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Vertex semi-middle graph of a graph
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Abstract
In this communication, the vertex semi-middle graph of a graph Mv(G) is introduced. We obtain a characterization
of graphs whose Mv(G) is planar, outerplanar and minimally non-outerplanar. Further, we obtain Mv(G) is
Eulerian, crossing number one and crossing number two.
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1. Introduction
By graph, we mean a finite, undirected graph without

loops or multiple edges and planar. We refer the terminology
of [1]. The middle graph M(G) of a graph G is the graph
whose vertex set is V (G)UE(G) and in which two vertices are
adjacent if and only if either they are adjacent edges of G or
one is a vertex of G and the other is an edge incident with it.
This concept was introduced in [3] and was studied by Kulli
and Patil [4, 5]. The edgedegree [6] of an edge e = {u,v} is
d(u)+d(v). Degree of a region is the number of vertices lies
on a region. Let v1,v2,v3 be the pendant vertices of K1,3. The
graph K1,3(Pn) is obtained from K1,3 by attaching one time to
any one pendant vertex of K1,3 as shown in Fig.1.
In the paper [7], defined the concept of vertex semientire block
graph. We motivated this concept to define the vertex semi-
middle graph of a graph. Let G(V,E) be a planar graph with R
regions. The vertex semi-middle graph of a graph G, denoted

by Mv(G) is a graph whose vertex set is V (G)UE(G)UR(G)
and two vertices of Mv(G) are adjacent if and only if they cor-
responds to two adjacent edges of G or one corresponds to a
vertex and other to an edge incident with it or one corresponds
to a vertex other to a region in which vertex lies on the region.

Fig. 1.
.

Fig. 2.
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2. Preliminaries.
The following results will be useful in our results.

Theorem 2.1. [1] A finite graph G is Eulerian if and only if
all its vertex degree are even.

Theorem 2.2. [3] For any (p,q) graph G, middle graph of

a graph M(G) has (p+ q) vertices and q+∑
q
i=1

1
2
{d(ei)}

edges. Where d(ei) is the edgedegree of a edge ei.

Theorem 2.3. [1] A graph is planar if and only if it has no
subgraph homeomorphic to K5 or K3,3.

3. Vertex semi-middle graph of a graph
We begin with some observations.

Observation 3.1. Every pendant vertex of G is also a pendant
vertex of M(G).

Observation 3.2. Let ei ∈ E(G) with edgedegree n then in
Mv(G), deg(e

′
i) = n.

Theorem 3.1. For any graph G, Mv(G) is always non-separable.

Proof. We establish the following cases.
Case 1. Consider G be any tree. Let v

′
1,v

′
2,v

′
3....v

′
n be the

vertices of Mv(G) corresponds to the vertices v1,v2,v3....vn of
G and e

′
1,e

′
2,e

′
3....e

′
n−1 be the vertices of Mv(G) corresponds

to the edges e1,e2,e3....en−1 of G. By the Observation 3.1,
M(G) contains the pendant vertices. Further, in Mv(G) region
vertex r

′
1 adjacent to the vertices v

′
1,v

′
2,v

′
3....v

′
n without cut

vertex. Clearly Mv(G) is non-separable.
Case 2. Consider G be any cycle. Let v

′
1,v

′
2,v

′
3....v

′
n be the

vertices of Mv(G) corresponds to the vertices v1,v2,v3....vn

of G and e
′
1,e

′
2,e

′
3....e

′
n be the vertices of Mv(G) corresponds

to the edges e1,e2,e3....en of G. In Mv(G) region vertices
r
′
1,r

′
2 adjacent to the vertices v

′
1,v

′
2,v

′
3....v

′
n without cut vertex.

Clearly Mv(G) is non-separable.

Proposition 3.1. Let vi ∈V [G] and deg(vi)= n then in Mv(G),
deg(v

′
i) = n+ rv. where rv is the number of regions in which

vertex v lies.

Theorem 3.2. For any graph G, p vertices, q edges and l re-

gions then Mv(G) has (p+q+r) vertices and q+∑
q
i=1

1
2
{d(ei)}

+∑
r
j=1 d(r j) edges. Where d(ei) is the edgedegree of a edge

ei and d(r j) is the degree of a region r j.

Proof. By the definition of Mv(G), the V [Mv(G)]=V (G)UE(G)
UR(G). Hence V [Mv(G)] = (p+q+ r).

Further, by Theorem 2.2, E[M(G)] = q+∑
q
i=1

1
2
{d(ei)}. The

degree of a region is the sum of the number of vertices lies on
the each region in G which is ∑d(r j). The number of edges
in Mv(G) is equal to the sum of edges in M(G) and ∑d(r j).

Hence E[Mv(G)] = q+∑
q
i=1

1
2
{d(ei)}+∑

r
j=1 d(r j).

Theorem 3.3. For any graph G, Mv(G) is planar if and only
if G is a path.

Proof. Consider Mv(G) is planar. We have the following
cases.
Case 1. Suppose G is star K1,3, G = K1,3 : v1,v2,v3,v4 and
deg(v1) = 3. Further V [Mv(G)]={v′1,v

′
2,v

′
3,v

′
4,e

′
1,e

′
2,e

′
3,r

′
1}.

By the definition of middle graph M(K1,3) is planar. Fur-
ther in Mv(G), the region vertex r

′
1 is adjacent to the vertices

v
′
1,v

′
2,v

′
3,v

′
4 of M(G). Mv(K1,3) is homeomorphic to K5, by

Theorem 2.3 which is non-planar, a contradiction.
Case 2. Consider G is a cycle, G = Cn : v1,v2,v3....vn,n >
2. Further, V [Mv(G)] = {v′1,v

′
2,v

′
3....v

′
n,e

′
1,e

′
2,e

′
3....e

′
n,r

′
1,r

′
2}.

By definition of middle graph, M(Cn) is planar. Further in
Mv(G), region vertices r

′
1,r

′
2 adjacent to the vertices

v
′
1,v

′
2,v

′
3....v

′
n. Clearly, Mv(G) is a non-planar. Which is a

contradiction.
Conversely, suppose G is a path, G = Pn : v1,v2,v3....vn,n > 1.
Further, V [Mv(G)] = {v′1,v

′
2,v

′
3....v

′
n,e

′
1,e

′
2,e

′
3....e

′
n−1,r

′
1}. By

the definition of middle graph, M(G) is planar. For the Mv(G)

of a path Pn, {v′1e
′
1r
′
1v
′
2,v

′
2e
′
2r
′
1v
′
3,v

′
3e
′
3r
′
1v
′
4....v

′
ne
′
nr
′
1v
′
n+1} ∈

V [Mv(G)], in which each set {v′ne
′
nr
′
1v
′
n+1} forms a planar

graph. Hence Mv(G) is planar.

Proposition 3.2. The Mv(G) of a G is 1-minimally non-
outerplanar if and only if G = P3.

Proposition 3.3. The Mv(G) of a G is 2-minimally non-
outerplanar if and only if G = P4.

Theorem 3.4. For any graph G, Mv(G) is outerplanar if and
only if G is P2.

Proof. Consider G = P2, then Mv(G) =C4. Since C4 is outer-
planar, hence Mv(G) is outerplanar.
Conversely, suppose Mv(G) is outerplanar and G is connected.
We now prove that G = P2. On the contrary, assume G =
P3. Then G has two edges e1 and e2. By Proposition 3.2
Mv(G) =1-minimally non-outerplanar and hence Mv(G) is
not outerplanar, a contradiction.

Theorem 3.5. The Mv(G) of a conneccted graph G is k-
minimally non-outerplanar k ≥ 1 if and only if G is Pk+2.

Proof. Suppose G is Pk+2, k ≥ 1 to establish the result, we
apply mathematical induction on k. Consider k = 1 then by
Proposition 3.2, is 1-minimally non-outerplanar.
Consider the result is valid for k = m, therefore if G is Pm+2
then Mv(G) is m-minimally non-outerplanar.
Suppose k = m+1 then G is Pm+3. We now prove that Mv(G)
is (m+1) minimally non-outerplanar.
Let G = Pm+3, and v1 be an end vertex of G. Let G1 = G−
v1 = Pm+2. By inductive hypothesis, Mv(G1) is m-minimally
non-outerplanar.
Let ei = (vi,v j) be an endedge and ri be the region of G1.
Then ei is an endedge incident with the cutvertex vi. The
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vertices e
′
i, r

′
i and v

′
j in Mv(G1) are on the boundary of the

exterior region on some cycle C. Now join the vertex v1 to the
vertex v j of G1 such that the resulting graph is G.
Let e j = (v j,v1) be an endedge and ri be the region of G. The
formation of Mv(G) is an extension of Mv(G1) with additional
vertices e j and v1 such that e

′
j adjacent with e

′
i, v

′
j and v

′
1.

Similarly r
′
i is adjacent with v

′
i, v

′
j and v

′
1. Clearly v

′
j is an

inner vertex of Mv(G), but it is not an inner vertex of Mv(G1).
Thus Mv(G) is (m+1) - minimally non-outerplanar.
Conversely, assume Mv(G) is k-minimally non - outerplanar,
then by Theorem 3.3, Mv(G) is planar. Thus G is a path.
Suppose G is a path. We obtain the following cases.
Case 1. Suppose G = Pk+1, k ≥ 1. In particular if k = 1
then G = P2 by the Theorem 3.4, Mv(P2) is outerplanar, a
contradiction.
Case 2. Suppose G = Pk+3, in particular, if k = 1 then G = P4
by the Proposition 3.3, Mv(P4) is 2-minimally non-outerplanar,
a contradiction. Hence G is Pk+2.

.

Theorem 3.6. For any graph G, Mv(G) has crossing number
one if and only if G is C3 or G is K1,3(Pn1 ,Pn2 ,Pn3), where
n1,n2,n3 ≥ 0.

Proof. Suppose that Mv(G) has crossing number one. Now,
we deal with the subsequent cases.
Case 1. Suppose G = C4: v1,v2,v3,v4. Further, V [Mv(G)]

= {v′1, v
′
2, v

′
3, v

′
4, e

′
1, e

′
2, e

′
3, e

′
4, r

′
1, r

′
2}. By the definition of

middle graph, M(G) is planar. Further in Mv(G), r
′
1, r

′
2 are

adjacent to v
′
1, v

′
2, v

′
3, v

′
4 and gives crossing number two, a

contradiction.
Case 2. Suppose G = K1,4: v1,v2,v3,v4,v5 and deg(vi) = 4.
Further, V [Mv(G)] ={v′1, v

′
2, v

′
3, v

′
4, v

′
5, e

′
1,e

′
2,e

′
3,e

′
4,r

′
1}. By

the definition of middle graph, Cr[M(K1,4)] = 1. Further in
Mv(G), r

′
1 adjacent to the v

′
1, v

′
2, v

′
3, v

′
4, v

′
5 of M(G). Which

gives a crossing number three, a contradiction.
Conversely, suppose G = K1,3(Pn1 ,Pn2 ,Pn3): v1,v2,v3,v4,vpn1

,

vpn2
,vpn3

for n1,n2,n3 ≥ 0. Further, V [Mv(G)]={v′1,v
′
2,v

′
3,v

′
4,

v
′
pn1

,v
′
pn2

,v
′
pn3

,e
′
1,e

′
2,e

′
3,e

′
vn1

,e
′
vn2

,e
′
vn3

,r
′
1}. By the defini-

tion of middle graph, M(G) is planar, without loss of gener-
ality we consider the inner vertices in M(G) are e

′
1, v

′
2. In

Mv(G), the edges between v
′
2 and r

′
1 is crossing over the edges

already drawn in M(G). Hence Mv(G) has crossing number
one.

Theorem 3.7. For any graph G, MV (G) has crossing number
two if and only if G is C4 or B2,2 or subdivision of any edge in
B2,2 or C3(Pn1), where n1 ≥ 0.

Proof. Suppose that Mv(G) has crossing number two. We
now establish the subsequent cases.
Case 1. Suppose G=C5: v1,v2,v3,v4,v5. Further, V [Mv(G)]=
{v′1, v

′
2, v

′
3, v

′
4, v

′
5, e

′
1,e

′
2,e

′
3,e

′
4,e

′
5, r

′
1, r

′
2}. By the definition

of middle graph, M(G) is planar. Further in Mv(G), r
′
1, r

′
2 are

adjacent to v
′
1, v

′
2, v

′
3, v

′
4, v

′
5 and gives crossing number four, a

contradiction.
Case 2. Suppose that G be a B2,3 or subdivision of any edge
in B2,3. Let r

′
1 be the region vertex of Mv(G) corresponds to

the region r1 of G. By the definition of middle graph, M(G)

gives a crossing number one. Further in Mv(G), r
′
1 is adjacent

to the vertices of M(G). Which gives crossing number more
than two, a contradiction.
Case 3. Suppose G = C3(Pn1 ,Pn2) : v1,v2,v3,vpn1

,vpn2
for

n1,n2≥ 0. Further, V [Mv(G)]= {v′1,v
′
2,v

′
3,v

′
pn1

,v
′
pn2

,e
′
1,e

′
2,e

′
3,

e
′
vn1

,e
′
vn2

,r
′
1,r

′
2}. By the definition of middle graph, M(G) is

planar, without loss of generality we consider the inner ver-
tices in M(G) are e

′
2, v

′
3, e

′
4, v

′
5. In Mv(G), the edges between

v
′
3 and r

′
1, v

′
3 and r

′
2, v

′
5 and r

′
2 are crossing over the edges

already drawn in M(G). Hence, Mv(G) has crossing number
three, a contradiction.
Coversely, suppose G =C3(Pn1) : v1,v2,v3,vpn1

for n1 ≥ 0.

Further, V [Mv(G)]= {v′1,v
′
2,v

′
3,v

′
pn1

,e
′
1,e

′
2,e

′
3,e

′
vn1

,r
′
1,r

′
2}. By

the definition of middle graph, M(G) is planar, without loss
of generality we consider the inner vertices in M(G) are e

′
3,v

′
4.

In Mv(G), the edges between v
′
4 and r

′
2 is crossing over the

edges already drawn in M(G). Also, the edges between v
′
2 and

r
′
2 crossing over the edge between v

′
3 and r

′
1. Hence, Mv(G)

has crossing number two.

Theorem 3.8. For any graph G, Mv(G) is Eulerian if and
only if the following conditions holds.
i) Edge degree of the edge is even.
ii) Degree of the region is even.
iii) The degree of the vertex v is even and it lies on even num-
ber of regions.
iv) The degree of the vertex v is odd and it lies on odd number
of regions.

Proof. Suppose G is Eulerian. We have the following cases.
Case 1. Consider the edge with edge degree odd, by Obser-
vation 3.2, the degree of the corresponding vertex in Mv(G)
becomes odd. By the Theorem 2.1, Mv(G) is non-eulerian, a
contradiction.
Case 2. Suppose the degree of the region is odd, in G region
r1 contains odd number of vertices. By the definition, the
degree of the corresponding vertex in Mv(G) becomes odd.
By Theorem 2.1, Mv(G) is non-eulerian, a contradiction.
Case 3. Consider the vertex lie on odd regions with even
degree. By Proposition 3.1, the degree of the corresponding
vertex in Mv(G) becomes odd. By the Theorem 2.1, Mv(G) is
non-eulerian, a contradiction.
Case 4. Consider the vertex lies on even regions with odd
degree. By Proposition 3.1, the degree of the correspond-
ing vertex in Mv(G) becomes odd. By the Theorem 2.1, the
Mv(G) is non-eulerian, a contradiction.
Conversely, suppose above conditions holds.
Case 1. Consider the edge with even degree. By Observation
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3.2, the degree of the corresponding vertex in Mv(G) becomes
even.
Case 2. Suppose the degree of the region is even. In G region
r1 contains even number of vertices. By definition, the degree
of the corresponding vertex in Mv(G) becomes even.
Case 3. Consider the vertex lie on even regions with even
degree. By Proposition 3.1, the degree of the corresponding
vertex in Mv(G) becomes even.
Case 4. Consider the vertex lies on odd regions with odd de-
gree. By the Proposition 3.1, the degree of the corresponding
vertex in Mv(G) becomes even.
From all the above cases, degree of every verex in Mv(G) is
even. Hence by Theorem 2.1, Mv(G) is eulerian.

4. Conclusions
In this paper, we discuss the concept of vertex semi-middle

graph of a graph. Further, we discuss the planarity, Eulerian,
crossing number one and two of Mv(G).
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