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Analysis of an M/G/1 retrial queue with second
optional service and customer feedback, under
Bernoulli vacation schedule
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Abstract
A single server retrial queueing system with second optional service under Bernoulli vacation schedule is
investigated. The customer is permitted to balk if his service is not immediate upon arrival and allowed to join
the orbit for repeating his service. Instead, if the server is free the customer’s service is started immediately.
Every customer is provided with a first phase of essential service followed by a second phase of optional service.
After a service completion if the system is found to be empty then the server begins a vacation period. On the
other hand if the system is not empty, the server chooses to either continue serving the customer with probability
(1−a) or goes on vacation with probability a(0≤ a≤ 1). After a service completion, a customer opts to either
exit the system or chooses to join the orbit for repeating service. The joint generating functions of orbit size and
server status are derived using supplementary variable technique. Some important performance measures have
been derived and the effect of various parameters on the system performance has been analysed numerically.
Stochastic decomposition law has been established in the absence of balking.
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1. Introduction
Retrial queueing system is characterised by the phenomenon

that an arriving customer who finds the server busy upon ar-
rival may join the virtual group of blocked customers, called

orbit and retry for service after a random amount of time.
Study of retrial queues has gained more importance due to the
potential real time applications in telephone services, com-
puter and communication networks. In the so called classical
retrial policy the interval between successive repeated cus-
tomers are exponentially distributed with rate nθ when the
number of customers in the retrial group i.e., orbit size is
n, studied by Falin [5]. However, there is a second kind of
discipline, in which intervals separating successive repeated
attempts are independent of the orbit size. This policy is
known as the constant retrial policy. The latter discipline
was introduced by Fayolle [7], who investigated an M/M/1
retrial queue in which repeated customers form a queue and
only the customers at the head of the orbit can request a
service after an exponentially distributed retrial time. Farah-
mand [6] calls this discipline a retrial queue with FCFS or-
bit. Artalejo and Gomez-Corral [1] introduced the linear
retrial policy by incorporating both the possibilities assuming



Analysis of an M/G/1 retrial queue with second optional service and customer feedback, under Bernoulli vacation
schedule — 796/807

that time intervals between successive repeated attempts are
exponentially distributed random variables with parameter
θn = α[1−δn,0]+nθ , when the orbit size is n. Yang and Tem-
pleton [19] and Artalejo [2] have done an extensive survey on
retrial queueing systems. Gomez- Corral [10] has discussed
a single server retrial queueing system with general retrial
times.

Queueing systems with server vacations have been widely
studied in the past. Miller [14] was the first to study an
M/G/1 queueing system where the server is unavailable dur-
ing some random length of time (termed as vacation). A
vacation may refer to a maintenance activity, additional tasks
etc. Survey on vacation queues can be found in Doshi [4] and
Takagi [17]. Different vacation policies like the single vaca-
tion, multiple vacation, limited number of vacations, Bernoulli
vacation and K optional vacations have been widely discussed
by researchers. Keilson and Servi [11] introduced Bernoulli
vacation schedule where, after a service completion if the
system is empty the server begins a vacation. On the other
hand, if the system is found to have waiting customers, the
server opts to begin a vacation with probability ′a′ or decides
to provide service with probability 1− a. At the end of a
vacation period, service begins if there is a customer in the
queue else, the server waits for an arrival.

C.M. Krishna and Y.H. Lee [13] have studied a two phase
service queueing system. Some real time applications of
two phase queues are found in distributed system control
such as load balancing, routing, scheduling in a real-time
environment and reconfiguration require two phase execution
at a central server. That is, jobs come into the server which
then probes the distributed system for status information. This
is the first phase. The second phase consists of the server
performing individual service on each job, example deciding
which processor to allocate that job to, or how to reconfigure
the system in reaction to the incoming jobs. Bharat Doshi
[3] has analyzed a two phase queueing system with general
service times. Krishna Kumar et. al. [12] introduced an
M/G/1 retrial queueing system with two phase service and
preemptive resume. Gautam Choudhury et. al. [9] have
analysed an M/G/1 unreliable server queue with two phases
of service and Bernoulli vacation schedule under randomised
vacation policy.

Feedback is a phenomenon where each customer after
service either immediately returns to the orbit for another
service with probability f or leaves the system forever with
probability 1− f , where 0 ≤ f < 1. Feedback in the retrial
queueing systems may occur in many practical situations, for
example, telecommunication systems where messages turned
out as errors at the destination are sent again for transmis-
sion. Feedback was introduced by Takacs [18]. A two phase
queueing system with Bernoulli feedback has been studied by
Gautam Choudhury and Madhuchanda Paul [9].

In this paper, we have studied the M/G/1 retrial queue-
ing system with two phases of service of which the second
phase is optional. Here the customer is permitted to balk if

his service is not immediate upon arrival. The server goes
for vacation under the Bernoulli vacation schedule. A typical
application of our system can be found in Cloud computing.
Cloud computing is the delivery of computing resources over
the Internet. Cloud services allow individuals and businesses
to use software and hardware that are managed by service
providers from remote locations. To get the service of cloud
the user has to be in queue until he is served. Each arriv-
ing user requests the Cloud Service Provider for access, if the
server is available, the arriving user will start receiving service.
Otherwise the user waits in virtual queues and continuously
tries for access while one of them would be successful at the
instant when the server is free. In the queueing context, the
cloud users and service provider correspond to the customers
and server respectively. The service provider may undertake
some additional or maintenance activities which can be con-
sidered as a server vacation. When the service provider is busy
or engaged, the user may be virtually waiting to try repeatedly
and gain access of service or may quit which correspond to
the orbit and balking behavior of a customer. A customer
who has completed service may return back to the system
for repeated service which corresponds to the feedback of a
customer.

The rest of the paper is organised as follows. In section 2,
we describe the mathematical model of the system under study
and the stability condition. Section 3 deals with the steady
state distribution of the queueing model and the probability
generating functions of the system size and orbit size. In
section 4 we have derived some performance measures of the
system in the steady state. Section 5 deals with the stochastic
decomposition of the model and finally section 6 exhibits
the effect of various parameters on the system performance
measures by means of graphs.

2. Model description and stability
condition

We consider a single server retrial queueing system with
two phases of service: A first phase of essential service (FES)
provided for all customers and a second phase of optional
service (SOS) provided only for the customers who opt for
it. Customers arrive to the system according to a Poisson
process with rate λ . When the primary arrival finds the server
free, it’s service starts immediately. On the other hand, if the
server is busy or on vacation the primary arrival either balks
the system with probability b or joins the pool of waiting
customers called orbit with probability 1−b . The customers
in the orbit, independent of each other, continually make
repeated attempts to receive service. The retrial time of the
customer in the orbit is assumed to be generally distributed
with distribution function R(x) and Laplace Stieltjes transform
(LST) R∗(θ). The conditional completion rate of retrial time

is θ(x)dx =
dR(x)

1−R(x)
.

A single server provides both the phases of service. The
FES is compulsory for all the customers. On completing
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Figure 1. Two phase queue with balking, vacation and
feedback

an FES, the customer chooses the SOS with probability p.
On the other hand he may choose to either leave the system
with probability q(1− f ) or join the orbit for repeated service
as feedback customer with probability q f . A customer who
opted for SOS may choose to leave the system with probability
1− f or may decide to join the orbit with probability f , upon
completion of SOS. The service times are assumed to be
generally distributed with distribution function Si(x) and LST
S∗i (θ), conditional completion rates µi(x)dx= dSi(x)

1−Si(x)
, i= 1,2.

The server is assumed to go on a single Bernoulli vacation as
in Keilson and Servi [11] discussed in Section 1. The vacation
time V is assumed to be generally distributed with distribution
function V (x) and LST V ∗(θ). The conditional completion
rate of the vacation time is ν(x)dx = dV (x)

1−V (x) . On return from
vacation, the server starts providing service for a customer, if
any or awaits a new arrival.

The state of the system at time t can be defined by the
Markov process {C(t),X(t),ξ (t); t ≥ 0} where

C(t) =


0, if server is free
1, if server is busy with FES
2, if server is busy with SOS
3, if server is on vacation,

X(t) corresponds to the number of customers in the orbit at
time t and ξ (t) represents the elapsed retrial time if C(t) = 0
and X(t)> 0, the elapsed service time in FES, SOS if C(t) =
1,2 and X(t) ≥ 0 respectively and elapsed vacation time if
C(t) = 3 and X(t)≥ 0.

Ergodicity condition:

We obtain the necessary and sufficient condition for the
system to be stable. In the following theorem, we establish
the ergodicity condition of the embedded Markov chain at
departure or vacation completion epochs. Let {tn;n ∈ N} be
the sequence of epochs at which either a service completion
occurs or a vacation period ends. The sequence of random

vectors Xn = (C(tn+),X(tn+)) forms a Markov chain, which
is the embedded Markov chain for our queueing system. Its
state space is S = {0,1,2,3}×{0,1,2,3 · · ·}− (0,0).

Theorem 2.1. Let Xn be the orbit length at the time of ei-
ther nth customer’s departure or vacation completion, n≥ 1.
Then {Xn;n≥ 1} is ergodic if and only if λ (1− b)[E(S1)+
pE(S2)+aE(V )]+ f < R∗(λ ).

Proof. It is not difficult to see that {Xn;n≥ 1} is an irre-
ducible and aperiodic Markov chain. To prove ergodicity,
we shall use Foster’s Criterion: An irreducible and aperi-
odic Markov chain is ergodic if there exists a non- negative
function f ( j), j ∈ N,ε > 0 such that the mean drift, Ψ j =
E[ f (Xn+1)− f (Xn)/Xn = j] is finite for all j ∈ N, except per-
haps a finite number j. In our case, we consider the function
f ( j) = j. Then we have,

Ψ j =


λ (1−b)[E(S1)+ pE(S2)+E(V )]+ f , for, j = 0
λ (1−b)[E(S1)+ pE(S2)+aE(V )]+ f −R∗(λ ),
for j = 1,2,3, . . .

Clearly, the inequality λ (1−b)[E(S1)+ pE(S2)+aE(V )]+
f < R∗(λ ) is a sufficient condition for ergodicity. The same
inequality is also necessary for ergodicity. As noted in Sennott
et. al. [15], we can guarantee non-ergodicity of the Markov
chain {Xn;n≥ 1}, if it satisfies Kaplan’s condition namely
Ψ j < ∞ for all j ≥ 0 and there exists j0 ∈ N such that Ψ j ≥ 0
for j ≥ j0. Notice that, in our case, Kaplan’s condition is sat-
isfied because ri j = 0 for j < i−1 and i > 0, where R = (ri j)
is the one step transition matrix of {Xn;n≥ 1}.
Then, λ (1− b)[E(S1) + pE(S2) + aE(V )] + f ≥ R∗(λ ) im-
plies the non-ergodicity of the Markov chain.

Remark 2.2. Since the arrival stream is a Poisson process,
it can be shown from Burke’s theorem that the steady state
probabilities of {C(t),X(t); t ≥ 0} exist and is positive if and
only if λ (1−b)[E(S1)+ pE(S2)+aE(V )]+ f <R∗(λ ). From
the mean drift Ψ j = λ (1− b)[E(S1) + pE(S2) + aE(V )] +
f , j ≥ 1, we have the reasonable conclusion that the term
λ (1−b)[E(S1)+ pE(S2)+aE(V )]+ f has four components:
new arrivals during the server providing the first phase of
service λ (1−b)E(S1), new arrivals during the server provid-
ing the second phase of service λ (1−b)pE(S2), the arrivals
while the server is on vacation λ (1− b)aE(V ) and finally
the feedback customers f . Further, R∗(λ ) is the expected
number of orbiting customers who enter service successfully,
given that the previous service time leaves j customers in
the orbit. For stability, we require that new customers arrive
during service and vacation time more slowly than orbiting
customers seeking service, at the commencement of service.
That is, λ (1−b)[E(S1)+ pE(S2)+aE(V )]+ f < R∗(λ ).

797



Analysis of an M/G/1 retrial queue with second optional service and customer feedback, under Bernoulli vacation
schedule — 798/807

3. Steady state distribution

For the Markov process {X(t); t ≥ 0}, we define the probability P0(t) =P{C(t) = 0,X(t) = 0} and the probability densities,
Pn(x, t) = P{C(t) = 0,X(t) = n,x≤ ξ (t)< x+dx} , t ≥ 0, x≥ 0, n≥ 1,
Qi,n(x, t) = P{C(t) = i,X(t) = n,x≤ ξ (t)< x+dx} , t ≥ 0, x≥ 0, n≥ 0, i = 1,2,
V (x, t) = P{C(t) = 3,X(t) = n,x(t)≤ ξ (t)< x+dx} , t ≥ 0, x≥ 0, n≥ 0.
We assume that the stability condition, λ (1− b)[E(S1) + pE(S2) + aE(V )] + f < R∗(θ) is satisfied, so that the limiting
probability P0 = limt→∞P0(t) and the limiting probability densities given by,
Pn(x) = limt→∞Pn(x, t), x≥ 0, n≥ 1,
Qi,n(x) = limt→∞Qi,n(x, t), x≥ 0, i = 1,2, n≥ 0,
Vn(x) = limt→∞Vn(x, t), x≥ 0, n≥ 0 exist.
Using the method of supplementary variable, we obtain the system of equations that govern the dynamics of the system
behaviour as:

λP0 =
∫

∞

o
V0(x)ν(x)dx, (3.1)

d
dx

Pn(x)+ [λ +θ(x)]Pn(x) = 0, n≥ 1, (3.2)

d
dx

Qi,0(x)+ [λ (1−b)+µi(x)]Qi,0 = 0, i = 1,2, (3.3)

d
dx

Qi,n(x)+ [λ (1−b)+µi(x)]Qi,n = λ (1−b)Qi,n−1(x), n≥ 1, i = 1,2, (3.4)

d
dx

V0(x)+ [λ (1−b)+ν(x)]V0(x) = 0, (3.5)

d
dx

Vn(x)+ [λ (1−b)+ν(x)]Vn(x) = λ (1−b)Vn−1(x),n≥ 1. (3.6)

The steady state boundary conditions are,

Pn(0) =
∫

∞

o
Vn(x)ν(x)dx+(1−a)(1− f )

{
q
∫

∞

o
Q1,n(x)µ1(x)dx+

∫
∞

o
Q2,n(x)µ2(x)dx

}

+(1−a) f

{
q
∫

∞

o
Q1,n−1(x)µ1(x)dx+

∫
∞

o
Q2,n−1(x)µ2(x)dx

}
,n≥ 1, (3.7)

Q1,0(0) =
∫

∞

o
P1(x)θ(x)dx+λP0, (3.8)

Q1,n(0) =
∫

∞

o
Pn+1(x)θ(x)dx+λ

∫
∞

o
Pn(x)dx,n≥ 1, (3.9)

Q2,n(0) = p
∫

∞

o
Q1,n(x)µ1(x)dx,n≥ 1, (3.10)
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V0(0) = q(1− f )
∫

∞

o
Q1,0(x)µ1(x)dx+(1− f )

∫
∞

o
Q2,0(x)µ2(x)dx, (3.11)

Vn(0) = aq(1− f )
∫

∞

o
Q1,n(x)µ1(x)dx+a(1− f )

∫
∞

o
Q2,n(x)µ2(x)dx

+aq f
∫

∞

o
Q1,n−1(x)µ1(x)dx+a f

∫
∞

o
Q2,n−1(x)µ2(x)dx,n≥ 1. (3.12)

The normalization condition is

P0 +
∞

∑
n=1

∫
∞

0
Pn(x)dx+

∞

∑
n=0

2

∑
i=1

∫
∞

0
Qi,n(x))dx+

∞

∑
n=0

∫
∞

0
Vn(x)dx = 1. (3.13)

We define the Probability generating functions as,

P(x,z) =
∞

∑
n=1

Pn(x)zn; Qi(x,z) =
∞

∑
n=0

Qi,n(x)zn, i = 1,2; and V (x,z) =
∞

∑
n=0

Vn(x)zn.

Theorem 3.1. If λ (1− b)[E(S1)+ pE(S2)+ aE(V )] + f < R∗(θ), then the steady state distributions of {X(t); t ≥ 0} are
derived as,

P(x,z) =

zλP0

{
V ∗(λ (1−b))

{
1−S∗1(λ (1−b)(1− z))[q+ pS∗2(λ (1−b)(1− z))]

(1− f + f z)[aV ∗(λ (1−b)(1− z))+1−a]
}

+(1−a)[1−V ∗(λ (1−b)(1− z))]

}
× e−λx[1−R(x)]

V ∗(λ (1−b)){[z+(1− z)R∗(λ )]S∗1(λ (1−b)(1− z))[q+ pS∗2(λ (1−b)(1− z))]

×[aV ∗(λ (1−b)(1− z))+1−a](1− f + f z)− z}

, (3.14)

Q1(x,z) =

λP0

{
V ∗(λ (1−b))(1− z)R∗(λ )+ [z+(1− z)R∗(λ )](1−a)[1−V ∗(λ (1−b)(1− z))]

}
×e−λ (1−b)(1−z)x[1−S1(x)]

V ∗(λ (1−b)){[z+(1− z)R∗(λ )]S∗1(λ (1−b)(1− z))[q+ pS∗2(λ (1−b)(1− z))]

×[aV ∗(λ (1−b)(1− z))+1−a](1− f + f z)− z}

, (3.15)

Q2(x,z) =

pλP0

{
V ∗(λ (1−b))(1− z)R∗(λ )+ [z+(1− z)R∗(λ )](1−a)[1−V ∗(λ (1−b)(1− z))]

}
×S∗1(λ (1−b)(1− z))e−λ (1−b)(1−z)x[1−S2(x)]

V ∗(λ (1−b)){[z+(1− z)R∗(λ )]S∗1(λ (1−b)(1− z))[q+ pS∗2(λ (1−b)(1− z))]

×[aV ∗(λ (1−b)(1− z))+1−a](1− f + f z)− z}

, (3.16)

V (x,z) =

λP0

{
S∗1(λ (1−b)(1− z))[q+ pS∗2(λ (1−b)(1− z))](1− f + f z)

{
a[1− z]V ∗(λ (1−b))R∗(λ )

+(1−a)[z+(1− z)R∗(λ )]
}
− (1−a)z

}
× e−λ (1−b)(1−z)x[1−V (x)]

V ∗(λ (1−b)){[z+(1− z)R∗(λ )]S∗1(λ (1−b)(1− z))[q+ pS∗2(λ (1−b)(1− z))]

×[aV ∗(λ (1−b)(1− z))+1−a](1− f + f z)− z}

. (3.17)
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Proof. Multiplying equations (3.2) - (3.6) by zn and summing over all n, we get

∂P(x,z)
∂x

+[λ +θ(x)]P(x,z) = 0, x > 0, (3.18)

∂Qi(x,z)
∂x

+[λ (1−b)(1− z)+µi(x)]Qi(x,z) = 0, f or i = 1,2, x > 0, (3.19)

∂V (x,z)
∂x

+[λ (1−b)(1− z)+ν(x)]V (x,z) = 0, x > 0, (3.20)

Multiplying equations (3.7) - (3.12) by zn and summing over all values of n, we obtain

P(0,z) =
∫

∞

o
V (x,z)ν(x)dx+(1−a)(1− f + f z)

{
q
∫

∞

o
Q1(x,z)µ1(x)dx+

∫
∞

o
Q2(x,z)µ2(x)dx

}
−λP0− (1−a)V0(0), (3.21)

Q1(0,z) =
1
z

∫
∞

0
P(x,z)θ(x)dx+λ

∫
∞

0
P(x,z)dx+λP0, (3.22)

Q2(0,z) = p
∫

∞

0
Q1(x,z)µ1(x)dx, (3.23)

V (0,z) = a(1− f + f z)

{
q
∫

∞

o
Q1(x,z)µ1(x)dx+

∫
∞

o
Q2(x,z)µ2(x)dx

}
+[1−a]V0(0). (3.24)

Solving the partial differential equations (3.18) - (3.20) we get

P(x,z) = P(0,z)e−λx[1−R(x)], (3.25)

Qi(x,z) = Qi(0,z)e−λ (1−b)(1−z)x[1−Si(x)], f or i = 1,2, (3.26)

V (x,z) =V (0,z)e−λ (1−b)(1−z)x[1−V (x)]. (3.27)

Using (3.26) in (3.23) we get

Q2(0,z) = pQ1(0,z)S∗1(λ (1−b)(1− z)). (3.28)

Substituting (3.25) in (3.22) we get

Q1(0,z) =
1
z
{λP0z+[z+(1− z)R∗(λ )]P(0,z)}. (3.29)

Using (3.28) and (3.29) in (3.24) we get

V (0,z) =
a[1− f + f z]

z

{
[λP0z+P(0,z)[z+(1− z)R∗(λ )]][q

+ pS∗2(λ (1−b)(1− z))]S∗1(λ (1−b)(1− z))
}
+(1−a)V0(0). (3.30)
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Solving equation (3.1) we get

V0(0) =
λP0

V ∗(λ (1−b))
. (3.31)

Combining (3.26) - (3.29) and using (3.31) in (3.21), after some algebraic manipulations, we get

P(0,z) =

λP0z
{

V ∗(λ (1−b))
{

1−S∗1(λ (1−b)(1− z))[q+ pS∗2(λ (1−b)(1− z))]

×(1− f + f z)[aV ∗(λ (1−b)(1− z))+1−a]
}

+(1−a)[1−V ∗(λ (1−b)(1− z))]
}

V ∗(λ (1−b)){[z+(1− z)R∗(λ )]S∗1(λ (1−b)(1− z))

×[q+ pS∗2(λ (1−b)(1− z))][aV ∗(λ (1−b)(1− z))+1−a](1− f + f z)− z}

. (3.32)

Using (3.32) in (3.28) - (3.30) and simplifying we get the required results (3.14) - (3.17).

For the limiting probability generating functions P(x,z), Qi(x,z), i = 1,2 and V (x,z), we define the partial probabil-

ity generating functions as, P(z) =
∫

∞

0
P(x,z)dx ; Qi(z) =

∫
∞

0
Qi(x,z)dx, i = 1,2 and V (z) =

∫
∞

0
V (x,z)dx. Here, P(z) is

the probability generating function of the orbit size when the server is idle, Qi(z) is the probability generating function
of the orbit size when the server is busy with phase i service, i = 1,2 and V (z) is the probability generating function
when the server is on vacation. Define the probability generating function of the number of customers in the system as,
K(z) = P0 +P(z)+ zQ1(z)+ zQ2(z)+V (z) and the probability generating function of the number of customers in the orbit
is defined as, H(z) = P0 +P(z)+Q1(z)+Q2(z)+V (z), where P0 is the probability that the server is idle in the system. The
following theorem gives the main results of our model under consideration.

Theorem 3.2. If λ (1−b)[E(S1)+ pE(S2)+aE(V )]+ f < R∗(λ ), then the partial generating functions are given as,

P(z) =

zP0

{
V ∗(λ (1−b))

{
1−S∗1(λ (1−b)(1− z))[q+ pS∗2(λ (1−b)(1− z))]

×[1− f + f z][aV ∗(λ (1−b)(1− z))+1−a]
}

+[1−a][1−V ∗(λ (1−b)(1− z))]
}
× [1−R∗(λ )]

V ∗(λ (1−b)){[z+(1− z)R∗(λ )]S∗1(λ (1−b)(1− z))[q+ pS∗2(λ (1−b)(1− z))]

×[aV ∗(λ (1−b)(1− z))+1−a](1− f + f z)− z}

, (3.33)

Q1(z) =

P0

{
V ∗(λ (1−b))[1− z]R∗(λ )+ [z+(1− z)R∗(λ )](1−a)

×[1−V ∗(λ (1−b)(1− z))]
}

e−λ (1−b)(1−z)x[1−S1(x)]

(1−b)(1− z)V ∗(λ (1−b)){[z+(1− z)R∗(λ )]S∗1(λ (1−b)(1− z))

×[q+ pS∗2(λ (1−b)(1− z))][aV ∗(λ (1−b)(1− z))+1−a](1− f + f z)− z}

, (3.34)

Q2(z) =

pP0

{
V ∗(λ (1−b))[1− z]R∗(λ )+ [z+(1− z)R∗(λ )](1−a)

×[1−V ∗(λ (1−b)(1− z))]
}

S∗1(λ (1−b)(1− z))e−λ (1−b)(1−z)x[1−S2(x)]

(1−b)(1− z)V ∗(λ (1−b)){[z+(1− z)R∗(λ )]S∗1(λ (1−b)(1− z))

×[q+ pS∗2(λ (1−b)(1− z))][aV ∗(λ (1−b)(1− z))+1−a](1− f + f z)− z}

, (3.35)
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V (z) =

P0

{
S∗1(λ (1−b)(1− z))[q+ pS∗2(λ (1−b)(1− z))](1− f + f z){

a[1− z]V ∗(λ (1−b))R∗(λ )+(1−a)[z+(1− z)R∗(λ )]
}
− (1−a)z

}
×e−λ (1−b)(1−z)x[1−V (x)]

(1−b)(1− z)V ∗(λ (1−b)){[z+(1− z)R∗(λ )]S∗1(λ (1−b)(1− z))

×[q+ pS∗2(λ (1−b)(1− z))][aV ∗(λ (1−b)(1− z))+1−a](1− f + f z)− z}

, (3.36)

and the generating functions of the number of customers in the system and in the orbit are given as,

K(z) =

P0

{
[q+ pS∗2(λ (1−b)(1− z))]S∗1(λ (1−b)(1− z))

{
[1−V ∗(λ (1−b)(1− z))]

×
{
(1−a)[z+(1− z)R∗(λ )](1− f )+aV ∗(λ (1−b))R∗(λ )[1− f + f z]

}
+V ∗(λ (1−b))R∗(λ ){(1−b)[aV ∗(λ (1−b)(1− z))+1−a][1− f + f z]− z}

}
+z[bV ∗(λ (1−b))R∗(λ )−b(1−a)(1−V ∗(λ (1−b)(1− z)))(1−R∗(λ ))]

}
(1−b)V ∗(λ (1−b)){[z+(1− z)R∗(λ )]S∗1(λ (1−b)(1− z))

×[q+ pS∗2(λ (1−b)(1− z))][aV ∗(λ (1−b)(1− z))+1−a](1− f + f z)− z}

, (3.37)

H(z) =

P0

{
V ∗(λ (1−b))R∗(λ )[1− (1−b)z]+ (1−a)[1−V ∗(λ (1−b)(1− z))]

×[(1−b)[1−R∗(λ )]z+R∗(λ )]+V ∗(λ (1−b))S∗1(λ (1−b)(1− z))[q+ pS∗2(λ (1−b)(1− z))]

[1− f + f z]R∗(λ )−b[aV ∗(λ (1−b)(1− z))+1−a]V ∗(λ (1−b))S∗1(λ (1−b)(1− z))[q+ pS∗2(λ (1−b)(1− z))]

×(1− f + f z)R∗(λ )−V ∗(λ (1−b))S∗1(λ (1−b)(1− z))[q+ pS∗2(λ (1−b)(1− z))]R∗(λ )− [z+(1− z)R∗(λ )]

×S∗1(λ (1−b)(1− z))[q+ pS∗2(λ (1−b)(1− z))](1−a)(1−V ∗(λ (1−b)(1− z))) f
}

(1−b)V ∗(λ (1−b)){[z+(1− z)R∗(λ )]S∗1(λ (1−b)(1− z))

×[q+ pS∗2(λ (1−b)(1− z))][aV ∗(λ (1−b)(1− z))+1−a](1− f + f z)− z}

, (3.38)

where,

P0 =
V ∗(λ (1−b)){R∗(λ )−λ (1−b)[E(S1)+ pE(S2)+aE(V )]− f}

V ∗(λ (1−b))R∗(λ )[1+λb(E(S1)+ pE(S2)+aE(V ))− f ]+λ (1−a)E(V )[1−b(1−R∗(λ ))− f ]
. (3.39)

Proof. Integrating equations (3.14) - (3.17) with respect to x from 0 to ∞, we get the results as in (3.33) - (3.36). Using
equations (3.33) - (3.36) after considerable algebraic manipulations we get the probability generating function of the number of
customers in the system K(z) and that in the orbit H(z) as in equations (3.37) and (3.38) respectively. Finally, the unknown P0
is determined using the normalising condition, P0 +P(1)+Q1(1)+Q2(1)+V (1) = 1. By setting z = 1 in K(z) or in H(z) and
applying L’Hospital’s rule we get P0 as in equation (3.39).

4. Performance measures
In this section, we have derived some performance measures of the system in steady state. Let U be the steady state

probability that the server is busy serving a customer i.e., server utilisation, I be the steady state probability that the server is
idle during the retrial time or on vacation, Ls be the mean number of customers in the system and Lq be the mean number of
customers in the orbit.
U = Q1(1)+Q2(1),

=
λP0{[V ∗(λ (1−b))R∗(λ )+λ (1−a)(1−b)E(V )][E(S1)+ pE(S2)]}

V ∗(λ (1−b)){R∗(λ )−λ (1−b)[E(S1)+ pE(S2)+aE(V )]− f}
, (4.1)

I = P0 +P(1)+V (1)

=
P0{V ∗(λ )R∗(λ )[1− f −λ (E(S1)+ pE(S2))]+λ (1−a)(1− f )E(V )−λ2(1−a)[E(S1)+ pE(S2)]E(V )}

V ∗(λ ){R∗(λ )−λ [E(S1)+ pE(S2)+aE(V )]− f}
. (4.2)
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The average number of customers in the system under steady state condition is derived as,

Ls = K′(1)

=
C1

2
{

V ∗(λ (1−b))R∗(λ )[1− f +λb[E(S1)+ pE(S2)+aE(V )]]+λ (1−a)E(V )[1− f −b(1−R∗(λ ))]
}

− D1

2λ (1−b)[E(S1)+ pE(S2)+aE(V )]+ f −R∗(λ )
, (4.3)

where

C1 =
{

V ∗(λ (1−b))R∗(λ ){λ 2(1−b)b[E(S2
1)+ pE(S2

2)+aE(V 2)+2pE(S1)E(S2)+2apE(S2)E(V )

+2aE(S1)E(V )]+2λ{[1− (1−b) f ][E(S1)+ pE(S2)]+ab f E(V )}}+λ
2(1−b)(1−a)

(×){(1− f )[E(V 2)+2E(V )[E(S1)+ pE(S2)]]−b(1−R∗(λ ))E(V 2)}

+2λ (1−a)(1−R∗(λ ))(1− f −b)E(V )
}
,

D1 = {λ 2(1−b)2[E(S2
1)+ pE(S2

2)+aE(V 2)+2pE(S1)E(S2)+2apE(S2)E(V )+2aE(S1)E(V )]

+2λ (1−b)[E(S1)+ pE(S2)+aE(V )][1−R∗+ f ]+2[1−R∗(λ ) f ]}.

The average number of customers in the orbit under steady state condition is given by,

Lq = H ′(1)

=
C2

2
{

V ∗(λ (1−b))R∗(λ )[1+λb[E(S1)+ pE(S2)+aE(V )]− f ]+λ (1−a)[R∗(λ )+(1−b)(1−R∗(λ ))+ f ]E(V )
}

− D2

2
{

λ (1−b)[E(S1)+ pE(S2)+aE(V )]+ f −R∗(λ )
} , (4.4)

where

C2 =V ∗(λ (1−b))R∗(λ )[λ 2(1−b)b[E(S2
1)+ pE(S2

2)+aE(V 2)+2pE(S1)E(S2)

+2apE(S2)E(V )+2aE(S1)E(V )]−2λ f (1−b)[E(S1)+E(S2)]+2λab f E(V )]

+λ
2(1−a)(1−b){[(1−b)(1−R∗ (λ ))+R∗ (λ )− f ]E(V 2)−2 f [E(S1)+E(S2)]E(V )}

+2λ (1−a)(1−R(λ ))[1−b− f ]E(V ),

D2 = {λ 2(1−b)2[E(S2
1)+ pE(S2

2)+aE(V 2)+2pE(S1)E(S2)+2apE(S2)E(V )+2aE(S1)E(V )]

+2λ (1−b)[E(S1)+ pE(S2)+aE(V )][1+ f −R∗(λ )]+2(1−R∗(λ )) f}.

The probability of orbit being empty, PEO is defined by, PEO = P0+Q1,0+Q2,0+V0, where Qi,0 for i = 1,2 are the probabilities
that the orbit is empty when the server is busy with FES and SOS respectively, V0 is the probability that the orbit is empty when
the server is on vacation and P0 is the probability of an empty system. The above quantities are derived to be,

Q1,0 =
P0[1−S∗1(λ (1−b))]

(1−b)(1− f )V ∗(λ (1−b))S∗1(λ (1−b))[q+ pS∗2(λ (1−b))]
, (4.5)

Q2,0 =
pP0[1−S∗2(λ (1−b))]

(1−b)(1− f )V ∗(λ (1−b))[q+ pS∗2(λ (1−b))]
, (4.6)

V0 =
P0[1−V ∗(λ (1−b))]
(1−b)V ∗(λ (1−b))

, (4.7)

PEO =
P0{1− [b(1− f )V ∗(λ (1−b))+ f ]S∗1(λ (1−b))[q+ pS∗2(λ (1−b))]}

(1−b)(1− f )V ∗(λ (1−b))[q+ pS∗2(λ (1−b))]S∗1(λ (1−b))
. (4.8)

803



Analysis of an M/G/1 retrial queue with second optional service and customer feedback, under Bernoulli vacation
schedule — 804/807

5. Stochastic decomposition

Stochastic decomposition has been widely observed in
M/G/1 type queues with generalized vacations(see Doshi
[4], Takagi [17], Furhmann and Cooper [8]). The number of
customers in the system at a random epoch is distributed as
the sum of two independent random variables, one of which
corresponds to the number of customers in the ordinary queue-
ing system without vacations. The other random variable is
usually interpreted as the number of customers in the system
given that the server is on vacation. Stochastic decomposition
has been observed to hold for some M/G/1 retrial queueing
models (Artalejo [1]; Krishna Kumar et. al. [12]).

In our model, stochastic decomposition becomes inap-
plicable due to balking. But, in the absence of balking i.e.,
b = 0, we have established the stochastic decomposition in
an elegant way. Shanthi Kumar [16] has remarked that all
cases of balking and reneging cannot be accommodated in
the stochastic decomposition of M/G/1 queues. Our retrial
queue with second optional service and Bernoulli vacation

schedule can be viewed as an M/G/1 queue with generalised
vacations in which the vacation begins at the end of each ser-
vice period. Let Π(z) be the probability generating function
of the number of customers in the M/G/1 queueing system
with second optional service and feedback in steady state at
a random point in time, χ(z) be the probability generating
function of the number of customers in the generalised vaca-
tion system at a random point in time given that the server
is on vacation or idle, and K(z) be the probability generating
function of the random variable being decomposed. Then the
stochastic decomposition law can be Mathematically stated
as,

K(z) = Π(z)×χ(z). (5.1)

where

Π(z) =
[1− z]S∗1(λ (1− z))[q+ pS∗2(λ (1− z))][1− f −λ (E(S1)+ pE(S2))]

{S∗1(λ (1− z))[q+ pS∗2(λ (1− z))](1− f + f z)− z}
(5.2)

and

χ(z) =
P0 +P(z)+V (z)
P0 +P(1)+V (1)

=

P0(1− f ){S∗1(λ (1− z))[q+ pS∗2(λ (1− z))][1− f + f z]− z}{[1− z]V ∗(λ )R∗(λ )

+[z+(1− z)R∗(λ )](1−a)(1−V ∗(λ (1− z)))}
V ∗(λ ){[z+(1− z)R∗(λ )]S∗1(λ (1− z))[q+ pS∗2(λ (1− z))]

×(1− f + f z)[aV ∗(λ (1− z))+1−a]− z}{1− f −λ (E(S1)+ pE(S2))}

. (5.3)

Hence, it is seen that the stationary system size distribution
of the M/G/1 queue with two phases of service and feedback
under Bernoulli vacation is the convolution of the PGFs of two
independent random variables: one of which is the stationary
system size distribution of the M/G/1 queueing system with
two phases of service and feedback and the other is the number
of customers in the system during Bernoulli vacation schedule.

6. Numerical illustrations
In this section, we present the numerical analysis of the

qualitative behaviour of the performance measures of the
queueing system, by means of graphs. We study the effect
of the system parameters arrival rate λ , retrial rate θ and the
feedback probability f on the following performance mea-
sures:

• the probability P0 that the system is empty

• the average number of customers Ls in the system

• server utilisation U

In Figures (2)− (10) , the service times of FES and SOS,
the retrial from the orbit and vacation time are assumed

Figure 2. Po versus λ for a = 0,0.5,1
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Figure 3. P0 versus θ for a = 0,0.5,1

Figure 4. P0 versus f for a = 0,0.5,1

Figure 5. Ls versus λ for a = 0,0.5,1

Figure 6. Ls versus θ for a = 0,0.5,1

Figure 7. Ls versus f for a = 0,0.5,1

Figure 8. U versus λ for a = 0,0.5,1
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Figure 9. U versus θ for a = 0,0.5,1

Figure 10. U versus f for a = 0,0.5,1

to follow exponential distribution with probability density
functions S1(x) = µ1e−µ1x, S2(x) = µ2e−µ2x, R(x) = θe−θx,
V (x) = ν1e−ν1x respectively. Further, the parameters λ , µ1,
µ2, ν , a, p, b and f are chosen satisfying the stability condi-
tion λ (1−b)[E(S1)+ pE(S2)+aE(V )]< R∗(λ ).

In figures (2) - (4), the trend of the probability P0 is plotted
against λ , θ and f for the values of b=0.8, ν =2, λ=1, θ =
5, f =0.25, p=0.6. Figure (2) shows that P0 decreases for
increasing values of λ . Figure (3) shows that P0 increases
steadily for increasing values of the retrial rate θ . Figure (4)
shows that P0 decreases as expected for increasing values of
the feedback probability f .

Figures (5) - (7) display the effect of the parameters on
the system size Ls for the values of b=0.6, ν =3, θ = 5, λ=0.1,
f =0.25, p=0.8. Figure (5), shows that Ls increases rapidly for
increasing values of the arrival rate λ . Figure (6), displays
the fact Ls decreases for increasing value of the retrial rate
θ . Figure (7) shows that Ls increases steadily for increasing
values of the feedback probability f .

Figures (8) - (10) exhibit the effect of the parameters on
the server Utilisation for the values of b=0.6, ν =3, θ = 5,
λ=0.1, f =0.25, p=0.8. Figure (8), shows that U increases
for increasing values of the arrival rate λ . Figure (9), depicts
the fact that U decreases steadily for increasing values of the
retrial rate θ . Figure (10) displays the fact that U increases
steadily for increasing values of the feedback probability f .

7. Conclusion
A single server retrial queue with second optional service,

balking, Bernoulli vacation and feedback has been studied
using supplementary variable technique. The joint generating
functions of orbit size and server status are derived. Some sys-
tem performance measures and orbit characteristics are also
computed. Stochastic decomposition law has been established
in the absence of balking. Numerical study of the parameters
on the performance measures have been illustrated.
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