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Abstract
We introduce and study the semi-topological rings. Some examples of semi-topological rings are provided.
We investigate some permanence properties of semi-topological rings. Along with other results, it is proved
that translation of an open (resp. closed) set in a semi-topological ring is semi-open (resp. semi-closed), that
multiplication of an open (resp. closed) set in a semi-topological ring by an invertible element of the ring is
semi-open (resp. semi-closed). We also prove that any ring homomorphism between a semi-topological ring and
a topological ring which is continuous at zero is semi-continuous everywhere.
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1. Introduction
As we are familiar with some classical kinds of topologi-

cal spaces like topological vector spaces, topological rings and
topological groups because of their vast applications in almost
all branches of mathematics, investigation and exploration of
new facts about these spaces become a regular, interesting and
useful activity. Because of their nice and unique properties,
these spaces earn great importance in all advanced branches
of mathematics like mathematical analysis, functional analy-
sis, fixed point theory, algebra, complex analysis, variational
inequalities, etc. After these advents of the interplay between
algebraic and topological structures, many researchers and
mathematicians have been working in these fields of study. In
this day and age, several generalizations and similar structures
of these spaces are appeared and these subjects are getting
interesting for study day after day.

This paper presents the innovation of semi-topological
rings, bringing together the areas of topology and ring theory.
This innovation is derived from the study of the well-known
class of topological rings. A topological ring is a ring en-
dowed with a topology which turns out the ring operations
continuous. The work on topological rings is quite active
since 1930s and till this age, field of topological rings has
been extensively developed. Kaplansky [3–5], Warner [10]
and many more have done classical work on topological rings.
Recently, Salih [9] introduced the irresolute topological rings.
In [8], we introduced the notion of α−irresolute topological
rings which is basically independent of topological rings as
well as irresolute topological rings.

This paper is organized as follows: Section 1 and 2 pro-
vide the background and basic topological concepts that are
required for the creation of semi-topological rings. In Section
3, we give the definition of a semi-topological ring, elabo-
rate this concept through some examples and briefly interpret
how semi-topological rings are a generalization of topological
rings. Section 4 is devoted to some permanence properties of
semi-topological rings. Finally, references are given.

2. Preliminaries
Throughout the present paper, X denotes a topological

space on which no separation axioms are assumed. For A⊆ X ,
Cl(A) and Int(A) denote the closure of A and the interior of A
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respectively. The notations ε and δ denote negligibly small
positive numbers.

In 1963, N. Levine [6] introduced the concept of semi-
open sets in topological spaces. He defines a set S in a topo-
logical space X to be semi-open if there exists an open set
U in X such that U ⊆ S ⊆ Cl(U); or equivalently, a subset
S of X is semi-open if S ⊆Cl(Int(S)). The complement of
a semi-open set is said to be semi-closed; or equivalently, a
set S in X is semi-closed if Int(Cl(S)) ⊆ S. Any union of
semi-open sets is semi-open, while the intersection of two
semi-open sets need not be semi-open. Every open set is semi-
open but the converse is not always true. The semi-closure
of a subset S of X , denoted by sCl(S), is the intersection of
all semi-closed subsets of X containing S. In other words, the
semi-closure of a subset S of X is the smallest semi-closed
subset of X containing S. The union of all semi-open sets
in X that are contained in S ⊆ X is called the semi-interior
of S and is denoted by sInt(S). It is known that a set S in X
is semi-closed (resp. semi-open) if and only if sCl(S) = S
(resp. sInt(S) = S). In [2], it is proved that x ∈ sCl(S) if and
only if S∩U 6= /0 for any semi-open set U in X containing
x. A point x ∈ X is called a semi-interior point of S if there
exists a semi-open set U in X such that x ∈U ⊆ S. The set
of all semi-interior points of S is equal to sInt(S). Further
development on semi-open sets and semi-closed sets can be
seen in [2, 7]. The family of all semi-open (resp. semi-closed)
sets in X is denoted by SO(X) (resp. SC(X)).

Definition 2.1. A subset A⊆ X is a semi-neighborhood of a
point x ∈ X if there exists a semi-open set U in X such that
x ∈U ⊆ A. If a semi-neighborhood A of a point x ∈ X is semi-
open, then we say A is semi-open neighborhood of x. The
collection of all semi-open neighborhoods of a point x ∈ X is
denoted by Nx.

Definition 2.2. [6] Let X and Y be topological spaces. A
mapping f : X → Y is called semi-continuous if f−1(U) ∈
SO(X), for each open set U in Y . Equivalently, f is semi-
continuous if for each x ∈ X and each open neighborhood V
of f (x) in Y , there exists a semi-open neighborhood U of x in
X such that f (U)⊆V .

Clearly, every continuous function is semi-continuous but
the converse need not be true. For example, let X = R, the set
of reals, with its usual topology. Then the function f : X → X
defined by f (x) = 0, if x≤ 0 and f (x) = 1, if x > 0, is semi-
continuous which is obviously not continuous.

3. Semi-topological rings
We start this section with some notations. By R, we mean a

ring (R,+, .) without unity unless stated explicitly. We denote
the multiplication of two elements x and y in R by xy. We
define semi-topological rings, elaborate this notion by some
examples of semi-topological rings. We mention in brief, the
relation between topological rings and semi-topological rings.

Definition 3.1. A semi-topological ring is a ring R with a
topology τ on R such that the following three conditions are
satisfied:

(1) For each x,y ∈ R and each open neighborhood W of
x+ y in R, there exist semi-open neighborhoods U and V of x
and y respectively, in R such that U +V ⊆W,

(2) For each x ∈ R and each open neighborhood V of −x
in R, there exists a semi-open neighborhood U of x in R such
that −U ⊆V , and

(3) For each x,y ∈ R and each open neighborhood W of
xy in R, there exist semi-open neighborhoods U and V of x
and y respectively, in R such that U.V ⊆W

For any subsets A and B of R, we define A+B = {a+b :
a ∈ A,b ∈ B}, A.B = {ab : a ∈ A,b ∈ B} and −A = {−a : a ∈
A}.

Some examples of semi-topological rings.

Example 3.2. Consider the ring R of reals with its standard
topology U . Then (R,U ) is a semi-topological ring.

Example 3.3. Let R be any ring and D be the discrete topol-
ogy on R. Then (R,D) is a semi-topological ring.

It is obvious from the definition that every topological
ring is a semi-topological ring but the other way fails to hold.
Below is an example of a semi-topological ring which is not a
topological ring.

Example 3.4. Consider the ring R of reals and let τ be the
topology on R generated by the family of sets B = {(a,b) :
a,b ∈ R}∪{[c,d) : c,d ∈ R,0 < c < d}. We show that (R,τ)
is a semi-topological ring which is clearly not a topological
ring.

(1) Let x and y be any elements of R. For open neighbor-
hood W = [x+y,x+y+ε) (resp. (x+y−ε,x+y+ε)) of x+y
in R, we can opt for semi-open neighborhoods U = [x,x+δ )
(resp. (x−δ ,x+δ )) and V = [y,y+δ ) (resp. (y−δ ,y+δ ))
of x and y respectively, in R such that U +V ⊆W for each
δ < ε

2 .

(2) Let x ∈ R. We have following cases:

(i) If x = 0. In this case, for open neighborhood V =
(−ε,ε) of −x in R, we can choose the same open neighbor-
hood U =V of x such that −U ⊆V .

(ii) If x > 0, then for open neighborhood V = (−x−
ε,−x+ ε) of −x, choose semi-open set U = (x− ε,x+ ε)
in R containing x such that −U ⊆V .

(iii) If x< 0, then for open set V = [−x,−x+ε) containing
−x, choose semi-open set U = (x−ε,x] in R containing x that
satisfies −U ⊆V .

Thus, second condition of the definition of semi-topological
rings is verified.

(3) Let x,y ∈ R be arbitrary. Consider open neighborhood
W = [xy,xy+ ε) (resp. (xy− ε,xy+ ε)) of xy in R. We have
following cases:
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Case (i). If x > 0 and y > 0. We can choose semi-open
sets U = [x,x+δ ) (resp. (x−δ ,x+δ )) in R containing x and
V = [y,y+ δ ) (resp. (y− δ ,y+ δ )) in R containing y such
that U.V ⊆W for each δ < ε

x+y+1 .
Case (ii). Suppose x < 0 and y < 0. We can choose

semi-open sets U = (x−δ ,x] (resp. (x−δ ,x+δ )) and V =
(y− δ ,y] (resp. (y− δ ,y+ δ )) in R such that U.V ⊆W for
sufficiently appropriate δ ≤ −ε

x+y−1 .
Case (iii). If x = 0 and y > 0 ( resp. x > 0 and y = 0).

Then λx = 0. Consider any open neighborhood W = (−ε,ε)
of 0 in R. We can go for semi-open sets U = (−δ ,δ ) (resp.
U = (x−δ ,x+δ )) in R containing x and V = (y−δ ,y+δ )
(resp. V = (−δ ,δ )) in R containing y such that U.V ⊆W for
each δ < ε

y+1 (resp. δ < ε

x+1 ).
Case (iv). If x = 0 and y < 0 (resp. x < 0 and y = 0).

Consider any open neighborhood W = (−ε,ε) of 0 in R. Then,
for the selection of semi-open sets U = (−δ ,δ ) (resp. U =
(x− δ ,x+ δ )) and V = (y− δ ,y+ δ ) (resp. V = (−δ ,δ ))
in R, we have U.V ⊆W = (−ε,ε) for each δ < ε

1−y (resp.
(δ < ε

1−x )).
Case (v). If λ = 0 and x = 0. Consider any open neigh-

borhood W = (−ε,ε) of 0 in R, we can find semi-open sets
U = (−δ ,δ ) and V = (−δ ,δ ) in R, such that U.V ⊆W for
each δ <

√
ε .

Case (vi). If x < 0, y > 0 (resp. x > 0, y < 0). In this case,
there is only one type of open neighborhood W = (xy−ε,xy+
ε) of xy in R. Choose semi-open sets U = (x−δ ,x+δ ) and
V = (y− δ ,y+ δ ) in R containing x and y respectively, we
have U.V ⊆W for each δ < ε

y−x+1 (resp. δ < ε

x−y+1 ).

Therefore, (R,τ) is a semi-topological ring.

4. Characterizations
In this section, we prove that translation of an open (resp.

closed) set in a semi-topological ring is semi-open (resp.
semi-closed). Later, we also show that multiplication of an
open (resp. closed) set by an invertible element of a semi-
topological ring is semi-open (resp. semi-closed). We further
investigate some permanence properties of semi-topological
rings.

Theorem 4.1. Let A be an open set in a semi-topological ring
R. Then

(1) −A ∈ SO(R).
(2) x+A ∈ SO(R) for each x ∈ R.

Proof. (1) Let x be any element from −A. Then there exists
U ∈Nx(R) such that −U ⊆ A. This gives x ∈U ⊆ −A ⇒
x ∈ sInt(−A) and hence −A = sInt(−A). Therefore, −A ∈
SO(R).

(2) Let y be an element from x+A. Our task is to prove
x+A = sInt(x+A). Since A is open, let U and V be semi-
open sets in R such that −x ∈U,y ∈ V and U +V ⊆ A. In
particular, −x+V ⊆ A ⇒ V ⊆ x+A. This proves that y ∈
sInt(x+A). Consequently, x+A = sInt(x+A). That is, x+
A ∈ SO(R).

Corollary 4.2. Let A be an open set in a semi-topological
ring R. Then

(1) −A⊆Cl(Int(−A)).
(2) x+A⊆Cl(Int(x+A)) for each x ∈ R.

Corollary 4.3. For any closed set F in a semi-topological
ring R, the following hold:

(1) −F ∈ SC(R).
(2) x+F ∈ SC(R) for each x ∈ R.

Theorem 4.4. Let A be any subset of a semi-topological ring
R. The following are valid:

(1) x+ sCl(A)⊆Cl(x+A) for each x ∈ R.
(2) sCl(x+A)⊆ x+Cl(A) for each x ∈ R.
(3) x+ Int(A)⊆ sInt(x+A) for each x ∈ R.
(4) Int(x+A)⊆ x+ sInt(A) for each x ∈ R.

Proof. (1) Suppose z ∈ x+ sCl(A) be arbitrary. Then z =
x+ y for some element y from sCl(A). Our aim is to show
z ∈Cl(x+A). For, let W be an open neighborhood of z in R.
Then we find semi-open neighborhoods U of x and V of y in
R satisfying U +V ⊆W . This follows from the definition of
semi-topological rings.

Since y ∈ sCl(A), there is a common element g of A and
V . This leads x+g ∈ (x+A)∩W ⇒ (x+A)∩W 6= /0. That
is, z ∈Cl(x+A). Hence the assertion follows.

(2) Let y be an element from sCl(x+A). We have to
show that y ∈ x+Cl(A). That is, −x+ y ∈ Cl(A). Let W
be any open set in R containing −x+ y. Then there exist
semi-open sets U in R containing −x and V in R containing
y such that U +V ⊆W . By assumption, (x+A)∩V 6= /0.
Let g be a common element of x+A and V . Then −x+g ∈
A∩ (U +V ) ⊆ A∩W . Therefore, −x+ y ∈ Cl(A); that is,
y ∈ x+Cl(A). Hence sCl(x+A)⊆ x+Cl(A).

(3) Let y be any element from x+ Int(A). Then −x+ y ∈
Int(A). By using definition of a semi-topological ring, we
obtain U,V ∈ SO(R) such that −x ∈U,y ∈V and U +V ⊆ A.
In particular, −x+V ⊆ A implies that V ⊆ x+A, thereby it
follows that y ∈ sInt(x+A). Thus, x+ Int(A)⊆ sInt(x+A).

(4) Let y ∈ Int(x+A). Then y = x+ a for some a ∈ A.
Further we obtain semi-open sets U and V in R containing x
and a respectively, such that U +V ⊆ x+A. Whence we find
that y = x+a ∈ x+ sInt(A). Therefore, job is done.

By similar arguments as above, we obtain the following
result:

Theorem 4.5. Let A be any subset of a semi-topological ring
R. Then

(1) −sCl(A)⊆Cl(−A).
(2) sCl(−A)⊆−Cl(A).
(3) −Int(A)⊆ sInt(−A).
(4) Int(−A)⊆−sInt(A).
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We say that (R,τ) (or simply, R) is a semi-topological ring
with unity if (R,τ) is a semi-topological ring and R is a ring
with unity. In this case, we denote the set of all invertible
elements in R by R∗.

Theorem 4.6. Let (R,τ) be a semi-topological ring with unity.
If A ∈ τ , then rA,Ar ∈ SO(R) for each r ∈ R∗.

Proof. We begin to show rA is semi-open. For any element
x from rA, we find r−1x ∈ A. We will use the definition of a
semi-topological ring without further mention. Let U and V
be semi-open sets in R satisfying r−1 ∈U,x ∈V and U.V ⊆ A.
Then V ⊆ rA ⇒ x ∈ sInt(rA). Thus, rA = sInt(rA). Hence,
rA ∈ SO(R).

Analogously, we can show that Ar ∈ SO(R).

Theorem 4.7. Let F be any closed set in a semi-topological
ring with unity R. Then rF,Fr ∈ SC(R) for each r ∈ R∗.

Proof. We only show that rF is semi-closed. The proof for
semi-closedness of Fr follows analogously.

Let x be any element of sCl(rF) and let W be an open
neighborhood of r−1x. There exist semi-open neighborhoods
U and V of r−1 and x respectively, in R such that U.V ⊆
W . Since x ∈ sCl(rF), there is g ∈ (rF)∩V . Consequently,
r−1g ∈ F ∩ (U.V )⊆ F ∩W ⇒ F ∩W 6= /0 ⇒ r−1x ∈Cl(F).
Since F is closed, x ∈ rF . Hence rF = sCl(rF); that is, rF ∈
SC(R).

Theorem 4.8. Let R be a semi-topological ring with unity.
For any A⊆ R, the following hold:

(1) rsCl(A)⊆Cl(rA) for each r ∈ R∗.
(2) sCl(rA)⊆ rCl(A) for each r ∈ R∗.
(3) rInt(A)⊆ sInt(rA) for each r ∈ R∗.
(4) Int(rA)⊆ rsInt(A) for each r ∈ R∗.

Proof. We only prove (1) and (2). The proof for part (3) and
(4) can be obtained analogously.

(1) Let y be any element from rsCl(A). Then y = rx for
some x∈ sCl(A). We have to show that for any open neighbor-
hood W of y, (rA)∩W 6= /0. Let W be an open neighborhood
of y. We obtain semi-open neighborhoods U and V of r and x
respectively, in R such that U.V ⊆W . Now,

x ∈ sCl(A) ⇒ A∩V 6= /0 ⇒ there is a ∈ A∩V . This
gives ra ∈ (rA)∩ (U.V ) ⊆ (rA)∩W ⇒ y ∈ Cl(rA). Hence
rsCl(A)⊆Cl(rA).

(2) Let x ∈ sCl(rA). We have to show that x ∈ rCl(A). For
any open set W in R containing y= r−1x, we obtain semi-open
sets U and V in R satisfying r−1 ∈U, x ∈ V and U.V ⊆W .
By assumption, we always have (rA)∩V 6= /0. So, there is
a ∈ (rA)∩V wherefrom we have r−1a ∈ A∩ (U.V )⊆ A∩W ;
that is, A∩W 6= /0. Thus, x ∈ rCl(A).

Theorem 4.9. Let A and B be any subsets of a semi-topological
ring R. Then sCl(A)+ sCl(B)⊆Cl(A+B).

Proof. Suppose x ∈ sCl(A) and y ∈ sCl(B). We have to show
that x+ y ∈Cl(A+B). Let W be an open neighborhood of
x+ y. Then some semi-open neighborhoods U of x and V
of y will satisfy U +V ⊆W . Assumptions yield, there are
a∈A∩U and b∈B∩V . This helps to produce the fact a+b∈
(A+B)∩W ⇒ (A+B)∩W 6= /0. Thus, x+ y ∈ Cl(A+B)
and thereby the proof is complete.

Theorem 4.10. Let R be a semi-topological ring. Then the
following mappings:

(1) φx : R→R defined by φx(y) = x+y, for all y∈R (x∈R
is fixed),

(2) ψ : R→ R defined by ψ(x) =−x for all x ∈ R

are semi-continuous.

Proof. (1) In order to show that φx is semi-continuous, we
will show that the inverse image of any open set in R under
φx is semi-open set in R. Let U be any open set in R. Then
φ−1

x (U) = −x+U . By Theorem 4.1, −x+U is semi-open.
Hence φx is semi-continuous.

(2) Let x be any element of R and let V be any open
neighborhood of ψ(x). Since R is semi-topological ring, there
exists a semi-open neighborhood U of x such that −U ⊆ V .
This amounts to the relation ψ(U)⊆V . This proves that ψ is
semi-continuous at x and hence ψ is semi-continuous.

Theorem 4.11. Let R be a semi-topological ring with unity.
Then the mapping h : R→ R defined by h(x) = rx, for all x∈ R
(r ∈ R∗ is fixed), is semi-continuous.

Proof. This is a direct consequence of Theorem 4.4.

Theorem 4.12. Let R be a semi-topological rings, S be a
topological ring and let f : R→ S be a ring homomorphism.
If f is continuous at zero, then f is semi-continuous.

Proof. Let x be any element of R and W be an open neigh-
borhood of f (x) in S. According to hypothesis, W − f (x) is
open neighborhood of 0 = f (0) in S. Since f is continuous at
zero, there exists an open neighborhood U of 0 in R such that
f (U) ⊆W − f (x). This gives f (x+U) ⊆W . By Theorem
4.1, x+U is semi-open and hence f is semi-continuous at x.
Thus, f is semi-continuous.

5. Conclusion
In this paper, we developed semi-topological ring which

is basically one of the generalization of topological ring. The
concept is further elaborated with examples and counter ex-
amples. Moreover, some permanence results and properties of
semi-topological ring are characterized and explained through-
out the paper.
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