

https://doi.org/10.26637/MJM0704/0025

Vertex semi-middle graph of a graph

Rajendra Prasad K C^{1^*} , Niranjan K M² and Venkanagouda M Goudar³

Abstract

In this communication, the vertex semi-middle graph of a graph $M_v(G)$ is introduced. We obtain a characterization of graphs whose *Mv*(*G*) is planar, outerplanar and minimally non-outerplanar. Further, we obtain *Mv*(*G*) is Eulerian, crossing number one and crossing number two.

Keywords

Crossing number, Middle graph, Planar, Semientire graph.

AMS Subject Classification

05C10, 05C45, 05C75.

¹*Research Scholar, UBDT College of Engineering, Visvesvaraya Technological University, Belagavi, Department of Mathematics, Jain Institute of Technology, Davanagere-577003, India.*

²*Department of Mathematics, UBDT College of Engineering, Davanagere - 577004, India.*

³*Department of Mathematics, Sri Siddhartha Institute of Technology, Tumkur-572105, India.*

***Corresponding author**: 1 rajendraprasadkp@gmail.com; ²niranjankm64@gmail.com; ³vmgouda@gmail.com.

Article History: Received **25** August **2019**; Accepted **06** November **2019** c 2019 MJM.

Contents

1. Introduction

By graph, we mean a finite, undirected graph without loops or multiple edges and planar. We refer the terminology of [\[1\]](#page-3-1). The middle graph $M(G)$ of a graph *G* is the graph whose vertex set is $V(G)UE(G)$ and in which two vertices are adjacent if and only if either they are adjacent edges of *G* or one is a vertex of *G* and the other is an edge incident with it. This concept was introduced in [\[3\]](#page-3-2) and was studied by Kulli and Patil [\[4,](#page-3-3) [5\]](#page-3-4). The *edgedegree* [\[6\]](#page-3-5) of an edge $e = \{u, v\}$ is $d(u) + d(v)$. Degree of a region is the number of vertices lies on a region. Let v_1 , v_2 , v_3 be the pendant vertices of $K_{1,3}$. The graph $K_{1,3}(P_n)$ is obtained from $K_{1,3}$ by attaching one time to any one pendant vertex of $K_{1,3}$ as shown in Fig.1.

In the paper [\[7\]](#page-3-6), defined the concept of vertex semientire block graph. We motivated this concept to define the vertex semimiddle graph of a graph. Let *G*(*V*,*E*) be a planar graph with *R* regions. The vertex semi-middle graph of a graph *G*, denoted

by $M_v(G)$ is a graph whose vertex set is $V(G)UE(G)UR(G)$ and two vertices of $M_{\nu}(G)$ are adjacent if and only if they corresponds to two adjacent edges of *G* or one corresponds to a vertex and other to an edge incident with it or one corresponds to a vertex other to a region in which vertex lies on the region.

.

Fig. 1.

2. Preliminaries.

The following results will be useful in our results.

Theorem 2.1. *[\[1\]](#page-3-1) A finite graph G is Eulerian if and only if all its vertex degree are even.*

Theorem 2.2. *[\[3\]](#page-3-2) For any* (*p*,*q*) *graph G, middle graph of a* graph $M(G)$ has $(p+q)$ vertices and $q + \sum_{i=1}^{q}$ *i*=1 1 $\frac{1}{2} \{d(e_i)\}$ *edges. Where* $d(e_i)$ *is the edgedegree of a edge* e_i *.*

Theorem 2.3. *[\[1\]](#page-3-1) A graph is planar if and only if it has no subgraph homeomorphic to* K_5 *or* $K_{3,3}$ *.*

3. Vertex semi-middle graph of a graph

We begin with some observations.

Observation 3.1. Every pendant vertex of *G* is also a pendant vertex of $M(G)$.

Observation 3.2. Let $e_i \in E(G)$ with edgedegree *n* then in $M_v(G)$, $deg(e_i^j)$ $'_{i}) = n.$

Theorem 3.1. *For any graph G*, $M_v(G)$ *is always non-separable.*

Proof. We establish the following cases.

Case 1. Consider G be any tree. Let v_1 $\frac{1}{1}, \frac{1}{2}$ v'_{2}, v'_{3} $\frac{1}{3}$*v*^{*n*} be the vertices of $M_v(G)$ corresponds to the vertices $v_1, v_2, v_3...$, v_n of G and e^{i} $\frac{1}{1}, e_2'$ $e_2^{\prime}, e_3^{\prime}$ *i**e*['] \int_{n-1}^{1} be the vertices of $M_v(G)$ corresponds to the edges $e_1, e_2, e_3, \ldots, e_{n-1}$ of *G*. By the Observation 3.1, $M(G)$ contains the pendant vertices. Further, in $M_v(G)$ region vertex r' v_1' adjacent to the vertices v_1' v'_{1}, v'_{2} v'_{2}, v'_{3} $\int_3' ... v'_n$ without cut vertex. Clearly $M_{\nu}(G)$ is non-separable.

Case 2. Consider *G* be any cycle. Let v' $\frac{1}{1}, \frac{1}{2}$ v'_{2}, v'_{3} $\int_3 \ldots \nu_n'$ be the vertices of $M_v(G)$ corresponds to the vertices $v_1, v_2, v_3...v_n$ of *G* and e_1' $\frac{1}{1}, e_2'$ $e_2^{\prime}, e_2^{\prime}$ \sum_{3}^{7}*e*[']_n</sub> be the vertices of $M_{\nu}(G)$ corresponds to the edges $e_1, e_2, e_3,...e_n$ of *G*. In $M_v(G)$ region vertices *r*['] r'_{1}, r'_{2} v_2' adjacent to the vertices v_1' $\frac{1}{1}, \frac{1}{2}$ v'_{2}, v'_{3} \overrightarrow{v}_n without cut vertex. Clearly $M_{\nu}(G)$ is non-separable. \Box

Proposition 3.1. Let $v_i \in V[G]$ and $deg(v_i) = n$ then in $M_v(G)$, $\deg(v_i)$ T_i) = $n + r_v$, where r_v is the number of regions in which vertex *v* lies.

Theorem 3.2. *For any graph G, p vertices, q edges and l re*gions then $M_\nu(G)$ has $(p+q+r)$ vertices and $q+\sum_{i=1}^q p_i$ *i*=1 1 $\frac{1}{2}$ {*d*(*e*_{*i*})} $+\sum_{j=1}^{r} d(r_j)$ edges. Where $d(e_i)$ is the edgedegree of a edge e_i *and* $d(r_j)$ *is the degree of a region r_{<i>j*}.

Proof. By the definition of $M_v(G)$, the $V[M_v(G)] = V(G)UE(G)$ *UR*(*G*). Hence $V[M_v(G)] = (p+q+r)$.

1 Further, by [Theorem 2.2,](#page-1-1) $E[M(G)] = q + \sum_{i=1}^{q} q_i$ $\frac{1}{2}$ { $d(e_i)$ }. The *i*=1 degree of a region is the sum of the number of vertices lies on the each region in *G* which is $\sum d(r_i)$. The number of edges in $M_v(G)$ is equal to the sum of edges in $M(G)$ and $\sum d(r_i)$. 1 Hence $E[M_v(G)] = q + \sum_{i=1}^{q}$ $\frac{1}{2}$ { $d(e_i)$ } + $\sum_{j=1}^r d(r_j)$. \Box *i*=1

Theorem 3.3. For any graph $G, M_v(G)$ is planar if and only *if G is a path.*

Proof. Consider $M_\nu(G)$ is planar. We have the following cases.

Case 1. Suppose *G* is star $K_{1,3}$, $G = K_{1,3} : v_1, v_2, v_3, v_4$ and $deg(v_1) = 3$. Further $V[M_v(G)] = \{v_1\}$ $\frac{1}{1}, \frac{1}{2}$ v'_{2}, v'_{3} v'_{3}, v'_{4} $\frac{1}{4}, e^{'}$ $\frac{1}{1}, e_2^{\prime}$ e'_{2}, e'_{3} r_3', r_1' $\Big\{ \Big\}.$ By the definition of middle graph $M(K_{1,3})$ is planar. Further in $M_v(G)$, the region vertex r_1' i_1 is adjacent to the vertices v' $\frac{1}{1}, \frac{1}{2}$ v'_{2}, v'_{3} v_3', v_4' \mathcal{M}_{4} of $M(G)$. $M_{\nu}(K_{1,3})$ is homeomorphic to K_{5} , by [Theorem 2.3](#page-1-2) which is non-planar, a contradiction.

Case 2. Consider *G* is a cycle, $G = C_n : v_1, v_2, v_3...$, $n >$ 2. Further, $V[M_v(G)] = \{v\}$ $\frac{1}{1}, \frac{1}{2}$ v'_{2}, v'_{3} v'_1, \ldots, v'_n, e'_1 $\frac{7}{1}, e_2^{\frac{7}{2}}$ $e_2^{\prime}, e_3^{\prime}$ e'_{n}, r'_{n} r'_{1}, r'_{2} $_{2}^{\prime}\}.$ By definition of middle graph, *M*(*Cn*) is planar. Further in $M_v(G)$, region vertices *r*^{$'$} r_1, r_2' $\frac{1}{2}$ adjacent to the vertices

v['] $\frac{1}{1}, \frac{1}{2}$ v'_{2}, v'_{3} \sum'_{3}*v*_n. Clearly, $M_{\nu}(G)$ is a non-planar. Which is a contradiction.

Conversely, suppose *G* is a path, $G = P_n : v_1, v_2, v_3...$, $v_n > 1$. Further, $V[M_v(G)] = \{v\}$ $\frac{1}{1}, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ $\frac{1}{3}$...*v*^{*n*}, *e*^{^{*i*}} i_1, e_2' $e_2^{\prime}, e_3^{\prime}$, -^{, -},
3....*e*, $\binom{n}{n-1}$, $\binom{n}{1}$ $\left\{ \cdot \right\}$. By the definition of middle graph, $M(G)$ is planar. For the $M_v(G)$ of a path P_n , $\{v_1\}$ $\frac{1}{2}e_1'$ r_1' $\frac{1}{2}v'_{2}$ $\sum_{i=1}^r v'_i$ $\bar{\ell}_2^{\prime}e_2^{\prime}$ r'_{2} ^r₁ $\frac{1}{2}v_1'$ $\frac{1}{3}$, $\frac{1}{2}$ $\frac{1}{3}e_1'$ $\frac{1}{3}r_{1}^{'}$ $\frac{1}{2}v'_{4}$ v'_1 $v'_n e'_n r'_n$ $\frac{1}{2}v'_i$ $_{n+1}^{'}$ } \in $V[M_v(G)]$, in which each set $\{v'_n e'_n r'_n\}$ $\frac{1}{1}v'$ $\binom{n}{n+1}$ forms a planar graph. Hence $M_{\nu}(G)$ is planar.

Proposition 3.2. The $M_v(G)$ of a *G* is 1-minimally nonouterplanar if and only if $G = P_3$.

Proposition 3.3. The $M_v(G)$ of a *G* is 2-minimally nonouterplanar if and only if $G = P_4$.

Theorem 3.4. *For any graph G*, *Mv*(*G*) *is outerplanar if and only if* G *is P*₂*.*

Proof. Consider $G = P_2$, then $M_v(G) = C_4$. Since C_4 is outerplanar, hence $M_{\nu}(G)$ is outerplanar.

Conversely, suppose $M_\nu(G)$ is outerplanar and *G* is connected. We now prove that $G = P_2$. On the contrary, assume $G =$ *P*3. Then G has two edges *e*¹ and *e*2. By [Proposition 3.2](#page-1-3) $M_v(G) = 1$ -minimally non-outerplanar and hence $M_v(G)$ is not outerplanar, a contradiction.

 \Box

Theorem 3.5. *The* $M_v(G)$ *of a conneccted graph G is kminimally non-outerplanar* $k \geq 1$ *if and only if G is P*_{$k+2$}.

Proof. Suppose *G* is P_{k+2} , $k \geq 1$ to establish the result, we apply mathematical induction on k. Consider $k = 1$ then by [Proposition 3.2,](#page-1-3) is 1-minimally non-outerplanar.

Consider the result is valid for $k = m$, therefore if *G* is P_{m+2} then $M_{\nu}(G)$ is m-minimally non-outerplanar.

Suppose $k = m + 1$ then *G* is P_{m+3} . We now prove that $M_v(G)$ is $(m+1)$ minimally non-outerplanar.

Let $G = P_{m+3}$, and v_1 be an end vertex of *G*. Let $G_1 = G$ $v_1 = P_{m+2}$. By inductive hypothesis, $M_v(G_1)$ is m-minimally non-outerplanar.

Let $e_i = (v_i, v_j)$ be an endedge and r_i be the region of G_1 . Then e_i is an endedge incident with the cutvertex v_i . The

vertices e'_{i} $\frac{1}{i}$, r_i' ν ^{*i*} and ν ['] *j* in $M_v(G_1)$ are on the boundary of the exterior region on some cycle C. Now join the vertex v_1 to the vertex v_j of G_1 such that the resulting graph is G .

Let $e_j = (v_j, v_1)$ be an endedge and r_i be the region of *G*. The formation of $M_\nu(G)$ is an extension of $M_\nu(G_1)$ with additional vertices e_j and v_1 such that *e j* adjacent with e' $\frac{1}{i}$, $\frac{1}{v}$ \int and v'_1 $\frac{1}{1}$. Similarly r_i' $\frac{1}{i}$ is adjacent with v_i $\frac{'}{i}$, v' \int and v'_1 v_1' . Clearly v_2' *j* is an inner vertex of $M_v(G)$, but it is not an inner vertex of $\mathring{M}_v(G_1)$. Thus $M_v(G)$ is $(m+1)$ - minimally non-outerplanar.

Conversely, assume $M_{\nu}(G)$ is k-minimally non - outerplanar, then by [Theorem 3.3,](#page-1-4) $M_v(G)$ is planar. Thus *G* is a path. Suppose *G* is a path. We obtain the following cases.

Case 1. Suppose $G = P_{k+1}$, $k \ge 1$. In particular if $k = 1$ then $G = P_2$ by the [Theorem 3.4,](#page-1-5) $M_\nu(P_2)$ is outerplanar, a contradiction.

Case 2. Suppose $G = P_{k+3}$, in particular, if $k = 1$ then $G = P_4$ by the [Proposition 3.3,](#page-1-6) $M_v(P_4)$ is 2-minimally non-outerplanar, a contradiction. Hence *G* is P_{k+2} . \Box

.

Theorem 3.6. *For any graph G*, $M_v(G)$ *has crossing number one if and only if G is C*₃ *or G is* $K_{1,3}(P_{n_1}, P_{n_2}, P_{n_3})$ *, where* $n_1, n_2, n_3 \geq 0$.

Proof. Suppose that $M_v(G)$ has crossing number one. Now, we deal with the subsequent cases.

Case 1. Suppose $G = C_4$: v_1, v_2, v_3, v_4 . Further, $V[M_v(G)]$ $= \{v_1, v_2, \ldots, v_n\}$ y'_{1}, y'_{2} v'_{2}, v'_{3} $\frac{1}{3}$, v'_{4} $\frac{1}{4}$, e_1' $\frac{1}{1}, e_2^{\prime}$ e_2', e_2' $\frac{1}{3}$, e_4' $'_{4}, r'_{1}$ r'_{1}, r'_{2} $\binom{1}{2}$. By the definition of middle graph, $M(G)$ is planar. Further in $M_v(G)$, r' r'_{1}, r'_{2} $\frac{1}{2}$ are adjacent to v_1' v'_{1}, v'_{2} v'_2, v'_3 v'_{3}, v'_{4} $\frac{1}{4}$ and gives crossing number two, a contradiction.

Case 2. Suppose $G = K_{1,4}: v_1, v_2, v_3, v_4, v_5$ and $deg(v_i) = 4$. Further, $V[M_v(G)] = \{v_1'$ v'_{1}, v'_{2} v_2', v_3' $'_{3}, v'_{4}$ $\frac{1}{4}$, v' ₂ $'_{5}, e'_{1}$ $\frac{1}{1}, e_2'$ $e_2^{\prime}, e_3^{\prime}$ $, e'_{4}$ $'_{4}, r^{'}_{1}$ $\left\{ \right\}$. By the definition of middle graph, $Cr[M(K_{1,4})] = 1$. Further in $M_{\nu}(G),\, r_{1}^{'}$ v'_1 adjacent to the v'_1 y'_1, y'_2 v'_{2} , v'_{3} $\frac{1}{3}$, v_2' [']₄, *v*['] $'_{5}$ of $M(G)$. Which gives a crossing number three, a contradiction.

Conversely, suppose $G = K_{1,3}(P_{n_1}, P_{n_2}, P_{n_3})$: $v_1, v_2, v_3, v_4, v_{p_{n_1}}$ $v_{p_{n_2}}$, $v_{p_{n_3}}$ for n_1 , n_2 , $n_3 \ge 0$. Further, $V[M_v(G)] = \{v_1$ v'_{1}, v'_{2} v'_{2}, v'_{3} v_3', v_4' ,
4, $\int_{\nu}^{\prime} p_{n_1}^{\prime}, \int_{\nu}^{\prime} p_{n_2}^{\prime}, \int_{\nu}^{\prime} p_{n_3}^{\prime}, e_1^{\prime}$ $\frac{1}{1}, e_2^{\prime}$ e'_{2}, e'_{3} $\int_{3}^{'}$, $e^{'}$ $_{v_{n_1}}$, $e^{'}$ $_{v_{n_2}}$, $e^{'}$ $_{v_{n_3}}$, $r^{'}$ $\binom{1}{1}$. By the definition of middle graph, *M*(*G*) is planar, without loss of generality we consider the inner vertices in $M(G)$ are e' $\frac{1}{1}$, $\frac{1}{2}$ \int_2 . In $M_v(G)$, the edges between v_2' $\frac{1}{2}$ and r_1' i_1 is crossing over the edges already drawn in $M(G)$. Hence $M_v(G)$ has crossing number one. \Box

Theorem 3.7. *For any graph G*, $M_V(G)$ *has crossing number two if and only if G is C*⁴ *or B*2,² *or subdivision of any edge in* $B_{2,2}$ *or* $C_3(P_{n_1})$ *, where* $n_1 \geq 0$ *.*

Proof. Suppose that $M_v(G)$ has crossing number two. We now establish the subsequent cases.

Case 1. Suppose *G*=*C*₅: v_1 , v_2 , v_3 , v_4 , v_5 . Further, $V[M_v(G)]$ = $\{v_1\}$ y'_{1}, y'_{2} v'_{2}, v'_{3} $\frac{1}{3}$, $\frac{1}{v_4}$ [']₄, *v*['] $\frac{1}{5}$, e_1' n_1', e_2' e'_{2}, e'_{3} $\frac{1}{3}, e_4$ $\frac{1}{4}, e_1'$ $\frac{r}{5}$, $\frac{r}{1}$ r'_{1}, r'_{2} $\binom{1}{2}$. By the definition of middle graph, $M(G)$ is planar. Further in $M_v(G)$, r_1' r'_{1}, r'_{2} $\frac{1}{2}$ are

adjacent to v' $\frac{1}{1}, \frac{1}{2}$ v'_{2}, v'_{3} $'_{3}, v'_{4}$ $\frac{7}{4}$, v' ₂ $\frac{1}{5}$ and gives crossing number four, a contradiction.

Case 2. Suppose that *G* be a *B*2,³ or subdivision of any edge in $B_{2,3}$. Let r'_1 \mathcal{H}_1 be the region vertex of $M_\nu(G)$ corresponds to the region r_1 of *G*. By the definition of middle graph, $M(G)$ gives a crossing number one. Further in $M_v(G)$, r' i_1 is adjacent to the vertices of $M(G)$. Which gives crossing number more than two, a contradiction.

Case 3. Suppose $G = C_3(P_{n_1}, P_{n_2}) : v_1, v_2, v_3, v_{p_{n_1}}, v_{p_{n_2}}$ for *n*₁, *n*₂ \geq 0. Further, $V[M_v(G)] = \{v_1$ $\frac{1}{1}, \frac{1}{2}$ v'_{2}, v'_{3} $\frac{1}{3}, \frac{1}{v_{p_{n_1}}}$, $\frac{1}{v_{p_{n_2}}}$, e_1' $\frac{1}{1}, \frac{e'}{e}$ $e_2^{\prime}, e_3^{\prime}$,
3, $e'_{v_{n_1}}, e'_{v_{n_2}}, r'_1$ r'_{1}, r'_{2} $\binom{1}{2}$. By the definition of middle graph, $M(G)$ is planar, without loss of generality we consider the inner vertices in $M(G)$ are *e*. v_2', v_3' $\frac{1}{3}, e_4'$ $\frac{1}{4}$, $v'_{\frac{1}{2}}$ \int_{5} . In $M_{\nu}(G)$, the edges between v. r'_3 and r'_1 v'_{1}, v'_{2} $\frac{1}{3}$ and $\overline{r_2}$ v'_2, v'_3 $\frac{1}{5}$ and $\frac{1}{2}$ $\frac{1}{2}$ are crossing over the edges already drawn in $M(G)$. Hence, $M_{\nu}(G)$ has crossing number three, a contradiction.

Coversely, suppose $G = C_3(P_{n_1}) : v_1, v_2, v_3, v_{p_{n_1}}$ for $n_1 \ge 0$. Further, $V[M_v(G)] = \{v_1^{\prime}\}$ y'_{1}, y'_{2} v'_{2}, v'_{3} $v'_{p_{n_1}}, e'_{p_{n_2}}$ $, e'_{i}$ e'_{2}, e'_{3} $e'_{v_{n_1}}, r'_{n_2}$ r'_{1}, r'_{2} $\left\{ \cdot \right\}$. By the definition of middle graph, $M(G)$ is planar, without loss of generality we consider the inner vertices in $M(G)$ are *e*^{$\frac{1}{2}$} $'_{3}, v'_{4}$,
4. In $M_v(G)$, the edges between v'_e $\frac{1}{4}$ and r'_2 $\frac{1}{2}$ is crossing over the edges already drawn in $M(G)$. Also, the edges between v_2 $\frac{1}{2}$ and r: v_2' crossing over the edge between v_2' $\frac{1}{3}$ and r_1' J_1 . Hence, $M_\nu(G)$ has crossing number two.

Theorem 3.8. *For any graph G, Mv*(*G*) *is Eulerian if and only if the following conditions holds.*

i) Edge degree of the edge is even.

ii) Degree of the region is even.

iii) The degree of the vertex v is even and it lies on even number of regions.

iv) The degree of the vertex v is odd and it lies on odd number of regions.

Proof. Suppose *G* is Eulerian. We have the following cases. Case 1. Consider the edge with edge degree odd, by Observation 3.2, the degree of the corresponding vertex in $M_{\nu}(G)$ becomes odd. By the [Theorem 2.1,](#page-1-7) $M_{\nu}(G)$ is non-eulerian, a contradiction.

Case 2. Suppose the degree of the region is odd, in *G* region *r*¹ contains odd number of vertices. By the definition, the degree of the corresponding vertex in $M_{\nu}(G)$ becomes odd. By [Theorem 2.1,](#page-1-7) $M_v(G)$ is non-eulerian, a contradiction.

Case 3. Consider the vertex lie on odd regions with even degree. By [Proposition 3.1,](#page-1-8) the degree of the corresponding vertex in $M_v(G)$ becomes odd. By the [Theorem 2.1,](#page-1-7) $M_v(G)$ is non-eulerian, a contradiction.

Case 4. Consider the vertex lies on even regions with odd degree. By [Proposition 3.1,](#page-1-8) the degree of the corresponding vertex in $M_v(G)$ becomes odd. By the [Theorem 2.1,](#page-1-7) the $M_{\nu}(G)$ is non-eulerian, a contradiction.

Conversely, suppose above conditions holds.

Case 1. Consider the edge with even degree. By Observation

3.2, the degree of the corresponding vertex in $M_v(G)$ becomes even.

Case 2. Suppose the degree of the region is even. In *G* region r_1 contains even number of vertices. By definition, the degree of the corresponding vertex in $M_{\nu}(G)$ becomes even.

Case 3. Consider the vertex lie on even regions with even degree. By [Proposition 3.1,](#page-1-8) the degree of the corresponding vertex in $M_{\nu}(G)$ becomes even.

Case 4. Consider the vertex lies on odd regions with odd degree. By the [Proposition 3.1,](#page-1-8) the degree of the corresponding vertex in $M_{\nu}(G)$ becomes even.

From all the above cases, degree of every verex in $M_v(G)$ is even. Hence by [Theorem 2.1,](#page-1-7) $M_v(G)$ is eulerian.

 \Box

4. Conclusions

In this paper, we discuss the concept of vertex semi-middle graph of a graph. Further, we discuss the planarity, Eulerian, crossing number one and two of $M_v(G)$.

Acknowledgments

The authors are highly thankful to the anonymous referees for their kind comments and fruitful suggestions.

References

- [1] Harary F. Annals of New york, Academy of sciences.175, 198(1977).
- [2] Sedlacek J. *Some Properties of Interchange Graphs. The Graphs and the Applications*. Academic press, New york, (1962).
- [3] T.Hamada and I.Yoshimura. Traversability and connectivity of the middle graph of a graph. *Discrete Mathematics*, 14(1976), 247–255.
- [4] V.R.Kulli and H.P.Patil. Graph equations for line graphs, middle graphs amd entire graphs. *J.Karnatak University Sci.*, 23(1978), 25–28.
- [5] V.R.Kulli and H.P.Patil. Middle graphs and crossing numbers. *Discussion Mathematics*, 7(1985), 97-106.
- [6] Venkanagouda M. Goudar. On pathos vertex semientire graph of a tree. *International Journal of Applied Mathematical Research*, 1(4)(2012), 666-670.
- [7] Venkanagouda M. Goudar and Rajanna N E. Vertex semientire block graph. *Global Journal of Science Frontier Research (F)*, Vol XIV, Issue I, Version I(2014).

 $* * * * * * * * * *$ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

