

https://doi.org/10.26637/MJM0704/0031

$\delta \hat{g}$ Closed sets in grill topological spaces

N. Chandramathi^{1*} and B. Sujatha²

Abstract

In this paper we introduce a new type of closed sets called $\zeta \delta \hat{g}$ closed sets in a topological space *X*, defined in terms of grills. The relations between $\zeta \delta \hat{g}$ closed sets and already available closed sets are discussed.

Keywords

 δ closed sets, ω closed sets, $\zeta \omega$ closed sets, r closed sets, ζg closed sets.

AMS Subject Classification 26A33

¹Department of Mathematics, Government Arts College, Udumalpet- 642126, Tamil Nadu, India.

² Department of Mathematics, Hindusthan College of Engineering and Technology, Coimbatore-641032, Tamilnadu, India.

*Corresponding author: 1 drmathimaths@gmail.com; 2 sujathamaths@gmail.com

Article History: Received 2 June 2019; Accepted 15 November 2019

©2019 MJM.

Contents

1	Introduction
2	Preliminaries
3	$\zeta \delta \hat{g}$ -closed sets823
	References

1. Introduction

The concept of grill topological spaces was first introduced by Choquet [1] in 1947. B. Roy and M. N. Mukherjee [4] defined on a typical topology induced by a grill. Shyamapada Modak & Sukalyan Mistry [5] invented grill on generalized topological spaces. Rodyna A. Hosny [3] introduce the concept of δ using grill and obtain grill delta space. M. Lellis Thivagar et al [2] introduced $\delta \hat{g}$ closed sets. Veera Kumar [6] introduced \hat{g} closed sets in topological spaces.

2. Preliminaries

Let (X, τ) be a topological space with no separation properties assumed. A sub-collection ζ of P(X) is called a grill on *X* if ζ satisfies the conditions

(i) $\phi \notin \varsigma$

(ii) $A \in \varsigma$ and $A \subseteq B \subseteq X \Rightarrow B \in \varsigma$

(iii) $A, B \subseteq X \& A \cup B \in \varsigma$ implies that $A \in \varsigma$ or $B \in \varsigma$.

For any point *x* of a topological space $(X, \tau), \tau(x)$ denotes the collection of all open neighborhoods of *x*.

Definition 2.1. Let $[X, \tau^{\delta}, \varsigma]$ be a grill delta space. A mapping $\varphi_{\delta} : P(X) \to P(X)$ denoted by $\varphi_{\delta}(A)$ is called the operator associated with grill ς and the topology τ^{δ} and is defined by $\varphi_{\delta} = \{x \in X/A \cap U \in \varsigma \text{ for all } U \in \delta O(X, \tau)\}$. A mapping $\psi_{\delta} : P(X) \to P(X)$ is defined as $A \cup \varphi_{\delta}(A)$ for all $A \in P(X)$.

Definition 2.2. To a grill delta space $(X, \tau^{\delta}, \varsigma)$ there exists a unique topology $\tau_{\varsigma}^{\delta}$ on X given by

$$\tau^{\delta}_{\varsigma} = \{U \subseteq X : \psi_{\delta}(X \backslash U) = (X \backslash U)\}$$

where for any $A \subseteq X$, $\psi_{\delta}(A) = A \cup \varphi_{\delta}(A) = \tau_{\varsigma}^{\delta} - cl_{\delta}(A)$.

3. $\zeta \delta \hat{g}$ -closed sets

Definition 3.1. Let (X, τ) be a topological space and ζ be a grill on X. Then a subset A of X is said to be a $\zeta \delta \hat{g}$ closed if $\varphi_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\zeta \omega$ open in (X, τ, ζ) .

Proposition 3.2. *Every* δ *closed set is* $\zeta \delta \hat{g}$ *closed.*

Proof. Let *A* be a δ closed set and *U* be any $\zeta \omega$ open set containing *A*. Since *A* is δ closed then $\varphi_{\delta}(A) \subseteq cl_{\delta}(A) = A$ for every subset *A* of *X*. Therefore $\varphi_{\delta}(A) = A \subseteq U$ and hence *A* is $\zeta \delta \hat{g}$ closed.

Remark 3.3. *The converse of the above theorem is false as shown in the following example.*

Example 3.4. Let $X = \{p,q,r\}, \tau = \{\phi, X, \{p\}, \{q,r\}\}, \zeta = \{X, \{p\}, \{r\}, \{p,q\}, \{q,r\}, \{p,r\}\} \delta closed = \{\phi, X, \{p\}, \{q,r\}\}, \zeta \delta \hat{g} closed = \{\phi, X, \{p\}, \{q\}, \{q,r\}\}, Here \{p,q\} is \zeta \delta \hat{g} closed but not \delta closed in (X, \tau).$

Proposition 3.5. Every regular closed set is $\zeta \delta \hat{g}$ closed.

Proof. Assume A is regular closed set and U be any $\zeta \omega$ open set containing A. Here A is regular closed set. This implies A is δ closed and $cl_{\delta}(A) = A$ for any subset A in (X, τ) and $\varphi_{\delta}(A) \subseteq cl_{\delta}(A) \subseteq U.$

Hence A is $\zeta \delta \hat{g}$ closed.

Remark 3.6. The converse of the above theorem is false as shown in the following example.

Example 3.7. Let $X = \{p, q, r\}, \tau = \{\phi, X, \{q\}, \{p, r\}\}, \zeta =$ $\{X, \{p\}, \{q\}, \{p,q\}\}\ \zeta \delta \hat{g} \ closed = \{\phi, X, \{q\}, \{r\}, \{q,r\}, \{q,r$ $\{p,r\}\}$ rclosed = $\{\phi, X, \{p,r\}\}$.

Here $\{q\}$ *is* $\zeta \delta \hat{g}$ *closed but not regular closed.*

Proposition 3.8. Every $\zeta \delta \hat{g}$ closed set is ζg closed set.

Proof. Consider A to be a $\zeta \delta \hat{g}$ closed set and U be any open set containing A in (X, τ) . Since every open set is $\zeta \omega$ open and A is $\zeta \delta \hat{g}$ closed. Then $\varphi_{\delta}(A) \subseteq U$ for every subset A of X. $\varphi(A) \subseteq \varphi_{\delta}(A) \subseteq U \Rightarrow \varphi(A) \subseteq U$ and hence A is ζg closed.

Remark 3.9. The converse of the above theorem is false as shown in the following example.

Example 3.10. Let (X, τ) be a topological space with X = $\{p,q,r\}, \quad \tau = \{\phi, X, \{p\}\}, \quad \varsigma = \{X, \{p\}, \{p,q\}, \{q,r\}\}$ closed $= \{\phi, X, \{q\}, \{r\}, \{p,q\}, \{q,r\}, \{p,r\}\}$ ζg $\zeta \delta \hat{g} \ closed = \{\phi, X, \{q\}, \{r\}, \{q, r\}, \{p, r\}\}.$ Here $\{p, q\}$ is ζg closed but not $\zeta \delta \hat{g}$ closed.

Proposition 3.11. Every $\zeta \delta \hat{g}$ closed set is $\zeta g \delta s$ closed set.

Proof. Let A be a $\zeta \delta \hat{g}$ closed set and U be any δ - open set containing A in (X, τ) . Since δ - open set is $\zeta \omega$ open and A is $\zeta \delta \hat{g}$ closed. Then $\varphi_{\delta}(A) \subseteq U$ for every subset A of X.

Therefore A is $\zeta g \delta s$ closed.

Remark 3.12. The converse of the above theorem is not true as shown in the following example.

Example 3.13. Let $X = \{p,q,r\}, \tau = \{\phi, X, \{q\}\}, \tau$ $\boldsymbol{\zeta} = \{X, \{q\}, \{p, r\}, \{q, r\}\}$ $\zeta \delta \hat{g} \ closed = \{\phi, X, \{p\}, \{r\}, \{p,q\}\}$ $\zeta g \delta s \ closed = \{ \phi, X, \{p\}, \{q\}, \{r\}, \{p,q\}, \{q,r\}, \{p,r\} \}.$ Here $\{q\}$ is $\zeta g \delta s$ closed but not $\zeta \delta \hat{g}$ closed.

Remark 3.14. The following example shows that $\zeta \delta \hat{g}$ closedness is independent from closedness , ω - closedness , $\zeta \omega$ closedness, δg closedness and δg^* closedness.

Example 3.15. Let $X = \{p,q,r\}, \tau = \{\phi, X, \{q\}, \{q,r\}\}, \tau = \{\phi, X, \{q,r\}\}, \tau = \{\phi, X, \{q\}, \{q,r\}\}, \tau = \{\phi, X, \{q,r\}$ $\boldsymbol{\zeta} = \{X, \{p\}, \{q\}, \{p,q\}\}\$ $\zeta \delta \hat{g} \ closed = \{\phi, X, \{r\}, \{q, r\}, \{p, r\}\}$ $\delta g \ closed = \delta g^* \ closed = \{\phi, X, \{p\}, \{p,q\}, \{p,r\}\}$ $\zeta \omega \ closed = \{\phi, X, \{p\}, \{r\}, \{q, r\}, \{p, r\}\}.$ Here $\{p\}$ is δg closed, δg^* closed and $\zeta \omega$ closed but not $\zeta \delta \hat{g}$ closed.

Example 3.16. Let $X = \{p,q,r\}, \tau = \{\phi, X, \{r\}, \{q,r\}\}, \tau = \{\phi, X, \{q,r\}\}, \tau = \{\phi, X, \{r\}, \{q,r\}\}, \tau = \{\phi, X, \{q,r\}\}$ $\boldsymbol{\zeta} = \{X, \{p\}, \{r\}, \{p,q\}, \{q,r\}, \{p,r\}\}.$

Here $\{q\}$ is $\zeta \delta \hat{g}$ closed but not δg closed, δg^* closed and $\zeta \omega$ closed in (X, τ) .

Example 3.17. Let $X = \{p,q,r\}, \ \tau = \{\phi, X, \{q\}, \{p,q\}\},\$ $\varsigma = \{X, \{p\}, \{r\}, \{p,q\}, \{q,r\}, \{p,r\}\}$. Here $\{r\}$ is closed and ω closed but not $\zeta \delta \hat{g}$ closed whereas $\{q\}$ is $\zeta \delta \hat{g}$ closed but not ω closed and closed in (X, τ) .

Remark 3.18. The relationship of $\zeta \delta \hat{g}$ closed sets with known existing sets is given below. $A \rightarrow B$ represents A implies B but not conversely.

1. $\zeta \delta \hat{g}$ closed, 2. δ closed, 3. r closed, 4. δg^* closed, 5. δg closed, 6. $\zeta g \delta s$ closed, 7. ζg closed, 8. $\zeta \omega$ closed, 9. ω closed, 10. closed.

Theorem 3.19. Let $(X, \tau^{\delta}, \varsigma)$ be a grill delta space. If a subset A of X is $\zeta \delta \hat{g}$ closed then $\tau_{\zeta}^{\delta} - cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\zeta \omega$ open.

Proof. Let A be a $\zeta \delta \hat{g}$ closed set and U be $\zeta \omega$ open in X such that $A \subseteq U$ then $\varphi_{\delta}(A) \subseteq U \Rightarrow A \cup \varphi_{\delta}(A) \subseteq U \Rightarrow \tau_{\varsigma}^{\delta}$ $cl_{\delta}(A) \subseteq U.$

Thus $\tau_{\varsigma}^{\delta} - cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\varsigma \omega$ open.

Theorem 3.20. Let $(X, \tau^{\delta}, \varsigma)$ be a grill delta space. If a subset A of X is $\zeta \delta \hat{g}$ closed then for all $x \in \tau_{\zeta}^{\delta} - cl_{\delta}(A) \subseteq$ $Ucl_{\delta}(\{x\}) \cap A \neq \phi.$

Proof. Let $x \in \tau_{\varsigma}^{\delta} - cl_{\delta}(A)$. If $cl_{\delta}(\{x\}) \cap A = \phi$ $\Rightarrow A \subseteq X \setminus cl_{\delta}(\{x\})$ then by Theorem 3.19 $\tau_{\varsigma}^{\delta} - cl_{\delta}(A) \setminus A \subseteq$ $X \setminus cl_{\delta}(\{x\})$ which is a contradiction to our assumption that $x \in \tau_{\varsigma}^{\delta} - cl_{\delta}(A)$. Therefore, $cl_{\delta}(\{x\}) \cap A \neq \phi$.

Lemma 3.21. Let (X, τ^{δ}) be a space and ς be a grill on X. If $A(\subseteq X)$ is τ_{ζ}^{δ} - dense in itself, then $\varphi_{\delta}(A) = cl_{\delta}(\varphi_{\delta}(A)) =$ $\tau_{c}^{\delta} - cl_{\delta}(A) = cl_{\delta}(A).$

Proof. Assume A to be $\tau_{\varsigma}^{\delta}$ - dense in itself. $\therefore A \subseteq \varphi_{\delta}(A)$. Thus $cl_{\delta}(A) \subseteq cl_{\delta}(\varphi_{\delta}(A)) = \varphi_{\delta}(A) \subseteq cl_{\delta}(A)$. This implies that $cl_{\delta}(A) = \varphi_{\delta}(A) = cl_{\delta}(\varphi_{\delta}(A)).$ Now by definition

$$\tau_{\varsigma}^{\delta} - cl_{\delta}(A) = A \cup \varphi_{\delta}(A) = A \cup cl_{\delta}(A) = cl_{\delta}(A).$$

Therefore

$$\varphi_{\delta}(A) = cl_{\delta}(\varphi_{\delta}(A)) = \tau_{\varsigma}^{\delta} - cl_{\delta}(A) = cl_{\delta}(A).$$

Theorem 3.22. Let ς be a grill on a space (X, τ^{δ}) . If $A(\subseteq X)$ is $\tau_{\varsigma}^{\delta}$ -dense in itself and $\varsigma\delta\hat{g}$ closed, then A is $\delta\omega$ closed.

Proof. From Lemma 3.21

References

- G. Choquet, Sur les notions de filter et grille, *Comptes Rendus Acad. Sci. Paris*, 224(1947), 171–173.
- [2] M. Lellis Thivagar, B. Meeradevi and E. Hatir, Closed sets in topological spaces, *Gen. Math. Notes*, (2)(2010), 17–25.
- [3] Rodyna A. Hosny, δ-Sets with Grill, *International Mathematical Forum*, 7(43)(2012), 2107–2113.
- [4] B. Roy and M.N. Mukherjee, On a topology induced by a grill, *Soochow J. Math.*, 33(4)(2007), 771–786.
- [5] M. Shyamapada and M. Sukalyan, Grill on generalised topological spaces, *Aryabhatta Journal of Mathematics* & *Informatics*, (2013), 279–284.
- [6] M.K.R.S. Veerakumar, g -closed sets in topological, *Allah. Math. Soc.*, (18)(2003), 99–112.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

