = k.
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Proof. Let Ck+2 be a cycle of order k + 2 and V (Ck+2) =
{u1,u2, . . . ,uk+2}. Let G be a graph obtained from Ck+2
by adding one pendant edge at each vertex of V (Ck+2)−
{u1,u2,u3}. Let S be a dominating set of G. To dominates all
the pendant vertices in G, S must have at least k−1 vertices
of V (G)−{u1,u2,u3}. And S must include at least one more
vertex to dominate the vertex u2. Thus |S| ≥ (k−1)+1 = k
and so γ(G)≥ k.
Note that S = {u2,u4,u5, . . . ,uk+2} is an UIDS with |S| = k
and u2 is the only isolated vertex of < S >. Thus γU

0 (G)≤ k.
Since γ(G)≤ γU

0 (G), we have γ(G) = γU
0 (G) = k.

Theorem 3.10. Let a and b be two integers such that b >
a ≥ 2. Then there exists a graph G such that γ(G) = a and
γU

0 (G) = b.

Proof. Let Ca be a cycle of order a with V (Ca)= {u1,u2, . . . ,ua}.
Let H be any graph which admits UIDS with γU

0 (H)= γ(H)=
b−a+1(which is possible by Theorem 3.9) and G =Ca ◦H.
Let S be a dominating set of G. Then S must include ui or at
least one vertex of Hui for each 1 ≤ i ≤ a and so γ(G) ≥ a.
Since V (Ca) is a dominating set of G, we have γ(G)≤ a and
so γ(G) = a.
Let S be any UIDS of G and u be the isolated vertex of < S >.
Suppose u ∈ V (Ca), without loss of generality, let it be u1.
Then u2 /∈ S. To dominate the vertices of V (Hu2), S must
include at least b−a+1 vertices of V (Hu2)(since γ(Hu2) =
b−a+1). Now to dominate the vertices of V (Hui) for each
i 6= 2, S must include at least one vertex of V (Hui) or ui. Thus
|S| ≥ b−a+1+a−1≥ b.
Suppose u ∈V (Hui) for some 1≤ i≤ a. Without loss of gen-
erality, assume that u ∈ Hu1 . Then u1 /∈ S. To dominate the
vertices of V (Hu1), S must include at least b−a+1 vertices of
V (Hu1)(since γ(Hu1) = γU

0 (Hu1) = b−a+1). Now to domi-
nate the vertices of V (Hui) for each i 6= 1, S must include at
least one vertex of V (Hui) or ui. Thus |S| ≥ b−a+1+a−1≥
b.
Hence in both the cases, we have |S| ≥ b and so γU

0 (G)≥ b.
Let S be a γU

0 - set of Hu1 . Then |S| = b− a+ 1 and D =
{u2,u3, . . . ,ua}∪ S is an UIDS of G with |D| = a− 1+ b−
a+1 = b. Thus γU

0 (G)≤ b and so γU
0 (G) = b.
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