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Abstract. In this paper, spectral mapping theorem for the point spectrum on infinitesimal generator of a C0-semigroup
was further investigated. Toeplitz properties of semigroup considering ω-order preserving partial contraction mapping (ω −
OCPn) as a semigroup of linear operator was established to obtained new results. We also consider A ∈ ω−OCPn which is
the infinitesimal generator of a C0-semigroup using the Spectral Mapping Theorem (SMT) to obtain the relationships between
the spectrum of A and the spectrum of each of the operators {T (t), t ≥ 0}.
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1. Introduction and Background

The emphasis of spectral theory in functional analysis is important because it studies the structure of a linear
operator on the basis of its spectral properties such as the location of the spectrum, the behaviour of the resolvent
and the asymptotics of its eigenvalues. It is an inclusive term for theories extending the eigenvector and eigenvalue
theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical
spaces. Suppose X is Banach space, Xn ⊆ X is a finite set, (T (t))t≥0 the C0-semigroup, ω − OCPn the ω-
order preserving partial contraction mapping, Mm be a matrix, L(X) be a bounded linear operator on X , Pn
a partial transformation semigroup, ρ(A) a resolvent set, σ(A) a spectrum of A and A ∈ ω − OCPn is a
generator of C0-semigroup and its also Toeplitz matrix. This paper consist of results of Toeplitz ω-preserving
partial contraction mapping generating a spectral mapping theorem. Balakrishnan [1], established fractional
powers of closed operators. Banach [2], introduced the concept of Banach spaces. Bojanczyk et al. [3], obtained
some results on stability of the Bareiss and related Toeplitz factorization algorithms. Böttcher and Grudsky [4],
deduced some results on Teoplitz matrices, asymptotics linear algebra and functional analysis. Engel and Nagel
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[5], obtained one-parameter semigroup for linear evolution equations. Greiner et al. [6], showed some results
on the spectral bond generator of semigroup of positive operators. Hasegawa [7], introduced some results on the
convergence of resolvents of operators. Neerven [8], established the asymptotic behavior of semigroup of linear
operator. Pazy [9], presented semigroup of linear operators and applications to partial differential equations. Rauf
and Akinyele [10], obtained ω-order-preserving partial contraction mapping and established its properties, also
in [11], Rauf et al. deduced some results of stability and spectra properties on semigroup of linear operator.
Slemrod [12], explained asymptotic behavior of C0-semigroup as determined by the spectrum of the generator.
Vrabie [13], proved some results of C0-semigroup and its applications. Yosida [14], established and proved some
results on differentiability and representation of one-parameter semigroup of linear operators.

2. Preliminaries

Definition 2.1. (C0-Semigroup) [13] A C0-Semigroup is a strongly continuous one parameter semigroup of
bounded linear operator on Banach space.

Definition 2.2. (ω-OCPn) [10] A transformation α ∈ Pn is called ω-order-preserving partial contraction
mapping if ∀x, y ∈Domα : x ≤ y =⇒ αx ≤ αy and at least one of its transformation must satisfy
αy = y such that T (t+ s) = T (t)T (s) whenever t, s > 0 and otherwise for T (0) = I .

Definition 2.3. (Resolvent Set) [5] We define the resolvent set of A denoted by ρ(A) set of all λ ∈ C such that λI
- A is one-to-one with range equal to X

Definition 2.4. (Spectrum) [5] The spectrum of A denoted by σ(A) is defined as the complement of the resolvent
set.

Definition 2.5. (Toeplitz matrix) [4] Toeplitz matrix is a matrix in which each descending diagonal from left to
right is constant for any n× n and for any m× n matrices.

Example 1
2× 2 matrix [Mm(N ∪ {0})]
Suppose

A =

(
2 0

1 2

)
and let T (t) = etA, then

etA =

(
e2t eI

et e2t

)
.

Example 2
3× 3 matrix [Mm(N ∪ {0})]
Suppose

A =

2 2 3

2 2 2

1 2 2


and let T (t) = etA, then

etA =

e2t e2t e3te2t e2t e2t

et e2t e2t

 .

Example 3
3× 3 matrix [Mm(C)], we have
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for each λ > 0 such that λ ∈ ρ(A) where ρ(A) is a resolvent set on X .
Suppose we have

A =

2 2 3

2 2 2

1 2 2


and let T (t) = etAλ , then

etAλ =

e2tλ e2tλ e3tλe2tλ e2tλ e2tλ

etλ e2tλ e2tλ

 .

Example 4
Let X be the Banach space of Continuous function on [0,1] which are equal to zero at x = 1 with the supremum
norm. Define

(T (t)f)(x) =

{
f(x+ t) if x+ t ≤ 1

0 if x+ t > 1

T (t) is obviously a C0-Semigroup of Contractions on X . Its infinitesimal generator A ∈ ω-OCPn is given by

D(A) = {f : f ∈ C ′([0, 1]) ∩X1f
′ ∈ X}

and
Af = f ′ for f ∈ D(A).

one checks easily that for every λ ∈ C and g ∈ X the equation λf − f ′ = g has a unique solution f ∈ X given
by

f(t) =

∫ 1

t

eλ(t−s)g(s)ds.

Therefore σ(A) = φ. on the other hand, since for every t ≥ 0, T (t) is a bounded linear operator, σ(T (t)) 6= φ

for all t ≥ 0 and the relation σ(T (t)) = exp{tσ(A)} does not hold for any t ≥ 0.

Theorem 2.6. (Hille-Yoshida) [11] A linear operator A : D(A) ⊆ X → X is the infinitesimal generator for a
C0-semigroup of contraction if and only if

i. A is densely defined and closed; and

ii. (0,+∞) ⊆ ρ(A) and for each λ > 0, we have

‖R(λ,A)‖L(X) ≤
1

λ
. (2.1)

3. Main Results

This section presents results of spectral mapping theorem for point spectrum generated by Toeplitz ω-OCPn:

Theorem 3.1. Let T (t)t≥0 be a C0-semigroup on a Banach space X, with generator A ∈ ω − OCPn which is
Toeplitz. Then we have the spectral inclusion relation

σ(T (t)) > exp(tσ(A)), ∀t ≥ 0.
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Proof. Firstly we need to show that A is a Toeplitz matrix. Assume b is a trigonometric polynomial of the form

ϕ(t) =

r∑
j=−r

bjt
j

t ∈ T (t), and let X and Y be infinite matrices of all entries of which are sero outside the upper left r × r block,
that is

PrXPr = X, PrY Pr = Y.

without loss of generality assume that r ≥ 1. Put

An = Tn(a) + PnXPn + ωnY ωn,

where A ∈ ω −OCPn. Obviously, An is a band matrix with at most 2r + 1 non-zero diagonals.So, let

M = max(‖T (a) +X‖, ‖T (â+ Y ‖), M0 = ‖T (a)‖.

Since
‖T (a)‖ = ‖T (a)‖ = ‖a‖∞,

then we have
‖T (a) +X‖ ≥ ‖T (a)‖ = ‖T (a)‖,

‖T (ã) + Y ‖ ≥ ‖T (ã)‖ = ‖T (ã)‖ = ‖T (a)‖

we always have M ≥M0, so that ‖An‖ →M as n→∞.
It is easy to see that ∫ t

0

T (s)xds ∈ D(A)

or all t ≥ 0. In fact, a direct application of the definition of the generator shows that

A

(∫ t

0

T (s)xds

)
= T (t)x− x, ∀x ∈ X. (3.1)

A

(∫ t

0

T (s)xds

)
=

∫ t

0

T (s)Axdx. (3.2)

By applying (3.1) and (3.2) to the semigroup T (t)− λ := {e−λtT (t)}t≥0 generated by A− λ, for all λ ∈ C and
t ≥ 0 we have

(λ−A)
∫ t

0

eλ(t−s)T (s)xds = (eλt − T (t))x, ∀x ∈ X

and A ∈ ω −OCPn, so that∫ t

0

eλ(t−s)T (s)(λ−A)xds = (eλt − T (t))x ∀x ∈ D(A) (3.3)

and A ∈ ω −OCPn.
Suppose eλt ∈ ϕ(T (t)) for some λ ∈ C and t ≥ 0, and denote the inverse of eλt − T (t) by Kλt. Since Kλt

commutes with T (t) and hence also with A, then we have

(λ−A)
∫ t

0

eλ(t−s)T (s)Kλ,txds = x, ∀x ∈ X
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and A ∈ ω −OCPn, so that ∫ t

0

eλ(t−s)T (s)Kλ,t(λ−A)xds = x, ∀x ∈ D(A)

and A ∈ ω −OCPn.
This shows that the bounded operator Bλ defined by

Bλx :=

∫ t

0

eλ(t−s)T (s)Kλ,txds

is a two-sided inverse of λ− A. It follows that λ ∈ ϕ(A) is in the spectral inclusion relation which achieved the
proof.

�

Theorem 3.2. Assume T (t)t≥0 is a semigroup of linear operator on a Banach space X, with generator A ∈
ω −OCPn which is Toeplitz. Then

σp(T (t)) \ {0} exp(tσp(A)), ∀t ≥ 0.

Proof. Suppose λ ∈ σp(A) and x ∈ D(A) is an eigenvector corresponding to λ, the identity (3.3) shows that
T (t)x = eλtx, that is eλt is an eigenvalue of T (t) with eigenvector x. This proves the inclusion ⊃.

The inclusion ⊂ is proved as follows. The case t = 0 being trivial, we fix t > 0. If λ ∈ σp(T (t)) \ {0}, then
λ = eµt for some µ ∈ C. If x is an eigenvector, then

T (t)x = eµtx

implies that the map
s 7→ e−µsT (s)x

is a periodic with period t.
Since this map is not identically zero, the uniqueness theorem for the Fourier transform implies that at least

one of its Fourier coefficients is non-zero. Thus, there exists an integer k ∈ Z such that

xk :=
1

t

∫ t

0

e−(2πik/t)s(eµsT (s)x)ds 6= 0.

we shall show that µk := µ+ 2πik/t is an eigenvalue of A with eigenvector xk.
By the t-periodicity of s 7→ e−µsT (s)x, for all Rev > ω0(T (t)), we have

R(v,A)x =

∫ ∞
0

e−vsT (s)xds

=

∞∑
n=0

∫ (n+1)t

nt

e−vsT (s)xds

=

∞∑
n=0

∫ t

0

e−vsT (s)(e−vntT (nt)x)ds

=

∞∑
n=0

e(µ−v)nt
∫ t

0

e−vsT (s)xds

=
1

1− e(µ−v)t

∫ t

0

e−vsT (s)xds.

(3.4)
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Since the integral on the right hand side is an entire function, this shows that the map v 7→ R(v,A)x admits a
holomorphic continuation to C\{µ+2πin/t : n ∈ Z}. Denoting this extension by Fx(·), (3.4) and the definition
of xk we have

lim
v→µk

(v − µk)Fx(v) = xk.

Also, by (3.4) and the t-periodicity of s 7→ e−µsT (s)x,

lim
v→µk

(µ−A)((v − µk)Fx(v)) = lim
v→µk

(µ−A)((v − µk)Fx(v))

= lim
v→µk

v − µk
1− e(µ−v)t

(
(I − e−vtT (t)) + (µk − v)

∫ t

0

e−vsT (s)xds

)
=

1

t
(0 + 0) = 0.

From the closedness of A , it follows that xk ∈ D(A), A ∈ ω −OCPn and (µk −A)xk = 0.
The spectral mapping theorem also holds for the residual spectrum. This follows from a duality argument for

which we need the following definitions.
Since T (t) is a C0-semigroup on X , then we define

X� := {x∗ ∈ X∗ : lim
t→0
‖T ∗(t)x − x∗‖ = 0},

where T ∗(t) := (T (T ))∗ is the adjoint operator. It is easy to see thatX� is a closed T ∗(t) - invariant subspace of
X∗, and the restriction T� of T ∗ toX� is a C0-semigroup onX�. We denote its generator byA� ∈ ω−OCPn.

We claim that σp(A∗) = σp(A
�), where A∗ ∈ ω − OCPn is the adjoint of the generator A of T (t), and

σp(T
∗(t)) = σp(T

�(t)), t ≥ 0 and A ∈ ω −OCPn.
We start with the first of these assertion. For all x∗ ∈ D(A∗), x ∈ X and A ∈ ω −OCPn, we have

〈T ∗(t)x∗ − x∗, x〉 = 〈x∗, T (t)x− x〉
= 〈A∗x∗,

∫ t
0
T (t)xdt〉

=
∫ t
0
〈A∗x∗, T (t)x〉ds

=
∫ t
0
〈T ∗(t)A∗x∗, x〉dt.

 (3.5)

Therefore,
|〈T ∗(t)x∗ − x∗, x〉| ≤ t‖x‖‖A∗x∗‖ sup

0≤s≤t
‖T (s)‖.

By taking the supremum over all x ∈ X of norm ≤ 1, it follows that

lim
t→0
‖T ∗(t)x∗ − x∗‖ = 0,

that is x∗ ∈ X�. This proves that D(A∗) ⊂ X�.
Now assume that A∗x∗ = λx∗ for some x∗ ∈ D(A∗) and A∗ ∈ ω−OCPn. Then x∗ ∈ X� and (3.5) shows

that 〈
1

t
(T�(t)x∗ − x∗)− λx∗, x

〉
=
λ

t

∫
〈T�(t)x∗ − x∗, x〉dt

and therefore, ∥∥∥∥1t (T�(t)x∗ − x∗)− λx∗
∥∥∥∥ ≤ |λ|‖x∗‖ sup

0≤s≤t
‖T (s)x− x‖.

Letting t→ 0, this shows that x∗ ∈ D(A�) and

A�x∗ = λx∗,
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so λ ∈ σp(A�).
Conversely, if λ ∈ σp(A�) and A�x� = λx�, for some x� ∈ D(A�) and A� ∈ ω − OCPn, then for all

x ∈ D(A) we have

〈x�, Ax〉 = lim
t→0

1

t
〈x�, T (t)x− x〉

= lim
t→0

1

t
〈T�(t)x� − x�, x〉 = 〈A�x�, x〉

= λ〈x�, x〉.

This shows that x� ∈ D(A∗) and A∗x� = λx�, so that λ ∈ σp(A∗).
Next we prove that

σp(T
∗(t)) = σp(T

�(t)) for all t ≥ 0.

Clearly, we have the inclusion
σp(T

�(t)) ⊂ σp(T ∗(t)).

Since T�(t) is a restriction of T ∗(t).
Conversely, if T ∗(t) = λx∗ for some non-zero x∗ ∈ X∗, then for all µ ∈ ϕ(A∗) = ϕ(A) we have

R(µ,A∗)x∗ ∈ D(A∗) ⊂ X� and

T�(t)R(µ,A∗)x∗ = R(µ,A∗)T ∗(t)x∗ = λR(µ,A∗)x∗.

Hence, R(µ,A∗)x∗ is an eigenvector of T�(t) with eigenvector λ. Hence, the proof is complete.
�

Theorem 3.3. Assume T (t) is a C0-semigroup on a Banach space X , with generator A ∈ ω − OCPn which is
Toeplitz. Then,

(i)σr(T (t)) \ {0} = exp(tσr(A)).

(ii)Suppose A ∈ ω −OCPn is a closed linear operator on X, andσ(A) = σr(A) ∪ σa(A).

}
(3.6)

Proof. By (3.6) above, we have
σr(T (t)) = σp(T

∗(t)) = σp(T
�(t))

and
σr(A) = σp(A

∗) = σp(A
�).

It now follows from Theorem 3.2 applied to the C0-semigroup T�(t), which proves (i).
To proof (ii), assume that λ ∈ σ(A) \ σr(A). Then λ − A has dense range. If λ − A is not injective, then

λ ∈ σp(A) ⊂ σa(A) and we are done. Suppose therefore that λ−A is injective.
Assume for the moment that there exists a constant c > 0 such that

‖(λ−A)x‖ ≥ c‖x‖ ∀x ∈ D(A) and A ∈ ω −OCPn.

Then the range of λ−A is closed. Indeed, if yn → y with

yn = (λ−A)xn

then
‖xn − xm‖ ≤ c−1‖(λ−A)(xn − xm)‖ = ‖yn − ym‖

so the sequence (xn) is Cauchy, with limit x. The closedness of A implies that x ∈ D(A), A ∈ ω −OCPn and
(λ−A)x = y, proving that y belongs to the range of λ−A. Thus, the range of λ−A is closed. Since it is also
dense, it foloows that it is of X . Since λ−A is injective, the inverseRλ := (λ−A)−1 is well-defined as a closed
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linear operator on X whose domain is all of X . Hence Rλ is bounded by closed graph theorem. Thus, λ− A is
invertible, a contraction. It follows that a constant c > 0 as above does not exists. But then there is a sequence
xn of norm one vector, xn ∈ D(A) for all n, such that

lim
n→∞

(λ−A)xn = 0,

which proves that λ ∈ σa(A).
�

Theorem 3.4. Let A ∈ ω − OCPn Toeplitz be a closed linear operator on a Banach space X . Then the
topological boundary Qσ(A) of the spectrum σ(A) is contained in the approximate point spectrum σa(A).

Proof. Let λ ∈ Qσ(A) be fixed and let (λn) ⊂ ϕ(A) be a sequence such that λn → λ. It follows from uniform
boundedness theorem and suppose A ∈ ω −OCPn is a closed linear operator on X . Then for all λ ∈ ϕ(A), we
have

‖R(λ,A)‖ ≥ 1

dist(λ, σ(A))
.

Then there exists an x ∈ X such that
lim
n→∞

‖R(λn, A)x‖ → ∞.

Assume
xn := ‖R(λn, A)x‖−1R(λn, A)x.

Then
‖xn‖ = 1

and
lim
n→∞

‖Axn − λxn‖ = lim
n→∞

‖R(λn, A)x‖−1. · ‖(λn − λ)R(λn, A)x− x‖ = 0.

Hence, the proof is complete. �

4. Conclusion

In this paper, it has been established that Toeplitz ω-order preserving partial contraction mapping (ω-OCPn)
generates results on spectral mapping theorem for point spectrum.
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