

https://doi.org/10.26637/MJM0704/0025

Vertex semi-middle graph of a graph

Rajendra Prasad K C^{1*}, Niranjan K M² and Venkanagouda M Goudar³

Abstract

In this communication, the vertex semi-middle graph of a graph $M_{\nu}(G)$ is introduced. We obtain a characterization of graphs whose $M_{\nu}(G)$ is planar, outerplanar and minimally non-outerplanar. Further, we obtain $M_{\nu}(G)$ is Eulerian, crossing number one and crossing number two.

Keywords

Crossing number, Middle graph, Planar, Semientire graph.

AMS Subject Classification

05C10, 05C45, 05C75.

¹Research Scholar, UBDT College of Engineering, Visvesvaraya Technological University, Belagavi, Department of Mathematics, Jain Institute of Technology, Davanagere-577003, India.

² Department of Mathematics, UBDT College of Engineering, Davanagere - 577004, India.

³ Department of Mathematics, Sri Siddhartha Institute of Technology, Tumkur-572105, India.

*Corresponding author: ¹rajendraprasadkp@gmail.com; ²niranjankm64@gmail.com; ³vmgouda@gmail.com.

Article History: Received 25 August 2019; Accepted 06 November 2019

©2019 MJM.

Contents

1	Introduction786
2	Preliminaries787
3	Vertex semi-middle graph of a graph787
4	Conclusions789
	Acknowledgments789
	References

1. Introduction

By graph, we mean a finite, undirected graph without loops or multiple edges and planar. We refer the terminology of [1]. The middle graph M(G) of a graph G is the graph whose vertex set is V(G)UE(G) and in which two vertices are adjacent if and only if either they are adjacent edges of G or one is a vertex of G and the other is an edge incident with it. This concept was introduced in [3] and was studied by Kulli and Patil [4, 5]. The *edgedegree* [6] of an edge $e = \{u, v\}$ is d(u) + d(v). Degree of a region is the number of vertices lies on a region. Let v_1, v_2, v_3 be the pendant vertices of $K_{1,3}$. The graph $K_{1,3}(P_n)$ is obtained from $K_{1,3}$ by attaching one time to any one pendant vertex of $K_{1,3}$ as shown in Fig.1.

In the paper [7], defined the concept of vertex semientire block graph. We motivated this concept to define the vertex semimiddle graph of a graph. Let G(V, E) be a planar graph with R regions. The vertex semi-middle graph of a graph G, denoted by $M_{\nu}(G)$ is a graph whose vertex set is V(G)UE(G)UR(G)and two vertices of $M_{\nu}(G)$ are adjacent if and only if they corresponds to two adjacent edges of *G* or one corresponds to a vertex and other to an edge incident with it or one corresponds to a vertex other to a region in which vertex lies on the region.

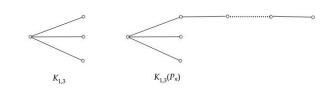
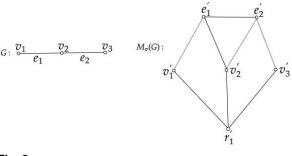


Fig. 1.



2. Preliminaries.

The following results will be useful in our results.

Theorem 2.1. [1] A finite graph G is Eulerian if and only if all its vertex degree are even.

Theorem 2.2. [3] For any (p,q) graph G, middle graph of a graph M(G) has (p+q) vertices and $q + \sum_{i=1}^{q} \frac{1}{2} \{d(e_i)\}$ edges. Where $d(e_i)$ is the edgedegree of a edge e_i .

Theorem 2.3. [1] A graph is planar if and only if it has no subgraph homeomorphic to K_5 or $K_{3,3}$.

3. Vertex semi-middle graph of a graph

We begin with some observations.

Observation 3.1. Every pendant vertex of *G* is also a pendant vertex of M(G).

Observation 3.2. Let $e_i \in E(G)$ with edgedegree *n* then in $M_v(G)$, $deg(e'_i) = n$.

Theorem 3.1. For any graph G, $M_{\nu}(G)$ is always non-separable.

Proof. We establish the following cases.

Case 1. Consider G be any tree. Let $v'_1, v'_2, v'_3, ..., v'_n$ be the vertices of $M_v(G)$ corresponds to the vertices $v_1, v_2, v_3, ..., v_n$ of G and $e'_1, e'_2, e'_3, ..., e'_{n-1}$ be the vertices of $M_v(G)$ corresponds to the edges $e_1, e_2, e_3, ..., e_{n-1}$ of G. By the Observation 3.1, M(G) contains the pendant vertices. Further, in $M_v(G)$ region vertex r'_1 adjacent to the vertices $v'_1, v'_2, v'_3, ..., v'_n$ without cut vertex. Clearly $M_v(G)$ is non-separable.

Case 2. Consider *G* be any cycle. Let $v'_1, v'_2, v'_3, ..., v'_n$ be the vertices of $M_v(G)$ corresponds to the vertices $v_1, v_2, v_3, ..., v_n$ of *G* and $e'_1, e'_2, e'_3, ..., e'_n$ be the vertices of $M_v(G)$ corresponds to the edges $e_1, e_2, e_3, ..., e_n$ of *G*. In $M_v(G)$ region vertices r'_1, r'_2 adjacent to the vertices $v'_1, v'_2, v'_3, ..., v'_n$ without cut vertex. Clearly $M_v(G)$ is non-separable.

Proposition 3.1. Let $v_i \in V[G]$ and $\deg(v_i) = n$ then in $M_v(G)$, $\deg(v'_i) = n + r_v$. where r_v is the number of regions in which vertex v lies.

Theorem 3.2. For any graph G, p vertices, q edges and l regions then $M_v(G)$ has (p+q+r) vertices and $q + \sum_{i=1}^q \frac{1}{2} \{d(e_i)\} + \sum_{j=1}^r d(r_j)$ edges. Where $d(e_i)$ is the edgedegree of a edge e_i and $d(r_j)$ is the degree of a region r_j .

Proof. By the definition of $M_{\nu}(G)$, the $V[M_{\nu}(G)]=V(G)UE(G)$ UR(G). Hence $V[M_{\nu}(G)] = (p+q+r)$.

Further, by Theorem 2.2, $E[M(G)] = q + \sum_{i=1}^{q} \frac{1}{2} \{d(e_i)\}$. The degree of a region is the sum of the number of vertices lies on the each region in *G* which is $\sum d(r_j)$. The number of edges in $M_v(G)$ is equal to the sum of edges in M(G) and $\sum d(r_j)$. Hence $E[M_v(G)] = q + \sum_{i=1}^{q} \frac{1}{2} \{d(e_i)\} + \sum_{j=1}^{r} d(r_j)$. **Theorem 3.3.** For any graph G, $M_v(G)$ is planar if and only if G is a path.

Proof. Consider $M_{\nu}(G)$ is planar. We have the following cases.

Case 1. Suppose *G* is star $K_{1,3}$, $G = K_{1,3} : v_1, v_2, v_3, v_4$ and $deg(v_1) = 3$. Further $V[M_v(G)] = \{v'_1, v'_2, v'_3, v'_4, e'_1, e'_2, e'_3, r'_1\}$. By the definition of middle graph $M(K_{1,3})$ is planar. Further in $M_v(G)$, the region vertex r'_1 is adjacent to the vertices v'_1, v'_2, v'_3, v'_4 of M(G). $M_v(K_{1,3})$ is homeomorphic to K_5 , by Theorem 2.3 which is non-planar, a contradiction.

Case 2. Consider *G* is a cycle, $G = C_n : v_1, v_2, v_3..., v_n, n > 2$. Further, $V[M_v(G)] = \{v'_1, v'_2, v'_3..., v'_n, e'_1, e'_2, e'_3..., e'_n, r'_1, r'_2\}$. By definition of middle graph, $M(C_n)$ is planar. Further in $M_v(G)$, region vertices r'_1, r'_2 adjacent to the vertices

 $v'_1, v'_2, v'_3, \dots, v'_n$. Clearly, $M_v(G)$ is a non-planar. Which is a contradiction.

Conversely, suppose *G* is a path, $G = P_n : v_1, v_2, v_3, \dots, v_n, n > 1$. Further, $V[M_v(G)] = \{v'_1, v'_2, v'_3, \dots, v'_n, e'_1, e'_2, e'_3, \dots, e'_{n-1}, r_1\}$. By the definition of middle graph, M(G) is planar. For the $M_v(G)$ of a path P_n , $\{v'_1e'_1r'_1v'_2, v'_2e'_2r'_1v'_3, v'_3e'_3r'_1v'_4, \dots, v'_ne'_nr'_1v'_{n+1}\} \in V[M_v(G)]$, in which each set $\{v'_ne'_nr'_1v'_{n+1}\}$ forms a planar graph. Hence $M_v(G)$ is planar. \Box

Proposition 3.2. The $M_v(G)$ of a *G* is 1-minimally nonouterplanar if and only if $G = P_3$.

Proposition 3.3. The $M_{\nu}(G)$ of a *G* is 2-minimally nonouterplanar if and only if $G = P_4$.

Theorem 3.4. For any graph G, $M_{\nu}(G)$ is outerplanar if and only if G is P_2 .

Proof. Consider $G = P_2$, then $M_{\nu}(G) = C_4$. Since C_4 is outerplanar, hence $M_{\nu}(G)$ is outerplanar.

Conversely, suppose $M_{\nu}(G)$ is outerplanar and *G* is connected. We now prove that $G = P_2$. On the contrary, assume $G = P_3$. Then G has two edges e_1 and e_2 . By Proposition 3.2 $M_{\nu}(G) = 1$ -minimally non-outerplanar and hence $M_{\nu}(G)$ is not outerplanar, a contradiction.

Theorem 3.5. The $M_{\nu}(G)$ of a conneccted graph G is kminimally non-outerplanar $k \ge 1$ if and only if G is P_{k+2} .

Proof. Suppose *G* is P_{k+2} , $k \ge 1$ to establish the result, we apply mathematical induction on k. Consider k = 1 then by Proposition 3.2, is 1-minimally non-outerplanar.

Consider the result is valid for k = m, therefore if G is P_{m+2} then $M_{\nu}(G)$ is m-minimally non-outerplanar.

Suppose k = m + 1 then *G* is P_{m+3} . We now prove that $M_v(G)$ is (m+1) minimally non-outerplanar.

Let $G = P_{m+3}$, and v_1 be an end vertex of G. Let $G_1 = G - v_1 = P_{m+2}$. By inductive hypothesis, $M_v(G_1)$ is m-minimally non-outerplanar.

Let $e_i = (v_i, v_j)$ be an endedge and r_i be the region of G_1 . Then e_i is an endedge incident with the cutvertex v_i . The

vertices e'_i , r'_i and v'_j in $M_v(G_1)$ are on the boundary of the exterior region on some cycle C. Now join the vertex v_1 to the vertex v_j of G_1 such that the resulting graph is G.

Let $e_j = (v_j, v_1)$ be an endedge and r_i be the region of G. The formation of $M_v(G)$ is an extension of $M_v(G_1)$ with additional vertices e_j and v_1 such that e'_j adjacent with e'_i , v'_j and v'_1 . Similarly r'_i is adjacent with v'_i , v'_j and v'_1 . Clearly v'_j is an inner vertex of $M_v(G)$, but it is not an inner vertex of $M_v(G_1)$. Thus $M_v(G)$ is (m+1) - minimally non-outerplanar.

Conversely, assume $M_{\nu}(G)$ is k-minimally non - outerplanar, then by Theorem 3.3, $M_{\nu}(G)$ is planar. Thus *G* is a path. Suppose *G* is a path. We obtain the following cases.

Case 1. Suppose $G = P_{k+1}$, $k \ge 1$. In particular if k = 1 then $G = P_2$ by the Theorem 3.4, $M_{\nu}(P_2)$ is outerplanar, a contradiction.

Case 2. Suppose $G = P_{k+3}$, in particular, if k = 1 then $G = P_4$ by the Proposition 3.3, $M_v(P_4)$ is 2-minimally non-outerplanar, a contradiction. Hence *G* is P_{k+2} .

Theorem 3.6. For any graph G, $M_v(G)$ has crossing number one if and only if G is C_3 or G is $K_{1,3}(P_{n_1}, P_{n_2}, P_{n_3})$, where $n_1, n_2, n_3 \ge 0$.

Proof. Suppose that $M_{\nu}(G)$ has crossing number one. Now, we deal with the subsequent cases.

Case 1. Suppose $G = C_4$: v_1, v_2, v_3, v_4 . Further, $V[M_\nu(G)] = \{v'_1, v'_2, v'_3, v'_4, e'_1, e'_2, e'_3, e'_4, r'_1, r'_2\}$. By the definition of middle graph, M(G) is planar. Further in $M_\nu(G)$, r'_1 , r'_2 are adjacent to v'_1 , v'_2 , v'_3 , v'_4 and gives crossing number two, a contradiction.

Case 2. Suppose $G = K_{1,4}$: v_1, v_2, v_3, v_4, v_5 and $deg(v_i) = 4$. Further, $V[M_v(G)] = \{v'_1, v'_2, v'_3, v'_4, v'_5, e'_1, e'_2, e'_3, e'_4, r'_1\}$. By the definition of middle graph, $Cr[M(K_{1,4})] = 1$. Further in $M_v(G), r'_1$ adjacent to the $v'_1, v'_2, v'_3, v'_4, v'_5$ of M(G). Which gives a crossing number three, a contradiction.

Conversely, suppose $G = K_{1,3}(P_{n_1}, P_{n_2}, P_{n_3})$: $v_1, v_2, v_3, v_4, v_{p_{n_1}}$, $v_{p_{n_2}}, v_{p_{n_3}}$ for $n_1, n_2, n_3 \ge 0$. Further, $V[M_v(G)] = \{v'_1, v'_2, v'_3, v'_4, v'_{p_{n_1}}, v'_{p_{n_2}}, v'_{p_{n_3}}, e'_1, e'_2, e'_3, e'_{v_{n_1}}, e'_{v_{n_2}}, e'_{v_{n_3}}, r'_1\}$. By the definition of middle graph, M(G) is planar, without loss of generality we consider the inner vertices in M(G) are e'_1, v'_2 . In $M_v(G)$, the edges between v'_2 and r'_1 is crossing over the edges already drawn in M(G). Hence $M_v(G)$ has crossing number one.

Theorem 3.7. For any graph G, $M_V(G)$ has crossing number two if and only if G is C_4 or $B_{2,2}$ or subdivision of any edge in $B_{2,2}$ or $C_3(P_{n_1})$, where $n_1 \ge 0$.

Proof. Suppose that $M_{\nu}(G)$ has crossing number two. We now establish the subsequent cases.

Case 1. Suppose $G=C_5$: v_1, v_2, v_3, v_4, v_5 . Further, $V[M_v(G)] = \{v'_1, v'_2, v'_3, v'_4, v'_5, e'_1, e'_2, e'_3, e'_4, e'_5, r'_1, r'_2\}$. By the definition of middle graph, M(G) is planar. Further in $M_v(G), r'_1, r'_2$ are

adjacent to v'_1 , v'_2 , v'_3 , v'_4 , v'_5 and gives crossing number four, a contradiction.

Case 2. Suppose that *G* be a $B_{2,3}$ or subdivision of any edge in $B_{2,3}$. Let r'_1 be the region vertex of $M_{\nu}(G)$ corresponds to the region r_1 of *G*. By the definition of middle graph, M(G)gives a crossing number one. Further in $M_{\nu}(G)$, r'_1 is adjacent to the vertices of M(G). Which gives crossing number more than two, a contradiction.

Case 3. Suppose $G = C_3(P_{n_1}, P_{n_2}) : v_1, v_2, v_3, v_{p_{n_1}}, v_{p_{n_2}}$ for $n_1, n_2 \ge 0$. Further, $V[M_\nu(G)] = \{v'_1, v'_2, v'_3, v'_{p_{n_1}}, v'_{p_{n_2}}, e'_1, e'_2, e'_3, e'_{\nu_{n_1}}, e'_{\nu_{n_2}}, r'_1, r'_2\}$. By the definition of middle graph, M(G) is planar, without loss of generality we consider the inner vertices in M(G) are e'_2, v'_3, e'_4, v'_5 . In $M_\nu(G)$, the edges between v'_3 and r'_1, v'_3 and r'_2, v'_5 and r'_2 are crossing over the edges already drawn in M(G). Hence, $M_\nu(G)$ has crossing number three, a contradiction.

Coversely, suppose $G = C_3(P_{n_1}) : v_1, v_2, v_3, v_{p_{n_1}}$ for $n_1 \ge 0$. Further, $V[M_v(G)] = \{v'_1, v'_2, v'_3, v'_{p_{n_1}}, e'_1, e'_2, e'_3, e'_{v_{n_1}}, r'_1, r'_2\}$. By the definition of middle graph, M(G) is planar, without loss of generality we consider the inner vertices in M(G) are e'_3, v'_4 . In $M_v(G)$, the edges between v'_4 and r'_2 is crossing over the edges already drawn in M(G). Also, the edges between v'_2 and r'_2 crossing over the edge between v'_3 and r'_1 . Hence, $M_v(G)$ has crossing number two.

Theorem 3.8. For any graph G, $M_{\nu}(G)$ is Eulerian if and only if the following conditions holds.

i) Edge degree of the edge is even.

ii) Degree of the region is even.

iii) The degree of the vertex v is even and it lies on even number of regions.

iv) The degree of the vertex v is odd and it lies on odd number of regions.

Proof. Suppose *G* is Eulerian. We have the following cases. **Case 1.** Consider the edge with edge degree odd, by Observation 3.2, the degree of the corresponding vertex in $M_{\nu}(G)$ becomes odd. By the Theorem 2.1, $M_{\nu}(G)$ is non-eulerian, a contradiction.

Case 2. Suppose the degree of the region is odd, in *G* region r_1 contains odd number of vertices. By the definition, the degree of the corresponding vertex in $M_{\nu}(G)$ becomes odd. By Theorem 2.1, $M_{\nu}(G)$ is non-eulerian, a contradiction.

Case 3. Consider the vertex lie on odd regions with even degree. By Proposition 3.1, the degree of the corresponding vertex in $M_{\nu}(G)$ becomes odd. By the Theorem 2.1, $M_{\nu}(G)$ is non-eulerian, a contradiction.

Case 4. Consider the vertex lies on even regions with odd degree. By Proposition 3.1, the degree of the corresponding vertex in $M_{\nu}(G)$ becomes odd. By the Theorem 2.1, the $M_{\nu}(G)$ is non-eulerian, a contradiction.

Conversely, suppose above conditions holds.

Case 1. Consider the edge with even degree. By Observation

3.2, the degree of the corresponding vertex in $M_{\nu}(G)$ becomes even.

Case 2. Suppose the degree of the region is even. In *G* region r_1 contains even number of vertices. By definition, the degree of the corresponding vertex in $M_{\nu}(G)$ becomes even.

Case 3. Consider the vertex lie on even regions with even degree. By Proposition 3.1, the degree of the corresponding vertex in $M_{\nu}(G)$ becomes even.

Case 4. Consider the vertex lies on odd regions with odd degree. By the Proposition 3.1, the degree of the corresponding vertex in $M_{\nu}(G)$ becomes even.

From all the above cases, degree of every verex in $M_{\nu}(G)$ is even. Hence by Theorem 2.1, $M_{\nu}(G)$ is eulerian.

4. Conclusions

In this paper, we discuss the concept of vertex semi-middle graph of a graph. Further, we discuss the planarity, Eulerian, crossing number one and two of $M_{\nu}(G)$.

Acknowledgments

The authors are highly thankful to the anonymous referees for their kind comments and fruitful suggestions.

References

- Harary F. Annals of New york, Academy of sciences.175, 198(1977).
- [2] Sedlacek J. Some Properties of Interchange Graphs. The Graphs and the Applications. Academic press, New york, (1962).
- ^[3] T.Hamada and I.Yoshimura. Traversability and connectivity of the middle graph of a graph. *Discrete Mathematics*, 14(1976), 247–255.
- [4] V.R.Kulli and H.P.Patil. Graph equations for line graphs, middle graphs amd entire graphs. *J.Karnatak University Sci.*, 23(1978), 25–28.
- ^[5] V.R.Kulli and H.P.Patil. Middle graphs and crossing numbers. *Discussion Mathematics*, 7(1985), 97-106.
- [6] Venkanagouda M. Goudar. On pathos vertex semientire graph of a tree. *International Journal of Applied Mathematical Research*, 1(4)(2012), 666-670.
- [7] Venkanagouda M. Goudar and Rajanna N E. Vertex semientire block graph. *Global Journal of Science Frontier Research (F)*, Vol XIV, Issue I, Version I(2014).

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

