

https://doi.org/10.26637/MJM0704/0023

On various weakly prime fuzzy ideals of semirings

G. Mohanraj¹* and S. Azhaguvelavan²

Abstract

The notions of the weakly prime fuzzy ideals and three weakly fuzzy $m_0(m_1, m_2)$ -systems of semirings are introduced. Six different prime fuzzy ideals are characterized by fuzzy points, their respective (weakly)fuzzy *m*-systems, respective *m*-systems and respective prime ideals in semirings. To validate our results, the examples are provided.

Keywords

Weakly 0 - (1 - 2)-prime fuzzy ideals, fuzzy *m*-system.

AMS Subject Classification

16Y60, 03E72, 16D25.

^{1,2} Department of Mathematics, Annamalai University, Annamalai Nagar-608002, Tamil Nadu, India.
*Corresponding author: ¹ gmohanraaj@gmail.com; ² solaiazhagumaths@gmail.com
Article History: Received 12 August 2019; Accepted 18 November 2019

©2019 MJM.

Contents

1	Introduction771
2	Preliminaries
3	Various 0-prime fuzzy ideals771
4	Various 1-prime fuzzy ideals772
5	Various 2-prime fuzzy ideals773
	References

1. Introduction

P.Dheena and G.Mohanraj generalized prime fuzzy ideals [2, 3] of semirings and near-subtraction semigroup. G.Mohanraj et al. discussed prime fuzzy ideals of ordered semigroup and hemirings[6, 8].

2. Preliminaries

For basic ideas of semirings, ideals and fuzzy ideals of semirings can be found in [12].

Lemma 2.1. [13] If P is an ideal of R, P is a 2-prime ideal (1-(0))-prime ideal of R if and only if P^c is an m_2 -system $(m_1 - system, m_0 - system)$ of R.

Theorem 2.2. [2] Let f be a fuzzy set of R. Then f is a fuzzy ideal(fuzzy k-ideal) of R if and only if f_t is a ideal(k-ideal) of R for $t \in (0, 1]$ whenever non-empty.

Lemma 2.3. [11] For any $a \in R$, (a_t) is the fuzzy ideal generated by a fuzzy point a_t , then

 $(1)(a_t) = t\chi_{(a)}$ $(2)(a_t)_r = t\chi_{(a)_r}$ $(3)(a_t)_l = t\chi_{(a)_l}$ where $(a)_r$ and $(a)_l$ are the right ideal, left ideal generated by a_r .

Theorem 2.4. [10] The following statements are equivalent for fuzzy ideals f.

(1) f is a weakly prime fuzzy ideal.

(2) $a_t \cdot 1 \cdot b_t \subseteq f$ implies $a_t \in f$ or $b_t \in f$ for $t \in [0,1]$ and $a, b \in R$.

(3) For any $a_t, b_t \in 1, (a_t) \cdot (b_t) \subseteq f$ implies $a_t \in f$ or $b_t \in f$.

(4) For the right ideals A and B in $R, t\chi_A \cdot t\chi_B \subseteq f$ implies $t\chi_A \subseteq f$ or $t\chi_B \subseteq f$.

(5) For the left ideals A and B in $R, t\chi_A \cdot t\chi_B \subseteq f$ implies $t\chi_A \subseteq f$ or $t\chi_B \subseteq f$.

(6) For the right ideals A and left ideals L in R, $t\chi_A \cdot t\chi_L \subseteq f$ implies $t\chi_A \subseteq f$ or $t\chi_L \subseteq f$.

Lemma 2.5. [10] For any fuzzy sets A and B of R and $t \in [0,1]$, $t\chi_A \cdot t\chi_B = t\chi_{AB}$

Lemma 2.6. [2] If f is any fuzzy ideal of R, then \overline{f} is a fuzzy *k*-ideal of R.

3. Various 0-prime fuzzy ideals

Form here onwards *R* denotes semirings.

Definition 3.1. The fuzzy set f is called weakly fuzzy m_0 -system if there is $x \in R$ such that f(axb) > t when f(a) > t and f(b) > t.

Theorem 3.2. *The following statements are equivalent for a fuzzy ideals f.*

(1) f is a weakly 0-prime fuzzy ideal.

(2) For $a, b \in R$ and for $t \in [0, 1]$ $a_t \cdot 1 \cdot b_t \subseteq f$ implies $a_t \in f$ or $b_t \in f$, for $t \in [0, 1]$.

(3) 1 - f is weakly fuzzy m_0 -system. (4) $(1 - f)^t$ is m_0 -system, for $t \in [0, 1]$ for $t \in [0, 1]$.

(5) f_t^c is a m₀-system, for all $t \in [0, 1]$ for $t \in [0, 1]$.

(6) f_t is 0-prime ideal of R, for $t \in [0, 1]$.

Proof. (1)⇒(2): By Theorem 2.4,(2) holds. (2)⇒(3): Suppose 1 - f(a) > t and 1 - f(b) > t. Then f(a) < 1 - t and f(a) < 1 - t. Thus $a_{1-t} \in f$ and $b_{1-t} \in f$. By(2) $a_{1-t} \cdot 1 \cdot b_{1-t} \not\subseteq f$. Then, there is $y \in R$ such that f(ayb) < 1 - t. Thus, 1 - f(ayb) > t. Therefore, 1 - f is weakly fuzzy m_0 -system. (3)⇒(4): Now, $x, y \in (1 - f)^t$ implies 1 - f(x) > t and 1 - f(y) > t. By(3), (1 - f)(xry) > t for some $r \in R$, implies

 $xry \in (1-f)^t$. Thus, $(1-f)^t$ is m_0 -system.

 $(4) \Rightarrow (5)$: Now,

$$(1-f)^{t} = \{x|1-f(x) > t\}$$

= $\{x|f(x) < 1-t\}$
= f_{1-t}^{c} .

Thus, by (4) f_t^c is m_0 -system

 $(5) \Rightarrow (6)$: By Lemma 2.1, (6) holds.

(6) \Rightarrow (1): If there are ideals *A* and *B* such that $t\chi_A \cdot t\chi_B \subseteq f$, then by Lemma 2.5, $A \cdot B \subseteq f_t$. Thus $A \subseteq f_t$ or $B \subseteq f_t$ imply $t\chi_A \subseteq f$ or $t\chi_B \subseteq f$. Thus, *f* is a weakly 0-prime fuzzy ideal.

Theorem 3.3. The fuzzy ideal f is 0-prime fuzzy ideal if and only if $t\chi_A \cdot s\chi_B \subseteq f$ implies $t\chi_A \subseteq f$ or $s\chi_B \subseteq f$ for the ideals A and B in R and for $t, s \in [0, 1]$.

Proof. Suppose that *f* is 0-prime fuzzy ideal. For any ideals *A* and *B* in *R*, by Theorem 2.2, $t\chi_A$, $s\chi_B$ are fuzzy ideals. Then, $t\chi_A \cdot s\chi_B \subseteq f$ implies $t\chi_A \subseteq f$ or $s\chi_B \subseteq f$.

Conversely, if there are fuzzy ideals g and h such that $g \cdot h \subseteq f$ with $h \not\subseteq f$, then there exists $y \in R$ such that s = h(y) > f(y). For any $x_t \in g$, $t\chi_{(x)} \cdot s\chi_{(y)} \subseteq g \cdot h \subseteq f$. Thus $x_t \in f$ for all $x_t \in g$. Thus $g \subseteq f$. Therefore, f is 0-prime fuzzy ideal.

Remark 3.4. (*i*) Every 0-prime fuzzy ideal is weakly 0-prime fuzzy ideal.

(ii) But, weakly 0-prime fuzzy ideal need not be 0-prime fuzzy ideal by the Example as in [10].

4. Various 1-prime fuzzy ideals

Definition 4.1. The fuzzy ideal f of R is called a weakly 1-prime fuzzy ideal of R if $t\chi_A \cdot t\chi_B \subseteq f$ implies $t\chi_A \subseteq f$ or $t\chi_B \subseteq f$ for any k- ideals A and for any ideals B in R and $t \in [0,1]$.

Definition 4.2. The fuzzy set f is said to be weakly fuzzy m_1 -system if for any $t \in [0,1)$ and $a, b \in R$, f(a) > t, f(b) > t implies that there exists $a_1 \in \overline{(a)}$ and $b_1 \in (b)$ such that $f(a_1b_1) > t$.

Theorem 4.3. *The following statements are equivalent for a fuzzy ideals f.*

(1) f is a weakly 1-prime fuzzy ideal. (2) $\overline{(a_t)} \cdot (b_t) \subseteq f$ implies $a_t \in f$ or $b_t \in f$, for $t \in [0,1]$ (3) 1 - f is weakly fuzzy m_1 -system of R. (4) $(1 - f)^t$ is a m_1 -system, for $t \in [0,1]$. (5) f_t^c is a m_1 -system, for $t \in [0,1]$. (6) f_t is 1-prime ideal, for $t \in [0,1]$.

Proof. $(1) \Rightarrow (2)$: By Lemma 2.3 and 2.6, (2) holds.

(2) \Rightarrow (3): If $1 - f(\underline{a}) > t$ and 1 - f(b) > t, then $a_{1-t} \in \overline{f}$ and $b_{1-t} \in f$. By (2), $(a_{1-t}) \cdot (b_{1-t}) \not\subseteq f$. Thus, there is $a_1 \in (\overline{a})$, $b_1 \in (b)$ such that $1 - f(a_1b_1) > t$. Hence, 1 - f is weakly fuzzy m_1 -system.

(3) \Rightarrow (4): Now, $a, b \in (1-f)^t$ implies $a_1b_1 \in (1-f)^t$ for $a_1 \in \overline{(a)}, b_1 \in (b)$. Thus, $(1-f)^t$ is m_1 -system.

(4) \Rightarrow (5): Now, $f_t^c = (1 - f)^{1-t}$ implies that (5) holds.

(5) \Rightarrow (6): The result follows from by Lemma 2.1.

(6) \Rightarrow (1): If there exist *k*-ideal *A* and ideal *B* such that $t\chi_A \cdot t\chi_B \subseteq f$, then by Lemma 2.5, $A \cdot B \subseteq f_t$. Thus by (6) $A \subseteq f_t$ or $B \subseteq f_t$ imply $t\chi_A \subseteq f$ or $t\chi_B \subseteq f$. Therefore, *f* is a weakly 1-prime fuzzy ideal.

Theorem 4.4. *The following statements are equivalent for a fuzzy ideals f.*

(1) f is a 1-prime fuzzy ideal. (2) $t\chi_A \cdot s\chi_B \subseteq f$ implies $t\chi_A \subseteq f$ or $s\chi_B \subseteq f$ for any k-ideal A for any ideal B in R and for $t, s \in [0, 1]$. (3) $(a_t) \cdot (b_s) \subseteq f$ implies $a_t \in f$ or $b_s \in f$, for $t, s \in [0, 1]$. (4) 1 - f is a fuzzy m_1 -system of R.

Proof. (1) \Rightarrow (2): For any *k*-ideal *A* and for any ideal *B* in *R*, such that $t\chi_A \cdot s\chi_B \subseteq f$, by Lemma 2.6 $t\chi_A \subseteq f$ or $s\chi_B \subseteq f$. (2) \Rightarrow (3): Now, $(a_t) \cdot (b_s) \subseteq f$, then by Lemma 2.3& 2.6 and Theorem 2.2, $t\chi_{\overline{(a)}} \cdot s\chi_{(b)} \subseteq f$. Thus, $a_t \in f$ or $b_s \in f$.

(3) \Rightarrow (4): Suppose 1 - f(a) > t and 1 - f(b) > s. Then $a_{1-t} \in f$ and $b_{1-s} \in f$ imply $(1-t)\chi_{\overline{(a)}} \cdot (1-s)\chi_{(b)} \not\subseteq f$. Thus there exists $a_1 \in \overline{(a)}, b_1 \in (b)$ with $a_1b_1 \in \overline{(a)} \cdot (b)$ such that $f(a_1b_1) < (1-t) \land (1-s)$. Therefore $1 - f(a_1b_1) > t \lor s$. Hence, 1 - f is a fuzzy m_1 -system.

(4) \Rightarrow (1):If there are *k*-ideal *A* and an ideal *B* such that $t\chi_A \cdot s\chi_B \subseteq f$ with $t\chi_A \not\subseteq f$ and $s\chi_A \not\subseteq f$, then $a_t \in f$ and $b_s \in f$ for $a \in A$ and $b \in B$. Then $(1-f)(a) \ge 1-t$ and $(1-f)(b) \ge 1-s$ implies $f(a_1b_1) < t \land s$ for $a_1 \in (a)$ and $b_1 \in (b)$ which contradicts $t\chi_A \cdot s\chi_B \subseteq f$. Thus, *f* is 1-prime fuzzy ideal. \Box

Theorem 4.5. [12] The fuzzy ideal f of R is 1-prime fuzzy ideal if and only if (i) $|\text{Im } f| = \{1, t\}$ (ii) f_1 is 1-prime ideal. **Remark 4.6.** (*i*) Every 1-prime fuzzy ideal is weakly 1-prime fuzzy ideal by Theorem 4.3 and 4.5.

(*ii*) But, weakly 1-prime fuzzy ideal fails to be a 1-prime fuzzy ideal by the Example 4.7.

(iii) Every weakly 0-prime fuzzy ideal is a weakly 1-prime fuzzy ideal.

(*iv*) But, weakly 1-prime fuzzy ideal fails to be a weakly 0-prime fuzzy ideal by the Example 4.7.

(v) Every 0-prime fuzzy ideal is 1-prime fuzzy ideal.

(vi) But, 1-prime fuzzy ideal fails to be 0-prime fuzzy ideal by the Example 4.7.

Example 4.7. Consider the semiring $B(7,4) = \{0,1,2,3,4,5,6\}$ as in [1].

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	4
2	2	3	4	5	6	4	5
3	3	4	5	6	4	5	6
4	4	5	6	4	5	6	4
5	5	6	4	5	6	4	5
6	6	4	5	6	4	5	6

•	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	5	4	6
3	0	3	6	6	6	6	6
4	0	4	5	6	4	5	6
5	0	5	4	6	5	4	6
6	0	6	6	6	6	6	6

Now,we defined

$$f(x) = \begin{cases} 0.9 & \text{if } x = 0\\ 0.8 & \text{if } x \in \{3,6\}\\ 0.5 & \text{if } x \in \{4,5\}\\ 0.3 & \text{otherwise} \end{cases} \quad g(x) = \begin{cases} 0.3 & \text{if } x \in \{1,2\}\\ 1 & \text{otherwise} \end{cases}$$

Clearly, f is weakly 1-prime fuzzy ideal. By Theorem 4.5 f is not a 1-prime fuzzy ideal. Now , {0,3,4,5,6} is 1-prime ideal but not 0-prime ideal. Then by Theorem 3.2, f is not weakly 0-prime fuzzy ideal.

By Theorem 4.5, g is 1-prime fuzzy ideal but not a 0-prime fuzzy ideal.

5. Various 2-prime fuzzy ideals

Definition 5.1. *The fuzzy ideal f of R is called a weakly* 2-prime fuzzy ideal of R if $t\chi_A \cdot t\chi_B \subseteq f$ implies $t\chi_A \subseteq f$ or $t\chi_B \subseteq f$ for the k- ideals A and B in R and $t \in [0, 1]$.

Definition 5.2. The fuzzy set f is said to be weakly fuzzy m_2 -system if for any $t \in [0,1)$ and $a, b \in R$, f(a) > t, f(b) > t implies that there exists $a_2 \in \overline{(a)}$ and $b_2 \in \overline{(b)}$ such that $f(a_2b_2) > t$.

Theorem 5.3. *The following statements are equivalent for a fuzzy ideals f.*

(1) f is a weakly 2-prime fuzzy ideal. (2) $\overline{(a_t)} \cdot \overline{(b_t)} \subseteq f$ implies $a_t \in f$ or $b_t \in f$ for $t \in [0,1]$ (3) 1 - f is a weakly fuzzy m_2 -system of R. (4) $(1 - f)^t$ is a m_2 -system, for $t \in [0,1]$. (5) f_t^c is a m_2 -system, for $t \in [0,1]$. (6) f_t is a 2-prime ideal, for $t \in [0,1]$.

Proof. (1)⇒(2): By Lemma 2.3 and 2.6, (2) holds. (2)⇒(3): Now, 1 - f(a) > t and 1 - f(b) > t implies $a_{1-t} \in f$ and $b_{1-t} \in f$. By (2) $(a_{1-t}) \cdot (b_{1-t}) \not\subseteq f$. Thus, $a_1 \in (a), b_1 \in (b)$ such that $f(a_1b_1) < 1 - t$. Therefore, $1 - f(a_1b_1) > t$. Hence, 1 - f is weakly fuzzy m_2 -system. (3)⇒(4):Now, $a, b \in (1 - f)^t$ implies $a_1b_1 \in (1 - f)^t$ for $a_1 \in (a), b_1 \in (b)$. Thus, $(1 - f)^t$ is m_2 -system. (4)⇒(5): Now, $f_t^c = (1 - f)^{1-t}$ implies that (5) holds. (5)⇒(6): By Lemma 2.1, (6) holds. (6)⇒(1): If there are k-ideals A and B such that $t\chi_A \cdot t\chi_B \subseteq f$, then by Lemma 2.5, $A \cdot B \subseteq f_t$. Thus by (6) $A \subseteq f_t$ or $B \subseteq f_t$ imply $t\chi_A \subseteq f$ or $t\chi_B \subseteq f$. Thus, f is a weakly 2-prime fuzzy ideal.

Theorem 5.4. *The following statements are equivalent for a fuzzy ideals f.*

(1) f is a 2-prime fuzzy ideal. (2) $t\chi_A \cdot s\chi_B \subseteq f$ implies $t\chi_A \subseteq f$ or $s\chi_B \subseteq f$ for the k-ideals A and B in R and for $t, s \in [0, 1]$. (3) $\overline{(a_t)} \cdot \overline{(b_s)} \subseteq f$ implies $a_t \in f$ or $b_s \in f$, for $t, s \in [0, 1]$. (4) 1 - f is a fuzzy m_2 -system of R.

Proof. (1) \Rightarrow (2): For the *k*-ideals *A* and *B* in *R*, such that $t\chi_A \cdot s\chi_B \subseteq f$, then by Lemma 2.6, $t\chi_A \subseteq f$ or $s\chi_B \subseteq f$. (2) \Rightarrow (3): Now, $\overline{(a_t)} \cdot \overline{(b_s)} \subseteq f$, then by Lemma 2.3 and 2.6, $t\chi_{\overline{(a)}} \cdot s\chi_{\overline{(b)}} \subseteq f$. Thus, $a_t \in f$ or $b_s \in f$.

(3) \Rightarrow (4): Now, 1 - f(a) > t and 1 - f(b) > s imply $a_{1-t} \in f$ and $b_{1-s} \in f$. By (3), $(1-t)\chi_{\overline{(a)}} \cdot (1-s)\chi_{\overline{(b)}} \not\subseteq f$. Then, there exists $a_2 \in \overline{(a)}, b_2 \in \overline{(b)}$ with $a_2b_2 \in \overline{(a)} \cdot \overline{(b)}$ such that $f(a_2b_2) < (1-t) \land (1-s)$. Thus, $1 - f(a_2b_2) > t \lor s$. Therefore, 1 - f is a fuzzy m_2 -system.

(4) \Rightarrow (1): If there exist fuzzy *k*-ideals *g* and *h* of *R* such that $g \cdot h \subseteq f$ with $g \not\subseteq f$ and $h \not\subseteq f$, then there exists $a, b \in R$ such that $s = g(\underline{a}) > \underline{f(a)}$ and t = h(b) > f(b). Thus $a_s \in f$ and $b_t \in f$. Then $(\overline{a_s}) \cdot (\overline{b_t}) \not\subseteq f$ which contradicts $g \cdot h \subseteq f$. Thus *f* is 2-prime fuzzy ideal.

Remark 5.5. (*i*) Every 2-prime fuzzy ideal is weakly 2-prime fuzzy ideal by Theorem 5.3.

(ii) But, weakly 2-prime fuzzy ideal fails to be a 2-prime fuzzy ideal by the Example 5.6.

(iii) Every weakly 0-prime fuzzy ideal is a weakly 2-prime fuzzy ideal.

(iv) But, weakly 2-prime fuzzy ideal fails to be a weakly 0-prime fuzzy ideal by the Example 5.6.

Example 5.6. *Consider the semiring* $B(7,4) = \{0,1,2,3,4,5,6\}$ *as in Example 4.7 .Now,we defined*

$$f(x) = \begin{cases} 1 & \text{if } x = 0\\ 0.8 & \text{if } x = 4\\ 0.4 & \text{otherwise} \end{cases}$$

Clearly, f is weakly 2-prime fuzzy ideal but not a 2-prime fuzzy ideal and weakly 0-prime fuzzy ideal.

References

- [1] Alarcon F.E and Anderson D.D, Commutative semiring and their lattices of ideals, *Houston Journal of Mathematics*, 20(4)(1994), 571–590.
- Dheena.P and Mohanraj.G, (λ, μ)-fuzzy ideals in Semirings, Advances in Fuzzy Mathematics, 6(2)(2011), 183–192.
- [3] Dheena.P, and Mohanraj.G, Fuzzy weakly prime ideals of near-subtraction semigroups, *Annals of Fuzzy Mathematics and Informatics*, 4(2)(2012), 235–242.
- [4] Dheena.P and Mohanraj.G, On (λ, μ)-fuzzy prime ideals of semirings, *The Journal of Fuzzy Mathematics*, 20(3)(2012), 889–898.
- [5] Dheena.P and Coumaressane.S, Fuzzy 2-(0-or1)-prime ideals in semirings, *Bulletin Korean Mathematical Soci*ety, 43(3)(2006), 559–573.
- [6] Mohanraj.G, Krishnasamy.D and Hema.R, On fuzzy msystems and n-systems of ordered semigroups, Annals of Fuzzy Mathematics and Informatics, 7(1)(2014), 173– 179.
- [7] Mohanraj.G, Hema.R and Prabu.E, On various weak fuzzy prime ideals of ordered semigroup, Proceedings of the International Conference on Mathematical Sciences published by Elsevier, (2014), 475–479.
- [8] Mohanraj, G and Prabu, E, Weakly fuzzy prime ideal of hemiring, Proceedings of the International Conference on Mathematical Sciences published by Elsevier, (2014), 480–483.
- [9] Mohanraj.G and Prabu.E ,Generalized fuzzy right *h*ideals of hemirings redefined by fuzzy sums and products,Bulletin of the International Mathematical Virtual Institute, 7(3)(2017), 527–538.
- ^[10] Mohanraj.G and Azhaguvelavan.S, On weakly prime (λ, μ) -fuzzy ideals of semirings, *Mathematical Sciences International Research Journal(IMRF)*, 7(2018), 138–144.
- ^[11] Mohanraj.G and Azhaguvelavan.S, Weakly prime fuzzy ideals of hemirings, Submitted.
- ^[12] Mohanraj.G and Azhaguvelavan, Various generalized prime fuzzy ideals of semirings, *AIP Conference Proceedings*, (2019), 020020-1-020020-8.
- ^[13] Nandakumar.P, 1 (2)-prime ideals in semirings, *Kyungpook Mathematical Journal*, 50(2010), 117–122.

ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******