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Abstract
This paper analyzes the optimal control of mean field type forward-backward non-zero sum stochastic delay
differential game with Poisson random measure over infinite time horizon. Further, infinite horizon version of
stochastic maximum principle and necessary condition for optimality are established under the transversality
conditions and the assumption of convex control domain. Finally, the Nash equilibrium for optimization problem
in financial market is presented to illustrate the theoretical study.
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1. Introduction
Game theory arises in the situation in which two or more
agents interact with each other. In particular, stochastic differ-
ential game problems are related to the context of dynamical
system with stochastic nature see [3, 9]. In this manuscript
optimal control of non-zero sum stochastic differential game
problem is discussed. In classical stochastic optimal control
problem, there is a single control u(t) which corresponds to
the single objective functional to be optimized. Rather, the
stochastic optimal control of non-zero sum differential game
have two controls namely u1(t), u2(t) and corresponding to
two objective functional for each player, where as each player

attempts to control the state of the system so as to achieve
the desired goal. Moreover, optimal control of non-zero sum
stochastic differential game is studied by Chen and Yu in [6],
Deng et al. in [8], Wu and Shu in [21].

Economic and financial models disclose the jump type
behavior see [7]. For instance, Lin et al. discussed the optimal
portfolio selection problem of insurer who faces model un-
certainty in jump-diffusion risk model under game theoretic
approach. Stochastic optimal control of delay differential
game problems are discussed in [18]. In order to combine
delay and jump type behavior through optimal control of
stochastic differential game approach, Pamen studied in [17].
Moreover, forward-backward stochastic differential equation
(FBSDE) have natural occurrence in various fields such as
financial market, optimal pricing, stochastic optimal control
and recursive utility problem [5, 14]. For that, Wang et al.
studied the forward-backward differential game problem with
optimal investment and dividend problem of an insurer under
model uncertainty in [19]. They applied the classical convex
variation and adjoint techniques to derive necessary and suffi-
cient condition for the prescribed system. For more details on
optimal control problem for stochastic differential games of
FBSDE, see Juan et al. in [12] and Øksendal in [16].
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Further, natural system with large number of interacting
particles are modeled by mean-field stochastic differential
game see [4]. Mean field game problems are studied by many
authors. In particular Wu and Liu studied the optimal control
of mean field type zero sum stochastic differential game in
[20]. Moreover, optimal control of mean field type non-zero
sum game problem is studied by Hu et al. in [11]. Despite of
numerous work have been reported on optimal control of mean
field stochastic differential game, there is few of existing work
in infinite horizon. Infinite horizon optimal control problems
arise naturally in economics when dealing with dynamical
models of optimal allocation of resources. Therefore the
present work of this manuscript focused on optimal control of
mean field type stochastic differential game with an infinite
horizon time. For more details related to infinite horizon
optimal control problems see [1, 2, 10, 13, 15] and references
therein.

By the above motivation the authors consider the infinite
horizon mean field type optimal control of non-zero sum
stochastic delay differential game of two players with Poisson
jump processes.

This paper is structured as follows: In Section 2, prelimi-
naries, notations and formulation of the problems is provided.
Section 3 of this paper contains the derivation of sufficient
condition for optimality of the proposed problem under con-
vexity assumption on control domain. Necessary conditions
for optimal control problems are given in Section 4. In Section
5, application of the theoretical study is established by the
optimization problem in financial market.

2. Preliminaries and Problem formulation
In this paper the following non zero sum game of infinite
horizon mean field type optimal control of stochastic delay
differential equation with Poisson jump processes is consid-
ered.

dX(t) = b(t,X(t),u1(t),u2(t))dt

+σ (t,X(t),u1(t),u2(t))dW (t)

+
∫
R0

G(t,X(t),u1(t),u2(t),γ) Ñ(dt,dγ), t ∈ [0,∞).

X(t) = x0 ∈ R; t ∈ [−δ ,0], where δ > 0 (2.1)

where, X(t) = X(t) and X(t) = X(t,ω); t ≥ 0,ω ∈ Ω is a
state processes which is defined on a complete probability
space (Ω,F ,P) with right continuous filtration {Ft}t≥0 and
F (0) contains P null sets. Let A(t)(:= X(t− δ )), B(t)(:=∫ t

t−δ
e−ρ(t−r)X(r)dr) are pointwise and distributed delay re-

spectively, where ρ ≥ 0. Expectations E denotes the average
behavior of each players. Let W (t) =W (t,ω) be a one dimen-
sional Brownian motion and Ñ(dt,dγ) =N(dt,dγ)−ν(dγ)dt
is a compensated Poisson random measure with γ ∈ R0(:=
R−{0}), where ν is the Lévy measure on the filtered prob-
ability space (Ω,Ft ,P). Moreover, W (·) and N(·) are in-
dependent processes. Let X(t), A(t), B(t), E[X(t)], E[A(t)],
E[B(t)] be real valued Ft adapted processes on [0,∞). More-
over, u1(t) = u1(t,ω) and u2(t) = u2(t,ω) are strict con-

trol variables for Player I and Player II respectively with
E
[
supt∈[0.∞) |ui(t)|2

]
< ∞, for i = 1,2 holds. Here u1(t) and

u2(t) are also Ft adapted process taking values in the convex
subsets U1 and U2 of R respectively. The coefficients b, σ

are real valued functions on [0,∞)×R×R×R×R×R×
R×U1×U2×Ω, and G is also a real valued functions on
[0,∞)×R×R×R×R×R×R×R0×U1×U2×Ω.
Assume that the following two subfiltrations

ε
(1)
t ⊂Ft , ε

(2)
t ⊂Ft ; t ∈ [0,∞),

representing the information available to Player I , Player
II respectively. Let U1 ⊂U1 denotes the set of admissible
control processes for Player I with ε

(1)
t - predictable processes

and U2 ⊂U2 denotes the set of admissible control processes
for Player II with ε

(2)
t - predictable processes.

Backward equation in the unknown real valued measurable
processes Yi(t),Zi(t),θi(t,γ) corresponding to the forward
system (2.1) is defined as follows:

dYi(t) =−gi (t,X(t),Yi(t),Zi(t),θi(t,γ),u1(t),u2(t))dt

+Zi(t)dW (t)+
∫
R0

θi(t,γ)Ñ(dt,dγ), t ∈ [0,∞).

(2.2)

Here i = 1,2. gi is a function from [0,∞)×R×R×R×R×
R×R×R×R×R×U1×U2×Ω→ R, where R is the set
of all functions from R0 to R. Another equivalent form of
equation (2.2) is

Yi(t) =Yi(T )−
∫ T

t
gi(s,X(s),Yi(s),Zi(s),θi(s,γ),

u1(s),u2(s))ds

+
∫ T

t
Zi(s)dW (s)+

∫ T

t

∫
R0

θi(t,γ)Ñ(dt,dγ),

the processes Yi(t), Zi(t), θi(t,γ) are solutions of the above
equation, if it satisfies the following condition

E
[

supectY 2(t)+
∫

∞

0
ect
(

Z2(t)+
∫
R0

K2(t,γ)ν(dγ)

)
dt
]
< ∞.

The corresponding solution X(t), Yi(t), Zi(t), θi(t) of system
(2.1), (2.2) exists, if E

[∫
∞

0 |X(t)|2dt
]
< ∞ hold. Let us con-

sider the cost functional corresponding to the system (2.1) and
(2.2) of each player i as follows:

Ji(u1,u2) =E
[∫

∞

0
Ki (t,X(t),Yi(t),Zi(t),θi(t,γ),u1(t),u2(t))dt

]
+E [hi(Yi(0))] , t ≥ 0. (2.3)

where Ki is real valued function on [0,∞)×R×R×R×R×
R×R×R×R×R×U1×U2×Ω, and hi is also real valued
function on R with the following assumption holds

E
[∫

∞

0

{∣∣∣Ki (t,X(t),u1(t),u2(t))
∣∣∣}dt

]
< ∞.
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The Hamiltonian Hi : [0,∞)×R3 ×R3 ×R×R×R×
U1×U2×R3×R→ R be defined for the system (2.1)-(2.3)
as follows,

Hi(t,X(t),Yi(t),Zi(t),θi(t,γ),u1(t),u2(t),λi(t),

Pi(t),Qi(t),Ri(t,γ))

=Ki(t,X(t),Yi(t),Zi(t),θi(t,γ),u1(t),u2(t))

+λi(t)gi(t,X(t),Yi(t),Zi(t),θi(t,γ),u1(t),u2(t))

+Pi(t)b(t,X(t),u1(t),u2(t))

+Qi(t)σ(t,X(t),u1(t),u2(t))

+
∫
R0

Ri(t,γ)G(t,X(t),u1(t),u2(t)).

In order to simplify the notations the above equation can be
written as

Hi(t) =Ki(t)+λi(t)gi(t)+Pi(t)b(t)+Qi(t)σ(t)

+
∫
R0

Ri(t,γ)G(t,γ)ν(dγ). (2.4)

To establish the optimality condition for the system (2.1) and
(2.2) with associated cost functional (2.3), we need to de-
velop the following adjoint equations of adjoint processes
λi(t),Pi(t),Qi(t),Ri(t,γ) by using the Hamiltonian func-
tional.

� Forward stochastic differential equation in λi(t) is,

dλi(t) =
∂Hi(t)

∂Yi
dt +

∂Hi(t)
∂Zi

dW (t)+
∫
R0

∂Hi(t)
∂θi

Ñ(dt,dγ)

λi(0) =h′i(Yi(0)) (2.5)

� Backward stochastic differential equation in Pi(·),
Qi(·), Ri(·) is,

dPi(t) =M (t)dt +E[M (t)]dt +Qi(t)dW (t)

+
∫
R0

Ri(t,γ)Ñ(dt,dγ), (2.6)

where

M (t) =− ∂Hi(t)
∂X

− ∂Hi(t +δ )

∂A

− eρt
(∫ t+δ

t

∂Hi(r)
∂B

e−ρrdr
)
, (2.7)

E[M (t)] =−E
[

∂Hi(t)
∂ X̃

]
−E

[
∂Hi(t +δ )

∂ Ã

]
− eρt

(∫ t+δ

t
E
[

∂Hi(r)
∂ B̃

]
e−ρrdr

)
, (2.8)

and E
[∫

∞

0
eρt |Pi(t)|2dt

]
< ∞, for all ρ ∈ R.

here E
[

∂Hi(t)
∂ X̃

]
, E
[

∂Hi(t+δ )

∂ Ã

]
, E
[

∂Hi(s)
∂ B̃

]
are partial deriva-

tives of Hi(t) with respective to E[X(t)], E[A(t)], E[B(t)] re-
spectively.

3. Sufficient Condition for Optimality
In this section, sufficient condition for optimality of the system
(2.1)-(2.3) is established via the existence of Nash equilibrium
pair (û1, û2) ∈U1×U2 such that

J1(u1, û2)≤ J1(û1, û2) for all u1 ∈U1.

J2(û1,u2)≤ J2(û1, û2) for all u2 ∈U2.

In this problem no player has an incentive to deviate from his
or her chosen strategy after considering an opponent’s choice.
Overall, an individual can receive no incremental benefit from
changing actions and assuming other players remain constant
in their strategies.

In order to prove Nash equilibrium for the proposed prob-
lem (2.1)-(2.3) the following hypotheses are needed:

(H 1) Concavity:
The functions x 7→ hi(x) and x 7→Hi(x) are concave, for
t ∈ [0,∞), i = 1,2.

(H 2) Conditional maximum principle:

E
[
Hi(t, X̂(t),Ŷi(t), Ẑi(t), θ̂i(t,γ), û1(t), û2(t),

×λi(t),P̂i(t),Q̂i(t),R̂i(t,γ))
∣∣∣Ft

]
= max

u1,u2∈U1×U2
E
[
Hi(t, X̂(t),Ŷi(t), Ẑi(t), θ̂i(t,γ),u1(t),u2(t),

×λi(t),P̂i(t),Q̂i(t),R̂i(t,γ))
∣∣∣Ft

]
,

for i = 1,2.

(H 3) Transversality condition:

lim
T→∞

E
[
λ̂i(T )

(
Yi(T )− Ŷi(T )

)]
≤0 and

lim
T→∞

E
[
P̂i(T )

(
X(T )− X̂(T )

)]
≥0,

for i = 1,2.

Theorem 3.1. Let X̂(t), Ŷi(t), Ẑi(t), θ̂i(t) be solution of the
system (2.1)-(2.3) which are corresponding to the admissi-
ble control (û1, û2) ∈ U1 ×U2. Suppose the adjoint pro-
cesses λ̂i(t), P̂i(t), Q̂i(t), R̂i(t) which are satisfies the ad-
joint stochastic differential equation (2.5)-(2.8) and the hy-
pothesis (H 1)-(H 3) are holds, then (û1, û2) is an optimal
control for the system (2.1)-(2.3).

Proof. Proof similar to Theorem 4.1 in [15].

4. Necessary Condition for Optimality
In this section necessary condition for optimality of the pro-
posed problem is proved by the following hypotheses:

(H 4) For all t0 ∈ [0,∞), l > 0 and all bounded ε
(i)
t0 - measur-

able random variable αi(ω), the control process βi(t)
defined by

βi(t) := I[t0,t0+`)(t)αi(ω), which is belongs to Ui,
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(H 5) For all ui ∈ Ui and all bounded βi ∈ Ui, there exists
δi > 0 such that the control

ũi(t) := ui + sβi(t), t ∈ [0,∞),

for all s ∈ (−δi,δi), i = 1,2.

(H 6) lim
T→∞

E
[
P̂i(T )Ai(T )

]
= 0 and lim

T→∞
E
[
λ̂i(T )φi(T )

]
=

0.

Theorem 4.1. Assume that the hypotheses (H 4)− (H 6)
are holds. Let (û1, û2) ∈U1×U2 be the optimal control and
X̂(t), Ŷi(t), Ẑi(t), θ̂i(t) are corresponding solutions of the
system (2.1)-(2.3). If there exist a unique adjoint processes
λ̂i(t), P̂i(t), Q̂i(t), R̂i(t) which solves the adjoint stochastic
differential equation (2.5)-(2.6), then the following conditions
are equivalent:

(S 1) For all bounded β1 ∈U1,β2 ∈U2, we have

d
ds

J(u1+sβ1,u2)
1 (t)

∣∣∣
s=0

=
d
ds

J(u1,u2+sβ2)
2 (t)

∣∣∣
s=0

= 0.

(S 2) For all t ∈ [0,∞) we have

E
[

∂H1

∂u1

(
X̂(t), Ŷ1(t), Ẑ1(t), θ̂1(t,γ),u1(t), û2(t),

P̂1(t),Q̂1(t),R̂1(t)
)∣∣∣Ft

]
u1=û1(t)

= 0,

and

E
[

∂H2

∂u2

(
X̂(t), Ŷ2(t), Ẑ2(t), θ̂2(t,γ), û1(t),u2(t),

P̂2(t),Q̂2(t),R̂2(t)
)∣∣∣Ft

]
u2=û2(t)

= 0,

Proof. Let us define the following derivative processes,
d
ds

Xu1+sβ1,u2(t)|s=0 =A1(t),

d
ds

Xu1,u2+sβ2(t)|s=0 =A2(t),

d
ds

Au1+sβ1,u2(t)|s=0 =A1(t−δ ),

d
ds

Au1,u2+sβ2(t)|s=0 =A2(t−δ ),

d
ds

Bu1+sβ1,u2(t)
∣∣∣
s=0

=
∫ t

t−δ

e−λ (t−s)A1(s)ds,

d
ds

Bu1,u2+sβ2(t)
∣∣∣
s=0

=
∫ t

t−δ

e−λ (t−s)A2(s)ds,

d
ds

Y u1+sβ1,u2
1 (t)|s=0 =φ1(t),

d
ds

Y u1,u2+sβ2
2 (t)|s=0 =φ2(t),

d
ds

Zu1+sβ1
1 (t),u2|s=0 =ψ1(t),

d
ds

Zu1,u2+sβ2
2 (t)|s=0 =ψ2(t),

d
ds

θ
u1+sβ1
1 (t),u2|s=0 =D1(t,γ),

d
ds

θ
u1,u2+sβ2
2 (t)|s=0 =D2(t,γ).

dA1(t) =
{

∂b(t)
∂X

A1(t)+
∂b(t)
∂A

A1(t−δ )

+
∂b(t)
∂B

∫ t

t−δ

e−ρ(t−r)A1(r)dr+
∂b(t)
∂u1

β1(t)

+E
[

∂b(t)
∂ X̃

]
E [A1(t)]+E

[
∂b(t)
∂ Ã

]
E [A1(t−δ )]

+E
[

∂b(t)
∂ B̃

]∫ t

t−δ

e−ρ(t−r)E[A1(r)]dr
}

dt

+

{
∂σ(t)

∂X
A1(t)+

∂σ(t)
∂A

A1(t−δ )

+
∂σ(t)

∂B

∫ t

t−δ

e−ρ(t−r)A1(r)dr+
∂σ(t)
∂u1

β1(t)

+E
[

∂σ(t)
∂ X̃

]
E [A1(t)]+E

[
∂σ(t)

∂ Ã

]
E [A1(t−δ )]

+E
[

∂σ(t)
∂ B̃

]∫ t

t−δ

e−ρ(t−r)E[A1(r)]dr
}

dW (t)

+
∫
R0

{
∂G(t)

∂X
A1(t)+

∂G(t)
∂A

A1(t−δ )

+
∂G(t)

∂B

∫ t

t−δ

e−ρ(t−r)A1(r)dr+
∂G(t)
∂u1

β1(t)

+E
[

∂G(t)
∂ X̃

]
E [A1(t)]+E

[
∂G(t)

∂ Ã

]
E [A1(t−δ )]

+E
[

∂G(t)
∂ B̃

]∫ t

t−δ

e−ρ(t−r)E[A1(r)]dr
}

Ñ(dt,dγ). (4.1)

dφ1(t) =−
{

∂g1(t)
∂X

A1(t)+
∂g1(t)

∂A
A1(t−δ )

+
∂g1(t)

∂B

∫ t

t−δ

e−ρ(t−r)A1(r)dr+
∂g1(t)

∂u1
β1(t)

+E
[

∂g1(t)
∂ X̃

]
E [A1(t)]+E

[
∂g1(t)

∂ Ã

]
E [A1(t−δ )]

+E
[

∂g1(t)
∂ B̃

]∫ t

t−δ

e−ρ(t−r)E[A1(r)]dr

+
∂g1(t)

∂Y1
φ1(t)+

∂g1(t)
∂Z1

ψ1(t)+
∂g1(t)

∂θ1
D1(t,γ)

}
dt

+ψ1(t)dW (t)+
∫
R0

D1(t,γ)Ñ(dt,dγ). (4.2)

d
ds

J(u1+sβ1,u2)
1

∣∣
s=0 = E

[∫
∞

0

{
∂K1(t)

∂X
A1(t)+

∂K1(t)
∂A

A1(t−δ )

+
∂K1(t)

∂B

∫ t

t−δ

e−ρ(t−r)A1(r)dr

+E
[

∂K1(t)
∂ X̃

]
E [A1(t)]+E

[
∂K1(t)

∂ Ã

]
E [A1(t−δ )]

+E
[

∂g1(t)
∂ B̃

]∫ t

t−δ

e−ρ(t−r)E[A1(r)]dr

+
∂K1(t)

∂u1
β1(t)+

∂K1(t)
∂Y1

φ1(t)+
∂K1(t)

∂Z1
ψ1(t)

+
∂K1(t)

∂θ1
D1(t,γ)

}
dt +h′1(Y1(0))φ1(0)

]
. (4.3)
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By Hamiltonian in (2.4) we have

K1(t) =H1(t)−λ1(t)g1(t)−P̂1(t)b(t)

− Q̂1(t)σ(t)−
∫
R0

R̂1(t)G(t,γ)ν(dγ),

and

∂K1(t)
∂X

=
∂H1(t)

∂X
−λ1(t)

∂g1(t)
∂X

−P̂1(t)
∂b(t)
∂X

− Q̂1(t)
∂σ(t)

∂X
−
∫
R0

R̂1(t)
∂G(t,γ)

∂X
, (4.4)

and also for ∂K1(t)
∂A , ∂K1(t)

∂B , E
[

∂K1(t)
∂ X̃

]
, E
[

∂K1(t)
∂ Ã

]
, E
[

∂K1(t)
∂ B̃

]
,

∂K1(t)
∂u1

, ∂K1(t)
∂u2

, ∂K1(t)
∂Y1

, ∂K1(t)
∂Z1

, ∂K1(t)
∂θ1

. Substituting the above
equation in (4.3), Applying the Itô formula to the processes
λ̂1(t)φ1(t) on [0,T ] and using (2.5), (4.2) then taking limit as
T → ∞ which implies that

E
[
λ̂1(0)φ1(0)

]
= lim

T→∞
E
[
λ̂1(T )φ1(T )

]
−E

[
−
∫

∞

0
λ̂1(t)

{
∂g1(t)

∂X
A1(t)+

∂g1(t)
∂A

A1(t−δ )

+
∂g1(t)

∂B

∫ t

t−δ

e−ρ(t−r)A1(r)dr+
∂g1(t)

∂u1
β1(t)

+E
[

∂g1(t)
∂ X̃

]
E [A1(t)]+E

[
∂g1(t)

∂ Ã

]
E [A1(t−δ )]

+E
[

∂g1(t)
∂ B̃

]∫ t

t−δ

e−ρ(t−r)E[A1(r)]dr

+
∂g1(t)

∂Y1
φ1(t)+

∂g1(t)
∂Z1

ψ1(t)+
∂g1(t)

∂θ1
D1(t,γ)

}
dt

+
∫

∞

0
φ1(t)

∂H1(t)
∂Y1

dt +
∫

∞

0
ψ1(t)

∂H1(t)
∂Z1

dt

+
∫

∞

0

∫
R0

D1(t,γ)
∂H1(t)

∂θ1
ν(dγ)dt

]
.

Since h′1(Ŷ1(0))= λ̂1(0), which implies that E
[
h′1(Ŷ1(0))φ1(0)

]
= E

[
λ̂1(0)φ1(0)

]
, and using (H 6) the above inequality can

be written as

E
[
h′1(Ŷ1(0))φ1(0)

]
= E

[
λ̂1(0)φ1(0)

]
−E

[
−
∫

∞

0
λ̂1(t)

{
∂g1(t)

∂X
A1(t)+

∂g1(t)
∂A

A1(t−δ )

+
∂g1(t)

∂B

∫ t

t−δ

e−ρ(t−r)A1(r)dr+
∂g1(t)

∂u1
β1(t)

+E
[

∂g1(t)
∂ X̃

]
E [A1(t)]+E

[
∂g1(t)

∂ Ã

]
E [A1(t−δ )]

+E
[

∂g1(t)
∂ B̃

]∫ t

t−δ

e−ρ(t−r)E[A1(r)]dr

+
∂g1(t)

∂Y1
φ1(t)+

∂g1(t)
∂Z1

ψ1(t)+
∂g1(t)

∂θ1
D1(t,γ)

}
dt

+
∫

∞

0
φ1(t)

∂H1(t)
∂Y1

dt

+
∫

∞

0
ψ1(t)

∂H1(t)
∂Z1

dt +
∫

∞

0

∫
R0

D1(t,γ)
∂H1(t)
∂θ1(t)

ν(dγ)dt
]
.

(4.5)

Applying the Itô formula to the processes P̂1(t)A1(t) on
[0,T ] and using (2.6), (4.1), then taking limit as T → ∞ im-
plies that

lim
T→∞

E[P̂1(T )A1(T )]

=
∫

∞

0
P1(t)

{
∂b(t)
∂X

A1(t)+
∂b(t)
∂A

A1(t−δ )

+
∂b(t)
∂B

∫ t

t−δ

e−ρ(t−r)A1(r)dr+
∂b(t)
∂u1

β1(t)

+E
[

∂b(t)
∂ X̃

]
E [A1(t)]+E

[
∂b(t)
∂ Ã

]
E [A1(t−δ )]

+E
[

∂b(t)
∂ B̃

]∫ t

t−δ

e−ρ(t−r)E[A1(r)]dr
}

dt

+
∫

∞

0
A1(t)

{
−∂Hi(t)

∂X
− ∂Hi(t +δ )

∂A

− eρt
(∫ t+δ

t

∂Hi(r)
∂B

e−ρrdr
)

−E
[

∂Hi(t)
∂ X̃

]
−E

[
∂Hi(t +δ )

∂ Ã

]
−eρt

(∫ t+δ

t
E
[

∂Hi(r)
∂ B̃

]
e−ρrdr

)}
dt

+
∫

∞

0
Q1(t)

{
∂σ(t)

∂X
A1(t)+

∂σ(t)
∂A

A1(t−δ )

+
∂σ(t)

∂B

∫ t

t−δ

e−ρ(t−r)A1(r)dr+
∂σ(t)
∂u1

β1(t)

+E
[

∂σ(t)
∂ X̃

]
E [A1(t)]+E

[
∂σ(t)

∂ Ã

]
E [A1(t−δ )]

+E
[

∂σ(t)
∂ B̃

]∫ t

t−δ

e−ρ(t−r)E[A1(r)]dr
}

dt

+
∫

∞

0
R1(t,γ)

{
∂G(t)

∂X
A1(t)+

∂G(t)
∂A

A1(t−δ )

+
∂G(t)

∂B

∫ t

t−δ

e−ρ(t−r)A1(r)dr+
∂G(t)
∂u1

β1(t)

+E
[

∂G(t)
∂ X̃

]
E [A1(t)]+E

[
∂G(t)

∂ Ã

]
E [A1(t−δ )]

+E
[

∂G(t)
∂ B̃

]∫ t

t−δ

e−ρ(t−r)E[A1(r)]dr
}

ν(dγ)dt.

(4.6)

Substitute (4.5), (4.6) and (4.4) in (4.3) and using (H 6),

d
ds

J(u1+sβ1,u2)
1 (t)

∣∣∣
s=0

= E
[∫

∞

0

∂H1(t)
∂u1

β1(t)dt
]
.

If d
ds J(u1+sβ1,u2)

1 (t)
∣∣∣
s=0

= 0, then

E
[∫

∞

0

∂H1(t)
∂u1

β1(t)dt
]
= 0.

For all bounded β1 ∈U1, then this holds in particular for β1
of the form

β1(t) = α1(ω)I[s,s+h](t),
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where α1(ω) is bounded and ε
(1)
t0 - measurable, s≥ t0. Then

we get

E
[∫ s+h

s

∂H1(t)
∂u1

dtα1

]
= 0. (4.7)

Differentiating (4.7) with respect to h at h = 0 gives

E
[

∂H1(s)
∂u1

α1

]
= 0. (4.8)

Since the condition (4.8) holds for all s≥ t0 and all α1(ω) is
bounded and ε

(1)
t0 - measurable random variable, we conclude

that

E
[

∂H1(t0)
∂u1

∣∣∣ε(1)t0

]
= 0, for all t0 ∈ [0,∞).

Similar argument for Player II, one can get

E
[

∂H2(t0)
∂u2

∣∣∣ε(2)t0

]
= 0, for all t0 ∈ [0,∞),

with the following condition,

d
ds

J(u1,u2+sβ2)
2 (t)

∣∣∣
s=0

= 0 for all bounded β2 ∈U2.

This shows that (S 1)⇒ (S 2). By reversing the above argu-
ment one can prove (S 2)⇒ (S 1).

5. Example
In this section the authors presented a optimization problem in
financial market. Consider the two retail investors as players
in stock market. In this problem each player maximizes their
own profit. One player’s profit does not imply that another
player’s loss. So this problem is a two player non cooperative
stochastic differential game. Our aim is to establish the Nash-
equilibrium, that is to find the optimal control for this game
problem.

Let us consider the dynamical system corresponding to
the optimization problem as follows:

dD(t) =(α1D(t)+α2D(t−δ )+α3E[D(t)]+α4C1(t)

+α5C2(t))dt +(α6C1(t)+α7C2(t))dW (t)

+
∫
R0

(α8C1(t)+α9C2(t)) Ñ(dt,dγ), t ≥ 0,

D(t) =D0 ∈ R, t ∈ [−δ ,0]. (5.1)

Here α j, j = 1,2, . . . ,9 are constants, D(t) ∈ R is a demand
rate and E refers to the average behavior of demand rate.
D(t− δ ) ∈ R is the delayed demand rate by δ time, where
the goods are received at t time. C1(t) ∈ U1 ⊂U1 denotes
stock price controlled by the first retailer and C2(t)∈U2 ⊂U2
denotes the stock price controlled by the second retailer.

Maximizing the cost functional for each retailer is given
below:

Ji =E
[∫

∞

0

{
(C2(t)−Si)D(t)− (1−Si)C1(t)

}
dt
]
< ∞, ,

(5.2)

for all t ≥ 0, for i = 1,2, where Si denotes the fixed sal-
vage price for retailer i. Then the corresponding backward
stochastic differential equations for the problem (5.1), (5.2)
as follows:

dYi(t) =− (aiYi(t)+biD(t)+ ci lnC1(t)+di lnC2(t))dt

(5.3)

+Zi(t)dW (t)+
∫
R0

θi(t,γ)Ñ(dt,dγ), (5.4)

where ai, bi, ci, di for i = 1,2 are constants. The Hamiltonian
for the system (5.1)-(5.3) is defined as:

Hi(t) =(C2(t)−Si)D(t)− (1−Si)C1(t)−λi(t)(aiYi(t)

+biD(t)+bi lnC1(t)+di lnC2(t))+Pi(t)(α1D(t)

+α2D(t−δ )+α3E[D(t)]+α4C1(t)+α5C2(t))

+Qi(t)(α6C1(t)+α7C2(t))

+
∫
R0

Ri(t)(α8C1(t)+α9C2(t))ν(dγ)dt, (5.5)

and assume that Hi’s are concave. Using (2.5) and (2.8), the
pair of forward and backward stochastic differential equa-
tions with the adjoint processes λi(t), Pi(t), Qi(t), Ri(t) are
written as follows:

dλi(t) =−aiλi(t)dt (5.6)

dPi(t) =[(Si−C2(t))+λi(t)bi−Pi(t)(α1 +α2 +α3)]

+Qi(t)dW (t)+
∫
R0

Ri(t)Ñ(dt,dγ) (5.7)

with

E
[∫

∞

0
eρt |Pi(t)|2dt

]
< ∞ for all ρ ∈ R.

In order to find the optimal control Ĉ1(t) and Ĉ2(t) the follow-
ing conditions are hold:

J1(Ĉ1(t),Ĉ2(t)) = sup
C1(t)

J1(C1(t),Ĉ2(t));

J2(Ĉ1(t),Ĉ2(t)) = sup
C2(t)

J2(Ĉ1(t),C2(t)).

Differentiating (5.5) with respect to their control variables
which give the first order conditions as follows:

∂H1

∂C1(t)
= S1−1− c1λ1(t)

C1(t)
+α4P1(t)+α6Q1(t)

+
∫
R0

R1(t)α8ν(dγ)dt = 0, (5.8)

∂H2

∂C2(t)
= D(t)− d2λ2(t)

C2(t)
+α5P2(t)+α7Q2(t)

+
∫
R0

R2(t)α9ν(dγ)dt = 0. (5.9)

The solution of the forward equation (5.6) is written as:

λi(t) = e−ait . (5.10)
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Take a definite value of time t = T and from equation (5.10),
lim

T→∞
λi(T ) = 0, which satisfies the transversality condition

(H 3). Similarly, let us take Pi(t), holds the hypothesis
(H 3). Also by the assumption that the concavity of Hi’s,
the hypotheses (H 1), (H 2) are holds. Thus the proposed
model in this example satisfies (H 1) - (H 3). Then by using
Theorem 3.1 of Section 3, one can conclude that there exist
Ĉ1(t) and Ĉ2(t) which are the optimal control.

The required optimal control Ĉ1(t) and Ĉ2(t) for the sys-
tem (5.1)-(5.2) are given by the equations (5.8) and (5.9) as
follows:

Ĉ1(t) =
c1λ1(t)

S1−1+α4P1(t)+α6Q1(t)+
∫
R0

R1(t)α8ν(dγ)dt
,

Ĉ2(t) =
d2λ2(t)

D(t)+α5P2(t)+α7Q2(t)+
∫
R0

R2(t)α9ν(dγ)dt
.

where the adjoint processes λi(t), Pi(t), Qi(t), Ri(t) for
i = 1, 2 are the solutions of the adjoint differential equations
(5.6)-(5.7).

6. Conclusion
In this paper, optimal control of mean field type forward-
backward stochastic delay differential game problem has been
discussed through infinite horizon. In particular, sufficient
and necessary conditions for the optimality are derived by us-
ing transversality condition and convex control domain. The
applicability of the developed theoretical study is illustrated
through an example of optimization problem in financial mar-
ket.
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