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Abstract
In this paper we study on existence of solutions for a nonlinear fractional integrodifferential equations with
nonlocal boundary conditions by using Krasnaoselskii’s fixed point theorem and Schaefer’s fixed point theorem
and also we obtain uniqueness of solutions for the same problem by using Banach contraction principle. Example
is provided for illustrating our main results.
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1. Introduction
Let (Rn,‖·‖) be a Banach space. Consider the continuous

function F : [0,T ]×Rn×Rn×Rn→Rn. Denote C([0,T ],Rn)
be the Banach space of all continuous functions from [0,T ]
into Rn with the norm ‖z‖= max{|z(t)| : t ∈ [0,T ]} ,

In this paper, we study the existence and uniqueness of
solutions for the following class of nonlinear fractional inte-
grodifferential equation of the form

cDγ

0+z(t) = F (t,z(t),(µz)(t),(νz)(t)) (1.1)

subject to the two point boundary conditions,

Pz(0)+Qz(T ) = R (1.2)

where 0 < γ < 1, P and Q are real constants and also P+Q 6=
0. cDγ

0+ is the Caputo fractional derivative of order γ .for
ρ,χ : [0,T ]× [0,T ]→ [0,+∞),where µ ,ν are linear integral
operators such as,

(µz)(t) =
∫ t

0
ρ(t,s)z(s)ds, (νz)(t) =

∫ t

0
χ(t,s)z(s)ds

In past years most of the papers have been carried out in-
volving both Riemann-Liouville and Caputo (1967) fractional
derivatives which has been appreciable progress in ordinary
and partial differential equations. In 2010, an absorbing frame
of reference to the subject, merge all declared notions of frac-
tional derivatives and integrals, was introduced in Agrawal
(2010) [3] and later studied in Bourdin et al.(2014), Klimek
and Lupa (2013), Odzijewicz et al.(2012,2013). In general,
both differential and integral equations are combined to get
integro-differential equations. The recent results of fractional
boundary value problems with integro-differential equations
can be found in (see [12], [13]). Nonlocal conditions come
up when values of the function on the boundary is connected
to values inside the domain. The differential equation with
nonlocal conditions has been fundamentally examined by
Byszewski [6]. Moreover, nonlocal BVPs for fractional dif-
ferential equations have gained significant observation (see
[5], [30]) which consists of two ,three and multi point and
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nonlocal boundary value problems as special cases. see ([4],
[10], [13], [17]).

2. Preliminaries
In this section, let us recall some basic definitions and

preliminaries facts that will be used in the remainder of this
paper.

Definition 2.1. If w ∈C([a,b]) and γ > 0, then the Riemann-
Liouville fractional integral is defined by

Iγ

a+w(t) =
1

Γ(γ)

∫
a

t w(s)
(t− s)(1−γ)

ds

where Γ(·) is the Gamma function defined for any complex
number τ as

Γ(τ) =
∫

0
∞t(τ−1)e(−t)dt

Definition 2.2. The Caputo fractional derivative is defined
for a continuous function w : (a,b)→ R is defined by

cDγ

a+w(t) =
1

Γ(n− γ)

∫
0

t w(n)(s)
(t− s)(γ−n+1) ds

where n = [γ]+1, (the notation [γ] denotes the integer part of
the real number γ)

Lemma 2.3. [15] Let γ > 0,w(t) ∈C(0,1)∩L(0,1), then the
homogenous fractional differential equation

cDγ

0+w(t) = 0,

has a solution

w(t) = c0 + c1t + c2t2 + ...+ cn−1tn−1,

where ci ∈ R, i = 0,1, ...,n−1, and n = [γ]+1

Lemma 2.4. [15] Let γ > 0,then

Iγ

0+
cDγ

0+w(t) = w(t)+ c0 + c1t + c2t2 + ...+ cn−1tn−1,

where ci ∈ R, i = 0,1, ...n−1, and n = [γ]+1.

Lemma 2.5. [15] Let i, j ≥ 0, k ∈ L1[0,T ], Then

Ii
0+I j

0+k(t) = Ii+ j
0+ k(t) = I j

0+Ii
0+k(t)

is satisfied almost everywhere on[0,T ]. Moreover, if k∈C[0,T ],
then (5) is true for all t ∈ [0,T ].

Lemma 2.6. [15] If j > 0, k ∈C[0,T ], then cDγ

0+Iγ

0+k(t) =
k(t) for all t ∈ [0,T ].

Lemma 2.7. Let 0 < γ ≤ 1 and k,w∈C([0,T ],Rn). Then the
unique solution of the boundary value problem for fractional
differential equation

cDγ

0+z(t) = y(t), t ∈ [0,T ] (2.1)

Pz(0)+Qz(T ) = R (2.2)

is given by

z(t) =
∫ T

0
G(t,s)y(s)ds+ J, (2.3)

where,

G(t,s) =


1

Γ(β ) (t− s)β−1− 1
Γ(β ) (P+Q)−1Q

×(T − s)β−1 0≤ s≤ t,
− 1

Γ(β ) (P+Q)−1Q(T − s)β−1 t ≤ s≤ T

J = (P+Q)−1R.

Proof. Assume that z is a solution of the boundary value
problem (2.1),(2.2) then using Lemma 2.4, we have

z(t) = Iγ

0+y(t)− c0, c0 ∈ Rn (2.4)

z(t) =
1

Γ(γ)

∫ t

0
(t− s)γ−1y(s)ds− c0

using boundary conditions and we obtain

z(0) =−c0 and z(T ) = 1
Γ(γ)

∫ T
0 (T − s)α−1y(s)ds− c0

substitute these values into (2.2), we get

c0 =(P+Q)−1Q
1

Γ(γ)

∫ T

0
(T − s)γ−1y(s)ds

− (P+Q)−1R

substitute c0 in (2.4), we get

z(t) =
1

Γ(γ)

∫ t

0
(t− s)γ−1y(s)ds− (P+Q)−1Q

× 1
Γ(γ)

∫ T

0
(T − s)γ−1y(s)ds+(P+Q)−1R

z(t) = Iγ

0+y(t)− (P+Q)−1QIγ

0+y(T )+(P+Q)−1R

which can be written as (2.3). Lemma is proved.

Lemma 2.8. Suppose that F ∈C([0,T ]×Rn×Rn×Rn,Rn)
then the function z(t) is solution of fractional boundary value
problem (1.1),(1.2) if and only if z(t) is solution of the frac-
tional integral equation.

z(t) =
∫ T

0
G(t,s)F (s,z(s),(µz)(x),(νz)(x))ds

+(P+Q)−1R.
(2.5)
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Proof. Let z(t) be a solution of the boundary value problem
(1.1),(1.2) then by same method as used in Lemma 2.7, we
can prove that it is a solution of the fractional integral equation
(2.5).

Conversely, let z(t) satisfy (2.5) and denote the right hand
side of equation (2.5) by m(t). Then by Lemma 2.5 and 2.6,
we obtain

m(t) =
∫ T

0
G(t,s)F (s,z(s),(µz)(x),(νz)(x))ds

+(P+Q)−1R

=Iγ

0+F (t,z(t),(µz)(t),(νz)(t))+(P+Q)−1R

this implies that

cDγ

0+m(t) =cDγ

0+Iγ

0+F (s,z(t),(µz)(t),(νz)(t))

+ cDγ

0+(P+Q)−1R

=F (t,z(t),(µz)(t),(νz)(t))

Hence, z(t) is a solution of fractional differential equation
(1.1). Also, it is satisfy the condition (1.2).

Remark 2.9. Under natural conditions on w(t), the Caputo
fractional derivative becomes the conventional integer order
derivative of the function w(t) as γ → n.

Remark 2.10. [15]The Caputo derivative of order γ > 0
with n−1 < γ < n of the power function w(t) = tδ for δ ≥ 0
satisfies

Dγ tδ =

{
Γ(δ+1)

Γ(δ−γ+1) t
(δ−γ) if(δ > n−1)

0 if(δ ≤ n−1)

3. Main Results
In this section, we deal with the existence and unique-

ness of solution for the system (1.1)− (1.2) using fixed point
techniques.

Now, we list the following hypotheses for our comfort:

(H1) There exists positive functions VF1(t),VF2(t),VF3(t) such
that

‖F (t,z(t),(µz)(t),(νz)(t))−F (t,y(t),(µy)(t),(νy)(t))‖
≤VF1(t)‖z− y‖+VF2(t)‖(µz)− (µy)‖
+VF3(t)‖(νz)− (νy)‖

for each t ∈ [0,T ] and all z,y ∈ Rn

(H2) Further,

ρ0 = sup
t∈[0,T ]

∣∣∣∣∫ t

0
ρ(t,s)ds

∣∣∣∣ , χ0 = sup
t∈[0,T ]

∣∣∣∣∫ t

0
χ(t,s)ds

∣∣∣∣
Iγ

VF
= sup

t∈[0,T ]

{∣∣IγVF1(t)
∣∣ , ∣∣IγVF2(t)

∣∣ , ∣∣IγVF3(t)
∣∣}

(H3) The function F : [0,T ]×Rn×Rn×Rn→Rn is contin-
uous.

(H4) There exists a constant σ > 0 such that

‖F (t,z,(µz),(νz)‖ ≤ σ(t)

for each t ∈ [0,T ], σ ∈ L1([0,T ],R+) and all z ∈ Rn.
Then the boundary value problem (1.1),(1.2) has at
least one solution on [0,T ].

Our first result is based on Banach fixed point theorem.

Definition 3.1. [11] (Banach Fixed Point Theorem) If X is a
nonempty closed subset of a Banach space C([0,T ],Rn) and
Θ : C([0,T ],Rn)→ C([0,T ],Rn) is a contraction mapping,
then Θ has a fixed point.

Theorem 3.2. If

ζ =
(
1+
∥∥(P+Q)−1Q

∥∥){[1+ρ0 +χ0] I
γ

VF

}
< 1

(3.1)

then the boundary value problem (1.1),(1.2) has unique solu-
tion on [0,T ].

Proof. Modify the problem (1.1),(1.2) into a fixed point
problem. Consider the operator

Θ : C([0,T ],Rn)−→C([0,T ],Rn)

defined by

Θ(z)(t) =
∫ T

0
G(t,s)F (s,z(s),(µz)(s),(νz)(s))ds

+(P+Q)−1R
(3.2)

Clearly, the fixed point of the operator Θ are solution of the
problem (1.1),(1.2). We shall use the Banach contraction
principle to prove that Θ defined by (3.2) has a fixed point.
We shall prove that Θ is a contraction.
Let z,y ∈C([0,T ],Rn). Then, for each t ∈ [0,T ] we have
‖Θ(z)(t)−Θ(y)(t)‖

≤
∫ T

0
‖G(t,s)‖

∥∥∥∥∥F (s,z(s),(µz)(s),(νz)(s))

−F (s,y(s),(µy)(s),(νy)(s))

∥∥∥∥∥ds
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Substitute G(t,s) and Separate the integral, We get

≤ 1
Γ(γ)

∫ t

0
(t− s)γ−1

∥∥∥∥∥F (s,z(s),(µz)(s),(νz)(s))−

F (s,y(s),(µy)(s),(νy)(s))

∥∥∥∥∥ds+
1

Γ(γ)

∥∥∥∥∥(P+Q)−1

×Q

∥∥∥∥∥
∫ T

0
(T − s)γ−1

∥∥∥∥∥F (s,z(s),(µz)(s),(νz)(s))

−F (s,y(s),(µy)(s),(νy)(s))

∥∥∥∥∥ds

≤ 1
Γ(γ)

∫ t

0
(t− s)γ−1

[
VF1(s)‖z− y‖+VF2(s)

×‖(µz)− (µy)‖+VF3(s)‖(νz)− (νy)‖
]

ds+
1

Γ(γ)

×
∥∥(P+Q)−1Q

∥∥∫ T

0
(T − s)γ−1

[
VF1(s)‖z− y‖

+VF2(s)‖(µz)− (µy)‖+VF3(s)‖(νz)− (νy)‖
]

ds

≤ 1
Γ(γ)

∫ t

0
(t− s)γ−1

[
VF1(s)+ρ0VF2(s)+χ0VF3(s)

]

‖z− y‖ds+
1

Γ(γ)

∥∥(P+Q)−1Q
∥∥∫ T

0
(T − s)γ−1

×

[
VF1(s)+ρ0VF2(s)+χ0VF3(s)

]
‖z− y‖ds

≤
[
IγVF1(t)+ρ0IγVF2(t)+χ0IγVF3(t)

]
‖z− y‖

+
∥∥(P+Q)−1Q

∥∥[IγVF1(T )+ρ0IγVF2(T )

+χ0IγVF3(T )

]
‖z− y‖

≤ [1+ρ0 +χ0] I
γ

VF
‖z− y‖+

∥∥(P+Q)−1Q
∥∥

× [1+ρ0 +χ0] I
γ

VF
‖z− y‖ t ∈ [0,T ]

≤
(
1+
∥∥(P+Q)−1Q

∥∥){[1+ρ0 +χ0]I
γ

VF

}
‖z− y‖

Thus

‖Θ(z)(t)−Θ(y)(t)‖ ≤ ζ ‖z− y‖ .

Accordingly by (3.2) Θ is a contraction. As a outcome of
Banach fixed point theorem, we conclude that Θ has a fixed
point which is a solution of the problem (1.1),(1.2).
The theorem is proved.

Our second result is based on Krasnoselskii’s fixed point
theorem

Definition 3.3. [12](Krasnoselskii’s Fixed Point Theorem)
Let X be a bounded closed convex subset of a Banach space
C([0,T ],Rn) and let M,N be operators such that

(i) Mz+Ny ∈ X whenever z,y ∈ X,

(ii) M is compact and continuous,

(iii) N is a contraction mapping.

Then there exists u ∈ X suchthat u = Mu+Nu

Theorem 3.4. Assume that f : [0,T ]×Rn×Rn×Rn → Rn

is jointly continuous and satisfies (H1) and (H2). If

ςg =
∥∥(P+Q)−1Q

∥∥{[1+ρ0 +χ0]I
γ

V f

}
< 1

then the fractional integrodifferential equation (1.1) has atleast
one solution.

Proof. We shall use Krasnoselskii’s fixed point theorem to
prove that Θ defined by (3.2) has a fixed point. The proof will
be given in various steps.
Consider Bκ = {z ∈C([0,T ],Rn) : ‖z‖ ≤ κ} .

κ ≥ ‖σ‖L1

Γ(γ +1)
T γ
[
1+
∥∥(P+Q)−1Q

∥∥]+∥∥(P+Q)−1R
∥∥

from equation (3.2),We define the operator M and N as fol-
lows:

(Mz)(t) = 1
Γ(γ)

∫ t
0(t− s)γ−1F (s,z(s),(µz)(s),(νz)(s))ds

(Nz)(t) =− 1
Γ(γ) (A+B)−1B

∫ T
0 (T − s)γ−1

×F (s,z(s),(µz)(s),(νz)(s))ds+(P+Q)−1R
For z,y ∈ Bκ ,
Step 1 : Mz+Ny ∈ Bκ whenever z,y ∈ Bκ

‖(Mz)(t)+(Ny)(t)‖

≤ 1
Γ(γ)

∫ t

0
(t− s)γ−1 ‖F (s,z(s),(µz)(s),(νz)(s))‖ds

+
1

Γ(γ)

∥∥(P+Q)−1Q
∥∥∫ T

0
(T − s)γ−1

×‖F (s,y(s),(µy)(s),(νy)(s))‖ds+
∥∥(P+Q)−1R

∥∥
≤ 1

Γ(γ)
‖σ‖L1

∫ t

0
(t− s)γ−1ds+

1
Γ(γ)

∥∥(P+Q)−1Q
∥∥

×‖σ‖L1

∫ T

0
(T − s)γ−1ds+

∥∥(P+Q)−1R
∥∥

≤ ‖σ‖L
1

Γ(γ +1)
[T γ +

∥∥(P+Q)−1Q
∥∥T γ ]+

∥∥(P+Q)−1R
∥∥ t ∈ [0,T ]

≤ ‖σ‖L1

Γ(γ +1)
T γ
[
1+
∥∥(P+Q)−1Q

∥∥]+∥∥(P+Q)−1R
∥∥

≤κ

Therefore, Mz+Ny ∈ Bκ .
Step 2.M is compact and continuous.
Let t1, t2 ∈ [0,T ], t1 < t2 and Bκ be a bounded set of C([0,T ],Rn),

762



Existence and uniqueness of solutions for nonlinear fractional integrodifferential equations with non-local boundary
conditions — 763/766

z ∈ Bκ , Then
‖(Mz)(t2)− (Mz)(t1)‖

≤ 1
Γ(γ)

[∫ t2

0
(t2− s)γ−1 ‖F (s,z(s),(µz)(s),(νz)(s))‖ds

+
∫ t1

0
(t1− s)γ−1 ‖F (s,z(s),(µz)(s),(νz)(s))‖ds

]

≤ 1
Γ(γ)

[∫ t1

0

(
(t2− s)γ−1− (t1− s)γ−1

)
|

×‖F (s,z(s),(µz)(s),(νz)(s))‖ds+
∫ t2

t1
(t2− s)γ−1

‖F (s,z(s),(µz)(s),(νz)(s))‖ds

]

≤‖σ‖L1

Γ(γ)

[∫ t1

0

∥∥(t2− s)γ−1− (t1− s)γ−1∥∥ds

+
∫ t2

t1

∥∥(t2− s)γ−1∥∥ds

]

≤ ‖σ‖L1

Γ(γ +1)
|tγ

2 − tγ

1 |

As t1 → t2, the right hand side of above inequality tends to
zero. So M is relatively compact on Bκ . Accordingly by
Arzela-Ascoli theorem, M is compact on Bκ .
Step 3.N is a contraction mapping
‖(Nz)(t)− (Ny)(t)‖

≤ 1
Γ(γ)

∥∥(P+Q)−1Q
∥∥[∫ T

0
(T − s)γ−1

×‖F (s,z(s),(µz)(s),(νz)(s))‖ds−
∫ T

0
(T − s)γ−1

×‖F (s,y(s),(µy)(s),(νy)(s))‖ds

]

≤ 1
Γ(γ)

∥∥(P+Q)−1Q
∥∥∫ T

0
(T − s)γ−1

×

[∥∥∥∥∥F (s,z(s),(µz)(s),(νz)(s))

−F (s,y(s),(µy)(s),(νy)(s))

∥∥∥∥∥
]

ds

≤ 1
Γ(γ)

∥∥(P+Q)−1Q
∥∥∫ T

0
(T − s)γ−1

[
VF1(s)‖z− y‖

+VF2(s)‖(µz)− (µy)‖+VF3(s)‖(νz)− (νy)‖
]

ds

≤ 1
Γ(γ)

∥∥(P+Q)−1Q
∥∥∫ T

0
(T − s)γ−1

×
[
VF1(s)+ρ0VF2(s)+χ0VF3(s)

]
‖z− y‖ds

≤
∥∥(P+Q)−1Q

∥∥[IγVF1(T )+ρ0IγVF2(T )

+χ0IγVF3(T )

]
‖z− y‖

≤
∥∥(P+Q)−1Q

∥∥{[1+ρ0 +χ0]I
γ

VF

}
‖z− y‖

‖(Nz)(t)− (Ny)(t)‖ ≤ ςg ‖z− y‖
Thus, all the assumption of this theorem are satisfied. As a
result of Krasnoselskii’s fixed point theorem , we have that the
boundary value problem (1.1),(1.2) has atleast one solution
on [0,T ]. This Completes the proof.

Our third result is based on Schaefer’s fixed point theorem.

Definition 3.5. [23](Schaefer’s Fixed Point Theorem) Let
C([0,T ], Rn) be a Banach space and Θ : C([0,T ], Rn)→
C([0,T ],Rn) completely continuous operator. If the set

X(Θ) = {x ∈C([0,T ],Rn) : x = βΘx for some β ∈ [0,T ]}

Theorem 3.6. Assume that (H2) and (H3) are satisfied. Then
the boundary value problem (1.1)-(1.2) has atleast one solu-
tion on [0,T ].

Proof. Schaefer’s fixed point theorem is used to prove that Θ

defined by (3.2) has a fixed point.The proof will be given in
various steps.
Step 1. Operator Θ is continuous.
Let {zn} be a sequence such that zn→ z in C([0,T ],Rn).Then
for each t ∈ [0,T ]
‖Θ(zn)(t)−Θ(z)(t)‖

≤
∫ T

0
‖G(t,s)‖

∥∥∥∥∥F (s,zn(s),(µzn)(s),(νzn)(s))

−F (s,z(s),(µz)(s),(νz)(s))

∥∥∥∥∥ds

≤ 1
Γ(γ)

[∫ t

0
(t− s)γ−1

∥∥∥∥∥F (s,zn(s),(µzn)(s),(νzn)(s))

−F (s,z(s),(µz)(s),(νz)(s))

∥∥∥∥∥ds+
∥∥(P+Q)−1R

∥∥
×
∫ T

0
(T − s)γ−1

∥∥∥∥∥F (s,zn(s),(µzn)(s),(νzn)(s))

−F (s,z(s),(µz)(s),(νz)(s))

∥∥∥∥∥ds

]

≤ 1
Γ(γ +1)

[
T γ(1+

∥∥(P+Q)−1Q
∥∥)]

×

∥∥∥∥∥F (s,zn(s),(µzn)(s),(νzn)(s))
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−F (s,z(s),(µz)(s),(νz)(s))

∥∥∥∥∥
Since F is continuous function, we have
‖Θ(zn)(t)−Θ(z)(t)‖

≤ 1
Γ(γ +1)

[
T γ(1+

∥∥(P+Q)−1Q
∥∥)]

×

∥∥∥∥∥F (s,zn(s),(µzn)(s),(νzn)(s))

−F (s,z(s),(µz)(s),(νz)(s))

∥∥∥∥∥→ 0

as n→ ∞

Step 2.Θ maps bounded sets into bounded sets in C([0,T ],Rn).
Indeed it is enough to show that for any η > 0, there exists a
positive constant q such that for each,

z ∈ Bη =

{
z ∈C ([0,T ],Rn) : ‖z‖ ≤ η

}

we have ‖Θ(z)‖ ≤ q and (H3) we have for t ∈ [0,T ]

‖Θ(z)(t)‖ ≤
∫ T

0
‖G(t,s)‖‖F (s,z(s),(µz)(s),(νz)(s))‖

ds+
∥∥(P+Q)−1R

∥∥
Hence

‖Θ(z)(t)‖ ≤‖σ‖L1 T γ

Γ(γ +1)

[
1+
∥∥(P+Q)−1Q

∥∥]
+
∥∥(P+Q)−1R

∥∥
Thus

‖Θ(z)(t)‖ ≤‖σ‖L1 T γ

Γ(γ +1)

[
1+
∥∥(P+Q)−1Q

∥∥]
+
∥∥(P+Q)−1R

∥∥= q

Step 3. Θ maps bounded sets into equicontinuous sets of
C([0,T ],Rn).
Let t1, t2 ∈ [0,T ], t1 < t2, Bη be a bounded set of C([0,T ],Rn)
as in step 2, and let z ∈ Bη . Then
‖Θ(z)(t2)−Θ(z)(t1)‖

≤
∫ t2

0
‖G(t2,s)‖‖F (s,z(s),(µz)(s),(νz)(s))‖ds

−
∫ t1

0
‖G(t1,s)‖‖F (s,z(s),(µz)(s),(νz)(s))‖ds

≤ 1
Γ(γ)

[∫ t1

0

[
(t2− s)γ−1− (t1− s)γ−1]

F (s,z(s),(µz)(s),(νz)(s))ds+
∫ t2

t1
(t2− s)γ−1

×F (s,z(s),(µz)(s),(νz)(s))ds

]

≤ ‖σ‖L1

Γ(γ +1)
[
tγ

2 − tγ

1 +2(t2− t1)γ
]

As t1→ t2, the right hand side of the above inequality tends
to Zero. As consequence of step 1 to 3 together with the
Arzela-Ascoli Theorem, we can conclude that the operator
Θ : C([0,T ],Rn)→C([0,T ],Rn) is completly continuous.
Step 4. A priori bounds.
Now it remains to show that that the set

Λ = {z ∈C([0,T ],Rn) : z = ωΘ(z), for some 0 < ω < 1}

is bounded.
Let z ∈ Λ then z = ω(Θz) for some 0 < ω < 1. Thus for each
t ∈ [0,T ] we have

z(t) =ω

[∫ T

0
G(t,s)F (s,z(s),(µz)(s),(νz)(s))ds

+(P+Q)−1R

]

This implies by (H3) and step 2 that for each t ∈ [0,T ] we
have

|Θ(z)(t)| ≤‖σ‖L1 T γ

Γ(γ +1)
[
1+
∥∥(P+Q)−1Q

∥∥]
+
∥∥(P+Q)−1R

∥∥
Thus for every t ∈ [0,T ], we have

‖z‖ ≤‖σ‖L1 T γ

Γ(γ +1)
[
1+
∥∥(P+Q)−1Q

∥∥]+∥∥(P+Q)−1R
∥∥

= I

This shows that the set Λ is bounded. As a outcome of Schae-
fer’s fixed point theorem, we conclude that Θ has a fixed point
which is a solution of the problem (1.1)− (1.2).

4. Example
In this section we give the example of our main results. We

examine the following nonlinear fractional integrodifferential
equations with two point boundary condition

cD
1
2 z(t) =

e−t |z(t)|
(4+ et)(1+ |z(t)|)

+
1
9

∫ t

0

1
(t +1)3 sin

√
s

t
ds

+
1
7

∫ t

0

1
(t +2)2 cos

√
s

t
ds, t ∈ [0,1]

(4.1)

x(0)+0.25x(1) = 7 (4.2)
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Problem (4.1)−(4.2) is of the form (1.1)−(1.2) with γ = 1
2 ,

F (t,z(t),(µz)(t),(νz)(t)) =
e−t |z(t)|

(4+ et)(1+ |z(t)|)

+
1
9
(µz)(t)+

1
7
(νz)(t)

where (µz)(t) =
∫ t

0
1

(t+1)3 sin
√

s
t ds and

(νz)(t) =
∫ t

0
1

(t+2)2 cos
√

s
t ds and also t ∈ [0,1]

we have
‖F (t,z(t),(µz)(t),(νz)(t))−F (t,y(t),(µy(t),(νy)(t))‖

≤ e−t

4+ et ‖z(t)− y(t)‖+ 1
9
‖(µz)(t)− (µy)(t)‖

+
1
7
‖(νz)(t)− (νy)(t)‖

≤1
5
‖z− y‖+ 1

9
‖(µz)− (µy)‖+ 1

7
‖(νz)− (νy)‖

from (16), P = 1, Q = 0.25, R = 7, T = 1.
Thus assumptions (H1)− (H2) holds with,
1+
∥∥(P+Q)−1Q

∥∥= 1.2
ρ0 = 0.125 , χ0 = 0.111 and 1+ρ0 +χ0 = 1.24
Iγ

VF
= 0.226

We get ς = 0.336 < 1
utilize theorem (3.1) we get (4.1) has a unique solution.

5. Conclusion
On the whole we have investigated the existence and

uniqueness of solution to the Caputo type fractional differ-
ential equation with two point boundary conditions. The
first sufficient condition proves the existence and uniqueness
of the solution of (1.1) is derived by utilizing Banach fixed
point theorem. The second sufficient condition gives the exis-
tence of solution of (1.1) is obtained via Krasnoselskii’s fixed
point theorem and the third sufficient condition is obtained by
Schaefer’s fixed point theorem. At last, example is provided
to illustrate the applications of the abstract results.
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