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1. Introduction
The concept of b−metric spaces had been initiated by

Bakhtin [1] in 1989 which generalizes metric spaces, usually
we mean, and thereby he had been succeeded to generalize
the Banach contraction principle theorem over it. With the
introduction of partial metric spaces by Matthews [22] in
1994, it had been possible to show an application of program
verification in case of data flow network by generalizing the
Banach contraction principle. The speciality of such partial
metric p on a partial metric space (X , p) is that p(x,x) may
not be zero, a convergent sequence in (X , p) need not be
necessarily have a unique limit.

In light of the same spirit Huang and Zhang [16] in 2007
had been able to set up a cone metric space as a generalization
of metric space in which the set of real numbers are replaced
by the elements of ordered Banach space. With this concept
he had been succeeded to define Cauchy sequences and con-

vergence of sequences in it. Subsequently many researchers
(See [2],[19],[5],[8],[9],[17]) had proved fixed point theorems
in such spaces. As we go through in a survey of literatures,
we note that many authors had pointed out that fixed point
theorems so far obtained in a cone metric space have no im-
portance as such, because the results directly follows from the
usual metric spaces where the real valued metric function is
defined by some equivalent functions (See [3],[17]). Due to
the loss of significant facts researchers had loose their interest
to work with fixed point theory on such a cone metric space.
Surprisingly Liu and Xu [20] switched on the concept of cone
metric spaces over a Banach algebra and proved some fixed
point theorems by weakening the conditions of Lipschitz con-
stant of spectral radius for generalized contractive mapping.
In recent years some authors (See [4],[7],[10],[20]) had been
able to establish some fixed point theorems in a setting of
cone metric space over a Banach algebra.

Following these concepts and with the generalization of
partial metric spaces and cone metric spaces over Banach
algebra, Fernandez et. al. [9] introduced the notion of partial
cone metric spaces over a Banach algebra. Subsequently
Fernandez et. al. (See [11],[12],[13]) had been succeeded
to introduce the structures of (i) Np−cone metric space over
Banach algebra and (ii) Nb−cone metric space over Banach
algebra respectively, as a generalization of (a) N−cone metric
space over Banach algebra and (b) N−cone metric space over
Banach algebra together with b−metric space.
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Motivated with the introduction of F−cone metric space
by Fernandez et. al. [6] as a generalization of Np−cone metric
space and Nb−cone metric space over a Banach algebra, we
have been able to prove some common fixed point theorems
for a class of generalized contractive mappings over such an
F−cone metric space over a Banach algebra. The illustrative
examples are given in strengthening of the hypothesis of our
theorems.

2. Preliminaries
In this section we recall some basic definitions and some

basic results together with its consequences which are relevant
to our findings.

Definition 2.1. [20] A linear space A over a field K(R or C)
is called an algebra if it is closed under multiplication (i.e. if
for all x,y ∈ A, xy ∈ A) and satisfies the following properties:

(i) (xy)z = x(yz), ∀ x,y,z ∈ A
(ii) x(y+ z) = xy+ yz and (x+ y)z = xz+ yz, ∀ x,y,z ∈ A
(iii) α(xy) = (αx)y = x(αy), ∀ x ∈ A, ∀α ∈ K.

A Banach space A over the field K (R or C) is said to be a
Banach algebra if

(i) A is an algebra and (ii) ∀ x,y ∈ A, ||xy|| ≤ ||x|| ||y||.

Throughout this paper, we shall assume that a Banach
algebra is always unital, that is it has a unity element e such
that ex = xe = x ∀x ∈ A. A non-zero element x ∈ A is said to
be invertible if its inverse exists. i.e. if there exists a non-zero
element y such that xy = yx = e, we write y = x−1 and say that
y is the inverse of x. Note that the unity element of a Banach
algebra A, if it exists, is unique. Also it can be shown that in a
Banach algebra A, with the unity element e, the inverse of an
element is unique. Note that in a Banach algebra with unity
e we have (xy)−1 = y−1x−1 and (x−1)−1 = x ∀x,y ∈ A. For
further details reader may take help of [24].

Proposition 2.2. [24] Let A be a Banach algebra with a
unit e, the spectral radius of an element x ∈ A is denoted by
ρ(x) and defined by ρ(x) = supλ∈σ(x)|λ | = limn→∞||xn|| 1n ,
where σ(x) is the spectrum of x ∈ A. If ρ(x)< 1 then e− x is
invertible and (e− x)−1 = e+∑

∞
i=1 xi.

Remark 2.3. [24] The spectral radius ρ(x) of x ∈ A satisfies
ρ(x)≤ ||x||, where A is a Banach algebra with a unity e.

Remark 2.4. [25] In Proposition 2.2 if we replace the condi-
tion ′ρ(x)< 1′ by ||x|| ≤ 1 then we get the same conclusion.

Remark 2.5. [25] If ρ(x) < 1, then we get ||x||n → 0 as
n→ ∞.

Definition 2.6. [6] A subset P of a unital Banach algebra A
is called a cone if

1. P is non empty, closed and θ ,e ∈ P
2. If x,y ∈ P and α,β ≥ 0 then αx+βy ∈ P
3. x,y ∈ P implies xy ∈ P
4. If x,−x ∈ P for some x ∈ A then x = θ , where θ is the

zero element of A.

A cone P is called a solid cone if int(P) 6= φ . Each cone
P induces a partial ordering � on A by x� y iff y−x ∈ P. We
write x≺ y if x� y and x 6= y. When the cone is solid x� y
will stand for y− x ∈ int(P). The cone P is said to be normal
if there exists a number R > 0 such that θ � x� y⇒ ||x|| ≤
R||y||. The least positive number which satisfies the previous
normality condition is called the normal constant of P (See
[16]).

Lemma 2.7. [23] If E be a real Banach space with a solid
cone P and if θ � a� c for all c� θ , then a = θ .

Definition 2.8. [18] Let P be a solid cone in a Banach space
E. A sequence {un} ⊂ P is called a c−sequence if for each
θ � c there exists a natural number N such that un � c
whenever n≥ N.

Lemma 2.9. [14] If E is a real Banach space with a solid
cone P and {un} ⊂ P is a sequence with ||un|| → 0 as n→ ∞,
then un is a c−sequence.

Lemma 2.10. [25] Let A be a Banach algebra with a unity
e. Let x,y ∈ H such that x and y commute, then

1. ρ(xy)≤ ρ(x)ρ(y)
2. ρ(x+ y)≤ ρ(x)+ρ(y)
3. |ρ(x)−ρ(y)| ≤ ρ(x− y).

Lemma 2.11. [14] If E be a real Banach space and P be a
solid cone of E then for a,b,c ∈ E with a � b� c implies
a� c.

Lemma 2.12. [25] Let P be a solid cone of a Banach algebra
A. Suppose that k ∈ P is an arbitrary vector and {un} ⊂ P is
a c−sequence, then {kun} is also a c−sequence.

Lemma 2.13. [14] Let A be a Banach algebra with unity e
and k ∈ A. Let λ be a complex constant and ρ(k)< |λ |. Then
we get ρ((λe− k)−1)≤ 1

|λ |−ρ(k) .

Lemma 2.14. [14] Let A be a Banach space and P be a solid
cone of A. Let a,k, l ∈ P, l � k and a� la with ρ(k)< 1, then
a = θ .

Lemma 2.15. [25] Let A be a Banach algebra with unity e
and {xn} ⊂ A. Suppose that {xn} converges x ∈ A and that
xn and x commute for all n, then we have ρ(xn)→ ρ(x) as
n→ ∞.

Lemma 2.16. [15] Let A be a Banach algebra with unity e
and P be a solid cone of A. Let h ∈ A and un = hn for all
n ∈ N. If ρ(h)< 1 then {un} is a c−sequence.

Lemma 2.17. [18] The following conditions are equivalent
for a cone K in the Banach space (E, ||.||)

1. K is normal
2. for arbitrary sequence {xn},{yn},{zn} in E,
xn � yn � zn ∀n∈N and limn→∞xn = limn→∞zn = x imply

limn→∞yn = x
3. there exists a norm ||.||1 on H equivalent to ||.|| such

that the cone is monotone with respect to ||.||1.
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In the following definitions we always assume that A is a
Banach algebra with unity e, P is a solid cone of A and � is
the partial order generated by the cone P.

Definition 2.18. ([16],[20]) Let X be a nonempty set. The
mapping d : X×X → A is said to be a cone metric on X if it
satisfies the following conditions:

1. d(x,y)� θ for all x,y ∈ X and d(x,y) = θ iff x = y
2. d(x,y) = d(y,x) for all x,y ∈ X
3. d(x,z)� d(x,y)+d(y,z) for all x,y,z ∈ X .

The space (X ,d) is called a cone metric space over the Banach
algebra A.

Definition 2.19. [1] Let X be a nonempty set and s be a real
number satisfying s ≥ 1. A function d : X × X → R+ is a
b−metric on X if for all x,y,z ∈ X, the following conditions
hold

1. d(x,y) = 0 iff x = y
2. d(x,y) = d(y,x) for all x,y ∈ X
3. d(x,z)� s[d(x,y)+d(y,z)] for all x,y,z ∈ X .

The space (X ,d) is called a b−metric space.

Definition 2.20. [22] Let X be a nonempty set. A function
p : X ×X → R+ is said to be a partial metric on X if for all
x,y,z ∈ X p satisfies the following conditions:

1. p(x,x) = p(x,y) = p(y,y) iff x = y
2. p(x,x)≤ p(x,y)
3. p(x,y) = p(y,x)
4. p(x,y)≤ p(x,z)+ p(z,y)− p(z,z)

The space (X , p) is called a partial metric space.

Definition 2.21. [21] Let X be a nonempty set. A function
N : X ×X ×X → A is said to be N−cone metric on X if it
satisfies the following conditions:

1. N(x,x,x)� θ for all x ∈ X
2. for any x,y,z ∈ X N(x,y,z) = θ if and only if x = y = z
3. N(x,y,z) � N(x,x,a) + N(y,y,a) + N(z,z,a) for all

x,y,z,a ∈ X .
Then (X ,N) is called an N−cone metric space over the Ba-
nach algebra A.

Definition 2.22. [12] Let X be a nonempty set. A function
Nb : X ×X ×X → A is said to be Nb−cone metric on X if it
satisfies the following conditions:

1. Nb(x,y,z)� θ for all x,y,z ∈ X
2. for any x,y,z ∈ X Nb(x,y,z) = θ if and only if x = y = z
3. Nb(x,y,z) � s[Nb(x,x,a)+Nb(y,y,a)+Nb(z,z,a)] for

all x,y,z,a ∈ X , where s is a real number greater than or
equal to 1.
Then (X ,Nb) is called an Nb−cone metric space over the
Banach algebra A.

Definition 2.23. [13] Let X be a nonempty set. A function
Np : X ×X ×X → A is said to be Np−cone metric on X if it
satisfies the following conditions:

1. Np(x,x,x) =Np(y,y,y) =Np(z,z,z) =Np(x,y,z) iff x =
y = z

2. θ �Np(x,x,x)�Np(x,x,y)�Np(x,y,z) for all x,y,z∈
X with x 6= y 6= z

3. Np(x,y,z)�Np(x,x,a)+Np(y,y,a)+Np(z,z,a)−Np(a,a,a)
for all x,y,z,a ∈ X .
The triplet (X ,Np) is called an Np−cone metric space over
the Banach algebra A.

3. Introduction to F−cone metric space
over a Banach algebra

Keeping in view with the definitions given by [6], in this
section we now redefine the following definitions. In the
following definitions we always take A as an ordered Banach
algebra.

Definition 3.1. Let X be a nonempty set. A function F : X×
X×X → A is said to be F−cone metric on X if it satisfies the
following conditions:

1. F(x,x,x) = F(y,y,y) = F(z,z,z) = F(x,y,z) iff x = y =
z,

2. θ � F(x,x,x)� F(x,x,y)� F(x,y,z) for all x,y,z ∈ X
with x 6= y 6= z,

3. F(x,y,z)� s[F(x,x,a)+F(y,y,a)+F(z,z,a)−F(a,a,a)]
for some s≥ 1 and for all x,y,z,a ∈ X .
Then the triplet (X ,A,F) is called an F−cone metric space
over the Banach algebra A and the number s≥ 1 is called the
coefficient of (X ,A,F).

Definition 3.2. Let (X ,F) be an F−cone metric space over
the Banach algebra A. A sequence {xn} ⊂ X is said to be con-
vergent and converges to a point x ∈ X if for each c� θ there
is a natural number N such that F(xn,xn,x)� c whenever
n≥ N. We write it as limn→∞xn = x.

Definition 3.3. Let (X ,F) be an F−cone metric space over
the Banach algebra A. A sequence {xn} ⊂ X is said to be
θ−Cauchy sequence if for each c� θ there is a natural
number N0 such that F(xn,xn,xm)� c whenever n,m≥ N0.

Definition 3.4. Let (X ,F) be an F−cone metric space over
the Banach algebra A. Then X is called θ−complete if every
θ−Cauchy sequence {xn} ⊂ X is convergent and converges
to some x ∈ X such that F(x,x,x) = θ .

Definition 3.5. Let (X ,F) and (X ′,F ′) be two F−cone metric
spaces over the same Banach algebra A. Then a function f :
X→ X ′ is said to be continuous if for any {xn} ⊂ X converges
to x implies { f xn} ⊂ X ′ converges to f x.

Now we state the following properties of F−cone metric
and F−cone metric space which were given by Fernandez et.
al. (See [6]).

Remark 3.6. In an F−cone metric space (X ,F) over the
Banach algebra A, F(x,y,z) = θ implies x = y = z for x,y,z ∈
X but the converse is not true.

Lemma 3.7. Let (X ,F) be an F−cone metric space over the
Banach algebra A. Then F(x,x,y)� θ whenever x 6= y.
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Proposition 3.8. If (X ,F) is an F−cone metric space over
the Banach algebra A then F(x,x,y) = F(y,y,x) for all x,y ∈
X .

Definition 3.9. Let (X ,F) be an F−cone metric space over
the Banach algebra A. Then for x ∈ X and c � θ , the
F−balls with center x and radius c� θ are BF(x,c) = {y ∈
X : F(x,x,y)� F(x,x,x)+ c}.

Definition 3.10. Let (X ,F) be an F−cone metric space over
the Banach algebra A with coefficient s ≥ 1. Let BF(x,c) =
{y ∈ X : F(x,x,y)� F(x,x,x)+ c} for all x ∈ X and for all
c� θ . We put B = {BF(x,c) : x ∈ X and θ � c}. Then B is
a subbase for some topology τ on X .

Theorem 3.11. Let (X ,F) be an F−cone metric space over
the Banach algebra A and P be a solid cone of the Banach
algebra A. Then (X ,F) is a Hausdorff space with respect to
the topology τ.

4. Main Results

In this section we prove some common fixed point results
for a pair of mappings in an F−cone metric space over the
underlying ordered Banach algebra H.

Theorem 4.1. Let (X ,H,F) be a θ−complete F−cone met-
ric space and P be a solid cone of H. Let f be a continuous
mapping of the θ−complete F−cone metric space (X ,H,F)
into itself. Assume that there exists an element k ∈ P with
ρ(k)< 1

s , s is the coefficient of X and a mapping g : X → X
which commutes with f satisfying g(X)⊂ f (X). If f ,g satis-
fies F(gx,gx,gy)� kF( f x, f x, f y) for all x,y ∈ X , then f and
g have a unique common fixed point in X .

Proof. Let x0 ∈ X . Then there exists x1 ∈ X such that f (x1) =
g(x0) since g(X)⊂ f (X). Next we can find x2 ∈ X such that
f (x2) = g(x1). In a similar manner we can construct a se-
quence {xn} in X such that f (xn) = g(xn−1) for all n ∈N. Let

yn−1 = g(xn−1) = f (xn) ∀n≥ 1 (4.1)

Then,

F(yn,yn,yn+1) = F(gxn,gxn,gxn+1)

� kF( f xn, f xn, f xn+1)

= kF(yn−1,yn−1,yn) ∀n ∈ N (4.2)

Now for 1≤ n < m we get,

F(yn,yn,ym)
� s[2F(yn,yn,yn+1)+F(ym,ym,yn+1)
−F(yn+1,yn+1,yn+1)]

� s[2F(yn,yn,yn+1)+F(ym,ym,yn+1)]
� 2sF(yn,yn,yn+1)+ s2[2F(yn+1,yn+1,yn+2)+

F(ym,ym,yn+2)−F(yn+2,yn+2,yn+2)]
� 2sF(yn,yn,yn+1)+2s2F(yn+1,yn+1,yn+2)+

s2F(ym,ym,yn+2)
... ... ...

� 2[sF(yn,yn,yn+1)+ s2F(yn+1,yn+1,yn+2)+ ...+
sm−n−1F(ym−2,ym−2,ym−1)]+
sm−n−1F(ym−1,ym−1,ym)

� 2[sF(yn,yn,yn+1)+ s2F(yn+1,yn+1,yn+2)+ ...+
sm−n−1F(ym−2,ym−2,ym−1)+
sm−nF(ym−1,ym−1,ym)] [∵ s≥ 1]

Therefore for all 1≤ n < m we get,

F(yn,yn,ym)

� 2[sF(yn,yn,yn+1)+ s2F(yn+1,yn+1,yn+2)+ ...+

sm−n−1F(ym−2,ym−2,ym−1)+ sm−nF(ym−1,ym−1,ym)]

(4.3)

Now from (4.2) we get,

F(yn,yn,yn+1) � kF(yn−1,yn−1,yn)
� k2F(yn−2,yn−2,yn−1)
� k3F(yn−3,yn−3,yn−2)
... ... ...
� knF(y0,y0,y1)

Therefore from (4.3) we get,

F(yn,yn,ym) � 2[skn + s2Kn+1 + ...+

sm−nkm−1]F(y0,y0,y1)

� 2[(sk)n +(sk)n+1 + ...+

(sk)m−n]F(y0,y0.y1) [∵ s≥ 1]
� 2(sk)n[e+ sk+ ...+(sk)m−n−1]F(y0,y0,y1)

� 2(sk)n(e− sk)−1F(y0,y0,y1) (4.4)

Since ρ(k)< 1
s it implies that ρ(sk)< 1, we have ||sk||n→ 0

as n→ ∞ by Remark 2.5.
Hence from (4.4) and by Lemma 2.9 it follows that
{F(yn,yn,ym)} is a c−sequence. So {yn} is a θ−Cauchy
sequence in X . Since X is θ−complete there exists some
z ∈ X such that {yn} converges to z. Now yn = gxn = f xn+1
for all n≥ 1. Therefore we have f (xn+1)→ z and g(xn)→ z
as n→ ∞.
Since f is continuous then clearly g is also continuous in X .
Thus g( f (xn+1))→ gz and f (g(xn))→ f z as n→ ∞. Since f
and g commute so f z = gz and so z is a coincidence point of
f and g.
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Now,

F(gz,gz,g2z) � kF( f z, f z, f gz)
= k(F( f z, f z,g f z))
= k(F(gz,gz,g2z))

Since ρ(k)< 1
s < 1 so it is possible only when F(gz,gz,g2z)=

θ which implies g2z = gz. Now, f (gz) = g( f z) = g(gz) = gz
and therefore gz is a common fixed point of f and g.
If possible let u and v be two common fixed points of f
and g, then f u = gu = u and f v = gv = v. Thus F(u,u,v) =
F(gu,gu,gv)�F( f u, f u, f v)= kF(u,u,v) and hence F(u,u,v)
= θ implying that u = v. Then f and g have a unique common
fixed point in X .

Theorem 4.2. Let (X ,H,F) be a θ−complete F−cone met-
ric space and P be a solid cone of H. Let f be a con-
tinuous mapping of the θ−complete F−cone metric space
(X ,H,F) into itself. Suppose that there exists an element
k ∈ P with ρ(k)< 1

s+1 , s is the coefficient of X and a mapping
g : X → X which commutes with f satisfying g(X)⊂ f (X). If
F(gx,gx,gy) � k[F( f x, f x,gx)+F( f y, f y,gy)] for all x,y ∈
X , then f and g have a unique common fixed point in X .

Proof. Let x0 ∈ X . Then there exists x1 ∈ X such that f (x1) =
g(x0) since g(X)⊂ f (X). Next we can find x2 ∈ X such that
f (x2) = g(x1). Proceeding in this way we can construct a
sequence {xn} in X such that f (xn) = g(xn−1) for all n ∈ N.
Let

yn−1 = g(xn−1) = f (xn) ∀n≥ 1 (4.5)

Then,

F(yn,yn,yn+1)

= F(gxn,gxn,gxn+1)

� k[F( f xn, f xn,gxn)+F( f xn+1, f xn+1,gxn+1)]

= k[F(yn−1,yn−1,yn)+F(yn,yn,yn+1)] (4.6)

which implies

F(yn,yn,yn+1) � (e− k)−1kF(yn−1,yn−1,yn)

= βF(yn−1,yn−1,yn) ∀n ∈ N,
where β = (e− k)−1k. (4.7)

Now ρ(β ) = ρ((e− k)−1k)≤ ρ(k)ρ((e− k)−1)≤ ρ(k)
1−ρ(k) <

1
s . So by routine calculation we get {yn} is a θ−Cauchy
sequence in X . Since X is θ−complete then there exists an
element z ∈ X such that {yn} converges to z. Now yn = gxn =
f xn+1 for all n≥ 1, thus we have f (xn+1)→ z and g(xn)→ z
as n→ ∞.
Since f is continuous so f (g(xn))→ f z as n→ ∞ that is
g( f (xn))→ f z as n→ ∞.

Now, F(g( f xn),g( f xn),gz)� k[F( f f (xn), f ( f xn),g( f xn))
+F( f z, f z,gz)]. Letting n→ ∞ we get,

F( f z, f z,gz) � k[F( f z, f z, f z)+F( f z, f z,gz)]

� βF( f z, f z, f z)

� βF( f z, f z,gz) (4.8)

which in turn implies that (e−β )F( f z, f z,gz)� θ . Therefore
we have F( f z, f z,gz) = θ which implies f z = gz.
Now, F(gz,gz,g2z)� k[F( f z, f z,gz)+F( f gz, f gz,g2z)] which
in turn follows that

F(gz,gz,g2z) � k[F( f z, f z,gz)+F(g f z,g f z,g2z)]
� k[F(gz,gz,gz)+F(g2z,g2z,g2z)]
� 2kF(gz,gz,g2z)

Hence (e−2k)F(gz,gz,g2z)� θ . As ρ(2k)< 1 we have
F(gz,gz,g2z) = θ and consequently g(gz) = gz.

Now, f (gz) = g( f z) = g(gz) = gz and therefore gz is a
common fixed point of f and g in X . If possible let u and v be
two common fixed points of f and g. Then f u = gu = u and
f v = gv = v.
Then,

F(u,u,v) = F(gu,gu,gv)
� k[F( f u, f u,gu)+F( f v, f v,gv)]
= k[F(u,u,u)+F(v,v,v)]
� 2kF(u,u,v)

By similar argument as above we get F(u,u,v) = θ imply-
ing that u = v, which proves the uniqueness of the common
fixed point of f and g.

Theorem 4.3. Let (X ,H,F) be a θ−complete F−cone met-
ric space and P be a solid cone of H. Let f be a con-
tinuous mapping of the θ−complete F−cone metric space
(X ,H,F) into itself. Suppose that there exists an element
k ∈ P with ρ(k)< 1

2s(s+1) , s is the coefficient of X and a map-
ping g : X → X which commutes with f such that g(X) ⊂
f (X). Let F(gx,gx,gy)� k[F( f x, f x,gy)+F( f y, f y,gx)] for
all x,y ∈ X . Then f and g have a unique common fixed point
in X .

Proof. Let x0 ∈ X . Then there exists x1 ∈ X such that f (x1) =
g(x0) since g(X)⊂ f (X). Next we can find x2 ∈ X such that
f (x2) = g(x1). Continuing in this way we can construct a
sequence {xn} in X such that f (xn) = g(xn−1) for all n ∈ N.
Let

yn−1 = g(xn−1) = f (xn) ∀n≥ 1 (4.9)

Then,

F(yn,yn,yn+1)
= F(gxn,gxn,gxn+1)
� k[F( f xn, f xn,gxn+1)+F( f xn+1, f xn+1,gxn)]
= [F(yn−1,yn−1,yn+1)+F(yn,yn,yn)]
� sk[2F(yn−1,yn−1,yn)+F(yn+1,yn+1,yn)−F(yn,yn,yn)]

+kF(yn,yn,yn)
= 2skF(yn−1,yn−1,yn)+ skF(yn,yn,yn+1)+ kF(yn,yn,yn)
� (2s+1)kF(yn−1,yn−1,yn)+ skF(yn,yn,yn+1)

Hence F(yn,yn,yn+1)� (e− sk)−1(2s+1)kF(yn−1,yn−1,yn)
for all n ∈ N.
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Therefore,

F(yn,yn,yn+1)

� γF(yn−1,yn−1,yn) ∀n ∈ N,
where γ = (e− sk)−1(2s+1)k. (4.10)

Now,

ρ(γ) = ρ((e− sk)−1(2s+1)k)

≤ (2s+1)ρ((e− sk)−1)ρ(k)

≤ (2s+1) ρ(k)
1−ρ(sk)

= (2s+1) ρ(k)
1−sρ(k) <

1
s

By routine calculation we see that {yn} is a θ−Cauchy
sequence in (X ,H,F). Since X is θ−complete then there
exists some z ∈ X such that yn → z as n→ ∞. Now since
yn = f xn+1 = gxn ∀n ∈N then f (xn+1)→ z and g(xn)→ z as
n→∞. Since f is continuous so f (g(xn))→ f z as n→∞ that
is g( f (xn))→ f z as n→ ∞.

Now, F(g( f xn),g( f xn),gz) � k[F( f ( f xn), f ( f xn),gz) +
F( f z, f z,g( f xn))]. Taking n→ ∞ we get,

F( f z, f z,gz) � k[F( f z, f z,gz)+F( f z, f z, f z)]
� 2kF( f z, f z,gz)

Thus (e− 2k)F( f z, f z,gz) � θ and so F( f z, f z,gz) =
θ . [∵ ρ(2k) = 2ρ(k)< 2

2s(s+1) =
1

s(s+1) < 1] Which shows
that f z = gz.

Now,

F(gz,gz,g2z) � k[F( f z, f z,g2z)+F( f gz, f gz,gz)]
= k[F(gz,gz,g2z)+F(g f z,g f z,gz)]
= k[F(gz,gz,g2z)+F(g2z,g2z,gz)]
= 2kF(gz,gz,g2z)

In a similar fashion we get F(gz,gz,g2z) = θ implying
that g2z = gz. Now, f (gz) = g( f z) = g(gz) = gz. So gz is a
common fixed point of f and g. in X . If possible let u and v
be two common fixed points of f and g. Then f u = gu = u
and f v = gv = v.
Then,

F(u,u,v) = F(gu,gu,gv)
� k[F( f u, f u,gv)+F( f v, f v,gu)]
= k[F(u,u,v)+F(v,v,u)]
= 2kF(u,u,v)

By similar argument we get F(u,u,v) = θ showing that
u = v. Thus f and g have a unique common fixed point in
X .

Theorem 4.4. Let (X ,H,F) be a θ−complete F−cone met-
ric space and P be a solid cone of H. Let f be a continuous
mapping of the θ−complete F−cone metric space (X ,H,F)

into itself. Assume that there exists k1,k2,k3,k4,k5 ∈ P such
that they commute with each other satisfying sρ(k1)+ρ(k2)+
s(2s+1)ρ(k3)+sρ(k4)+sρ(k5)< 1, s is the coefficient of X.
If a mapping g : X → X commutes with f , such that g(X)⊂
f (X) and F(gx,gx,gy)� k1F( f x, f x,gx)+ k2F( f y, f y,gy)+
k3F( f x, f x,gy)+k4F( f y, f y,gx)+k5F( f x, f x, f y) for all x,y∈
X , then f and g have a unique common fixed point in X .

Proof. Let x0 ∈ X . Then there exists x1 ∈ X such that f (x1) =
g(x0) since g(X)⊂ f (X). Next we can find x2 ∈ X such that
f (x2) = g(x1). Proceeding in this way we can construct a
sequence {xn} in X such that f (xn) = g(xn−1) for all n ∈ N.
Let

yn−1 = g(xn−1) = f (xn) ∀n≥ 1 (4.11)

Then,

F(yn,yn,yn+1)
= F(gxn,gxn,gxn+1)
� k1F( f xn, f xn,gxn)+ k2F( f xn+1, f xn+1,gxn+1)

+k3F( f xn, f xn,gxn+1)+ k4F( f xn+1, f xn+1,gxn)
+k5F( f xn, f xn, f xn+1)

= k1F(yn−1,yn−1,yn)+ k2F(yn,yn,yn+1)+
k3F(yn−1,yn−1,yn+1)+ k4F(yn,yn,yn)+
k5F(yn−1,yn−1,yn)

F(yn,yn,yn+1)
� k1F(yn−1,yn−1,yn)+ k2F(yn,yn,yn+1)

sk3[2F(yn−1,yn−1,yn)+F(yn+1,yn+1,yn)−F(yn,yn,yn)]
+k4F(yn,yn,yn)+ k5F(yn−1,yn−1,yn)

� k1F(yn−1,yn−1,yn)+ k2F(yn,yn,yn+1)
2sk3F(yn−1,yn−1,yn)+ sk3F(yn,yn,yn+1)
+k4F(yn−1,yn−1,yn)+ k5F(yn−1,yn−1,yn)

Thus (e− k2− sk3)F(yn,yn,yn+1)� (k1 + k4 + k5 +
2sk3)F(yn−1,yn−1,yn), hence we have F(yn,yn,yn+1)� (e−
k2− sk3)

−1(k1 + k4 + k5 +2sk3)F(yn−1,yn−1,yn).
Thus,

F(yn,yn,yn+1)

� δF(yn−1,yn−1,yn) ∀n ∈ N, where
δ = (e− k2− sk3)

−1(k1 + k4 + k5 +2sk3)

(4.12)

Now,

ρ(δ ) = ρ((e− k2− sk3)
−1(k1 + k4 + k5 +2sk3))

≤ 1
1−ρ(k2+sk3)

ρ((k1 + k4 + k5 +2sk3))

≤ ρ(k1)+2sρ(k3)+ρ(k4)+ρ(k5)
1−ρ(k2)+sρ(k3)

< 1
s

By similar argument as before we see that {yn} is a θ−Cauchy
sequence in X . Since X is θ−complete there exists an element
z ∈ X such that yn→ z as n→ ∞.
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Now since yn = f xn+1 = gxn ∀n∈N then f (xn+1)→ z and
g(xn)→ z as n→ ∞. Since f is continuous so f (g(xn))→ f z
as n→ ∞ that is g( f (xn))→ f z as n→ ∞.

Now,

F(g( f xn),g( f xn),gz)
� k1F( f ( f xn), f ( f xn),g( f xn))+ k2F( f z, f z,gz)+

k3F( f ( f xn), f ( f xn),gz)+ k4F( f z, f z,g( f xn))+
k5F( f ( f xn), f ( f xn), f z)

Taking n→ ∞ we get,

F( f z, f z,gz)
� k1F( f z, f z, f z)+ k2F( f z, f z,gz)+

k3F( f z, f z,gz)+ k4F( f z, f z, f z)+
k5F( f z, f z, f z)

� (k1 + k2 + k3 + k4 + k5)F( f z, f z,gz)

Now,

ρ(k1 + k2 + k3 + k4 + k5)
≤ ρ(k1)+ρ(k2)+ρ(k3)+ρ(k4)+ρ(k5)
≤ sρ(k1)+ρ(k2)+ s(2s+1)ρ(k3)+

sρ(k4)+ sρ(k5)< 1 [∵ s≥ 1]

Thus, F( f z, f z,gz) = θ ⇒ f z = gz.
Also,

F(gz,gz,g2z)
� k1F( f z, f z,gz)+ k2F( f gz, f gz,g2z)+

k3F( f z, f z,g2z)+ k4F( f gz, f gz,gz)+
k5F( f z, f z, f gz)

� k1F( f z, f z,gz)+ k2F(g f z,g f z,g2z)+
k3F( f z, f z,g2z)+ k4F(g f z,g f z,gz)+
k5F( f z, f z,g f z)

= k1F(gz,gz,gz)+ k2F(g2z,g2z,g2z)+
k3F(gz,gz,g2z)+ k4F(g2z,g2z,gz)+
k5F(gz,gz,g2z)

� (k1 + k2 + k3 + k4 + k5)F(gz,gz,g2z)

Therefore, F(gz,gz,g2z)= θ⇒ g2z= gz. So we get, f (gz)
= g( f z) = g(gz) = gz. Thus gz is a common fixed point of f
and g in X . If possible let u and v be two common fixed points
of f and g.

Then f u = gu = u and f v = gv = v.
Then,

F(u,u,v) = F(gu,gu,gv)
� k1F( f u, f u,gu)+ k2F( f v, f v,gv)+

k3F( f u, f u,gv)+ k4F( f v, f v,gu)+
k5F( f u, f u, f v)

= k1F(u,u,u)+ k2F(v,v,v)+ k3F(u,u,v)+
k4F(v,v,u)+ k5F(u,u,v)

� (k1 + k2 + k3 + k4 + k5)F(u,u,v)

Hence we get, F(u,u,v) = θ ⇒ u = v and therefore f and g
have a unique common fixed point in X .

Remark 4.5. Theorem 4.1, Theorem 4.2 and Theorem 4.3
are special cases of Theorem 4.4.

1. If we put k5 = k and k1 = k2 = k3 = k4 = θ in Theorem
4.4 we get the result corresponding to Theorem 4.1. In this
case we get sρ(k)< 1 that is ρ(k)< 1

s .
2. If we put k1 = k2 = k and k3 = k4 = k5 = θ in Theorem

4.4 we get the result of Theorem 4.2. In this case we get
sρ(k)+ρ(k)< 1 that is ρ(k)< 1

s+1 .
3. If we put k3 = k4 = k and k1 = k2 = k5 = θ in Theorem

4.4 we get the result due to Theorem 4.3. In this case we get
s(2s+1)ρ(k)+ sρ(k)< 1 that is ρ(k)< 1

2s(s+1) .

Example 4.6. Let X = [0,∞) and H = R, where the normal
cone P is given by P= {x∈H : x≥ 0}. Let F : X×X×X→H
be defined by

F(x,y,z)=


x+ y+ z, if x 6= y 6= z or x 6= y = z,
x+z

2 , if x = y 6= z,
x
2 , if x = y = z.

(4.13)

(F1) If x = y = z then clearly F(x,x,x) = F(y,y,y) =
F(z,z,z)=F(x,y,z). Now, F(x,x,x)=F(y,y,y)=F(z,z,z)=
F(x,y,z)⇒ x

2 = y
2 = z

2 ⇒ x = y = z.
(F2) Clearly 0≤F(x,x,x)≤F(x,x,y)≤F(x,y,z) ∀x,y,z∈

X with
x 6= y 6= z.

(F3) By routine verification it can be checked that F(x,y,z)≤
2(F(x,x, t)+F(y,y, t)+F(z,z, t)−F(t, t, t)) for all x,y,z, t ∈
X.
Hence (X ,F) is an F−cone metric space over H. Clearly it
is neither Np− cone nor Nb− cone metric on X .

The following is an example of F−cone metric space over
a Banach algebra having a cone without being normal.

Example 4.7. [6] Let A =C1
R[0,1] and we define a norm on

A by ||x||= ||x||∞ + ||x′||∞ for x ∈ A. Define the multiplication
operation on A by (x.y)(t) = x(t)y(t) for all t ∈ [0,1] and for
all x,y ∈ A. Then the set P = {x ∈ A : x ≥ 0} is a cone in A
without being normal. Also let us take X = [0,∞). Define a
mapping F : X×X×X→ A by F(x,y,z)(t) = ((max{x,z})2+
(max{y,z})2,α((max{x,z})2+(max{y,z})2))et for all x,y,z∈
X, where α > 0 is a constant. Then (X ,F) is an F−cone met-
ric space over the Banach algebra A with the coefficient s = 2.
But it is neither a Np−cone metric space nor a Nb−cone met-
ric space over Banach algebra.

Example 4.8. Let X = [0,∞) and H = R, where the cone P
is given by P = {x ∈ H : x ≥ 0}. Let F : X ×X ×X → H
be given by Example 4.6. Also let g : X → X be given by
g(x) = x

20 ∀x ∈ X and f : X → X be given by f (x) = x
2 ∀x ∈

X . Then F(gx,gx,gy) ≤ k1F( f x, f x,gx) + k2F( f y, f y,gy) +
k3F( f x, f x,gy)+k4F( f y, f y,gx)+k5F( f x, f x, f y) ∀x,y∈X ,
where the constants are given by k1 = 1

10 , k2 = 17
55 , k3 =

1
100 , k4 = 1

10 and k5 = 1
11 . Therefore f and g satisfy all the

conditions of Theorem 4.4. Here we see that (X ,H,F) is
a θ−complete F−cone metric space and 0 is the unique
common fixed point of f and g in X .
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[25] Xu, S., Radenović, S., Fixed point theorems of gener-
alized Lipschitz mappings on cone metric spaces over
Banach algebras without assumption of normality, Fixed
Point Theory Appl. 2014, 102 (2014).

?????????
ISSN(P):2319−3786

Malaya Journal of Matematik
ISSN(O):2321−5666

?????????

758

http://www.malayajournal.org

	Introduction
	Preliminaries
	Introduction to F-cone metric space over a Banach algebra
	Main Results
	References

