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Multi-derivative hybrid methods for integration of
general second order differential equations
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Abstract
In this study, new multi-derivative hybrid methods for the integration of general second order initial value problems
of ordinary differential equations are considered. Linear multistep formula was used in the development of the
methods taking Taylor series as the basis function. The unknown parameters were solved by the systematic
reduction of simultaneous nonlinear equations. Due to the lapses in number of equations compared to the
number of unknowns, we make β0 = 0 as a free parameter. Analysis of the resulting methods shows that
they are zero stable, consistent and convergent. Numerical examples are given to demonstrate and compare
the efficiency of the methods for the stepnumbers k = 1 and k = 2 respectively. The results shows a better
performance on existing methods.
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1. Introduction
In physical and life sciences, there are always difficulties
in taking decisions about some phenomenons. These phe-
nomenons can be represented in form of mathematical equa-
tions; most atimes, we arrive at the form of the equations
below

y′′ = f (x,y,y′),y′(x0) = y′0,y(x0) = y0 (1.1)

β
′′ = α(δ ,β ,β ′),β ′(δ0) = β

′
0,β (δ0) = β0 (1.2)

The equations above are the mathematical representations of
real life events, which may have several analytical methods of
solutions. Many of the nonlinear differential equations arising
from such equations above may not be solved analytically,
hence the need for numerical methods of solutions. Linear
multistep methods provide an approximate solution of (1.1)
(Lambert 1973)
Some authors have attempted to solve this form of equation
using linear multistep method (Awoyemi 1999) where a class
of continuous method for the general solution of second order
ordinary differential equations, collocation method was used
and the resulting schemes for k = 1, k = 2 and k = 3 was
found to be consistent and zero stable.
(Kayode and Ademiluyi 2001); where a k-step second deriva-
tive hybrid method was developed to solve both stiff and non
stiff initial value problems of ordinary differential equation.
The resulting schemes were found to be A-stable, consistent
and convergent.
Meanwhile, in a bid to improve the existing methods, some
authors have introduced the hybrid term (Kayode and Adey-
eye 2013); where a Two-point two-step hybrid method for the
direct solution of second order ordinary differential equation
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was introduced. A predictor-corrector mode of solution was
used and the introduction of the hybrid terms makes the gen-
erated results zero stable, consistent and normalized.
However, some few authors who have worked in this field
have their solutions being improved over the years. It is ob-
served that the order of accuracy of the methods in the papers
of these authors are low. Thus this paper develops methods
with better performance over existing methods.

2. Derivation Method
The linear multistep method modified by kayode and Ademu-
luyi for the solution of first order ODEs was improved to
provide a numerical solution to second order ODEs. The gen-
eral linear multistep method considered as a basis function is
of the form below

yn+k = yn+k−1+hy′n+h2
k

∑
j=0

β jy′′n+ j+h2
βry′′n+k−r+h3

ρy′′′n+k

(2.1)

The equation above was used to generate a truncation error.
Taylor series expansion was used to expand each term of the
basis function. The values of the unknown parameters were
obtained at k-steps. The truncation error developed from
equation above has the form

L[y(x),h] =yn+k− yn+k−1−hy′n−h2
k

∑
j=0

β jy′′n+ j

−h2
βry′′n+k−r−h3

ρy′′′n+k (2.2)

There is need to develop a suitable method to solve for the
unknown parameters β j, βr, r and ρ . Meanwhile, ’r’ is the
hybrid point i.e. 0≤ r ≤ 1. In order to do this, expand each
term above by Taylors series expansion as follows

yn+k =
k

∑
s=0

hsys
xnks

s!
(2.3)

yn+k−1 =
k

∑
s=0

hsys
xn(k−1)s

s!
(2.4)

y′n (2.5)

y′′n+ j =
k

∑
s=2

hs−2ys
xn js−2

(s−2)!
(2.6)

y′′n+k−r =
k

∑
s=2

hs−2ys
xn(k− r)s−2

(s−2)!
(2.7)

y′′′n+k =
k

∑
s=3

hs−3ys
xnks−3

(s−3)!
(2.8)

Arranging as

L[y(x),h] =C0y+C1hy+C2h2y2 +C3h3y3 + ...+Cqhqyq

(2.9)

C1 =0 (2.10)

C2 =
k2

2
− (k−1)2

2
−

k

∑
j=0

β j−βr (2.11)

C2 =
k3

6
− (k−1)3

6
−

k

∑
j=0

jβ j− (k− r)βr−ρ (2.12)

More, generally,

Cq =
kq− (k−1)q

q!
−

∑
k
j=0 jq−2β j− (k− r)q−2βr

(q−2)!

− k(q−3)

(q−3)
ρ (2.13)

2.1 Derivation of Method One
Using k = 1 and setting C2−C5 to zero in equation (2.13) we
obtain the following set of equations

βr +β0 +β1 =
1
2 (2.14)

(1− r)βr +β1 +ρ = 1
6 (2.15)

(1− r)2
βr +β1 +2ρ = 1

12 (2.16)

(1− r)3
βr +β1 +3ρ = 1

20 (2.17)

From equations (2.14)-(2.17), the unknown parameters are
obtained in terms of a free parameter β0 as

r =
4(1−5β0)

5(1−4β0)
(2.18)

ρ =
1−8β0

−48+240β0
(2.19)

β1 =
−7+84β0−240β 2

0

−64−1600β 2
0

(2.20)

βr =
−25−20β0−560β 2

0 +1600β 3
0

−64−1600β 2
0

(2.21)

Setting β0 = 0 gives the exact values below

r = 4
5 (2.22)

ρ = −1
48 (2.23)

β1 =
7

64 (2.24)

βr =
25
64 (2.25)

Then method one can be established successfully

yn+1 = yn+hy′n+
7

64
h2 fn+1+

25
64

h2 fn+ 1
5
− 1

48
h3 f ′n+1 (2.26)

2.2 Derivation of Method Two
Using k = 2 and setting C2−C6 to zero in equation (2.22) we
obtain the following set of equations

βr +β1 +β2 +β0 =
3
2 (2.27)

(2− r)βr +β1 +2β2 +ρ = 7
6 (2.28)

(2− r)2
βr +β1 +4β2 +4ρ = 15

12 (2.29)

(2− r)3
βr +β1 +8β2 +12ρ = 31

20 (2.30)

(2− r)4
βr +β1 +16β2 +32ρ = 63

30 (2.31)
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r =
5(−29+96β0)

2(−41+120β0)

ρ =
199−360β0

300(−29+96β0)

β2 =
53241−314500β0 +460800β 2

0
500(−29+96β0)2

β1 =
−3041+12960β0

−3780+14400β0

βr =−
4(−41+120β 4

0
1125(−21+80β0)(−29+96β0)2

Setting β0 = 0 gives the exact values bellow

r =
145
82

(2.32)

ρ =
−199
8700

(2.33)

β1 =
3041
3780

(2.34)

β2 =
53241
420500

(2.35)

βr =
11303044
1986825

(2.36)

Substituting the above equations directly in equation 3.1, then
the scheme for method two is given below

yn+2 =yn+1 +hy′n +
3041
3780

h2 fn+1 +
53241

420500
h2 fn+2

+
11303044
19868625

h2 fn+ 19
82
− 199

8700
h3 f ′n+2 (2.37)

3. Order and error constant
Adopting Ademiluyi and Kayode 2001, and by Taylor series
expansion of 2.22 and 2.33 about the point x as given in the
expression below

L(y,h) =C0yn +C1hy′n +C2h2y′′n +C3h3y′′′n +C4h4yiv
n

+C5h5yv
n + ... (3.1)

and C0 =C1 = ... =Cp = 0 but Cp +1 6= 0 then the scheme
is of order p+1
The order and error constant for each method is displayed on
the table below

Table 1. Order and Error constant
Order(p) Error constant (p+1)

Method One 5 2.7778∗10−4

Method Two 6 −2.3471∗−5

3.1 Consistency
A numerical method is said to be consistent if and only if;

• The order P is greater or equal to one i.e. P≥ 1

• The coefficient of the first characteristic polynomial
must be zero ∑

k
j=0 α j = 0

From Table1 above, it is confirmed that the methods are con-
sistent.

3.2 Zero Stability
A numerical method is said to be zero stable if the roots of
the first characteristic polynomial α ≤ 1
For method one i.e.

k =1
p(r) =r−1

r−1 =0
r =1

so method one is zero stable.

For method two i.e. k = 2

p(r) =r2− r

r2− r =0
r(r−1) =0

r =0 or r = 1
p(r)≤ 1

So method two is zero stable.

4. Convergence analysis
This section discussed the convergence analysis of the schemes.
The schemes converges if

Definition 4.1. A linear multistep method for problem (1) is
convergent if

lim
h→0
|Φ(h)| ≤ 1 (4.1)

Where,

|Φ(h)|=
∣∣∣∣ yn+k

yn+k−1

∣∣∣∣ , ∀k ≥ 1 (4.2)

Test of Convergence of Method 1 (K = 1)
When K = 1 equation 4.2 becomes

|Φ(h)|=
∣∣∣∣yn+1

yn

∣∣∣∣ (4.3)

However, the following equation is obtained from equation
2.22

yn+1 = yn+hyn+
7
64

h2yn+1+
25
64

h2yn+ 1
5
− 1

48
h3yn+1 (4.4)
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Table 2. Results for problem one generated by k = 1 and h = 0.01
x y(exact) y (computed) error

0.01 4.058405704705347 4.058405704704999 0.000000000
0.02 4.113645937249032 4.113645788372905 1.4887×10−9

0.03 4.165756033571567 4.165738219679358 1.7813×10−5

0.04 4.214772179371645 4.214718765194660 5.3414×10−5

0.05 4.260731375367430 4.260624032457649 1.0734×10−4

0.06 4.303671402842273 4.303491435410199 1.7996×10−4

0.07 4.343630789486266 4.343359160108101 2.7162×10−4

0.08 4.380648775544720 4.380266130720270 3.8264×10−4

0.09 4.446020868786508 4.414251975827473 5.1330×10−4

0.1 4.446020868786508 4.445356995031403 6.6387×10−4

Applying (4.3) in (4.4) to have

yn+1

(
1− 7

64
h2 +

1
48

h3
)
= yn

(
1+h

25
64

h2
Γ

)
(4.5)

Where Γ (by Tailor series) gives

Γ =yn+ 1
5
= yn +

1
5

hyn +
1
50

h2yn +
1

750
h3yn

+
1

15000
h4yn +(0h5) (4.6)

Substitute equation 4.6 in equation 4.5 and simplify to equa-
tion 4.1

lim |Φ(h)|= lim
h→0

(
1− 7

64 h2 + 1
48 h3

1+h+ 25
64 h2 + 5

64 h3 + 1
128 h4 + 1

1920 h5

)
≤ 1 (4.7)

Method 1 satisfies the condition in equation 4.1; hence it is
convergent.

Test of Convergence of Method 2 (K = 2)
When K = 2 equation 4.2 becomes

|Φ(h)|= yn+2

yn+1
(4.8)

From equation 2.33, the following is obtained

yn+2 =yn+1 +hyn +
3041
3780

h2yn+1 +
53241

420500
h2yn+2

+
11303044
19868625

h2yn+ 19
82
− 199

8700
h3yn+2 (4.9)

Applying (4.8) in (4.9) to have

yn+2

(
1− 53241

420500
h2 +

199
8700

h3
)

= yn+1

(
1+h2 +Λ+

113030344
19868625

h2
Γ

)
(4.10)

Where Γ (by Tailor series) gives

Γ = yn+ 19
82
=yn +

19
82

hyn +
361

13448
h2yn +

6859
3308208

h3yn

+
130321

1085092224
h4yn +(0h5) (4.11)

And Λ (by Tailor series) gives

Λ = yn =yn+1 +hyn+1 +
1
2

h2yn+1 +
1
6

h3yn+1

+
1

24
h4yn+1 +(0h5) (4.12)

Substitute equation 4.11 and equation 4.12 into equation 4.10
and simplify to have

lim |Φ(h)|

= lim
h→0

(
1− 53241

420500 h2 + 199
8700 h3

1+h+h2 + 1304
3780 h2 + 11303044

19868625 h2 1
2 h3 + 214757836

1629227250 h3 + 1
6 h4 + 4080398884

26703432000 h4

)
≤ 1

(4.13)

Hence, method 2 satisfies the condition in equation 4.1; there-
fore it is convergent.

5. Implementation
Problem one;

• y′′+2y′+5y = 0 ; y(0)=4 y′(0) = 6

Exact solution:

y = 4e−x cos2x+5e−x sin2x

Problem two, extracted from Kayode etal(2018). problem two
; It is a nonlinear differential equation

• y′′− x(y′)2 = 0 ; y(0)=1 y′(0) = 0.5

Exact solution:

y = 1+
1
2

ln(
2+ x
2− x

)

6. Results
The proposed scheme was tested and the result was compared
with the error in Kayode et al(2018) the choice of this com-
parison was because method two have the same order(p=6)
with Kayode et al(2018). The absolute errors were compared
and the results of the absolute errors were shown on table 5.
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Table 3. Results problem one generated by k = 2 and h = 0.01
x y(exact) y (computed) error

0.01 4.113645937249032 4.113645937248711 0.00000000
0.02 4.165756033571567 4.165739194524353 1.6839×10−5

0.03 4.214772179371645 4.214720970247788 5.1209×10−5

0.04 4.260731375367430 4.260627910476646 1.0346×10−4

0.05 4.303671402842273 4.303497438743769 1.7396×10−4

0.06 4.343630789486266 4.343367749662243 2.6303×10−4

0.07 4.380648775544720 4.380277774943675 3.7100×10−4

0.08 4.414765280284209 4.414267149716310 4.9813×10−4

0.09 4.446020868786508 4.445376179153847 6.4468×10−4

0.10 4.474456719080371 4.473645805425398 8.1091×10−4

Table 4. Results problem two generated by k = 2 and h = 0.01
x y(exact) y (computed) error

0.01 1.010000333353335 1.010000853462584 5.201×10−7

0.02 1.015001125151899 1.015002169047778 1.044×10−6

0.03 1.020002667306850 1.020004375191243 1.707×10−6

0.04 1.025005210287331 1.025007727344283 2.517×10−6

0.05 1.030009004863127 1.030012481375338 3.476×10−6

0.06 1.035014302180242 1.035014302180242 4.591×10−6

0.07 1.040021353836768 1.040027220622601 5.866×10−6

0.08 1.045030411959091 1.045037719887862 7.307×10−6

0.09 1.050041729278491 1.050050649286657 8.920×10−6

0.10 1.055055559208212 1.055066267471978 1.070×10−5

Table 5. Results problem two, k = 2 and h = 0.003125 being
compared with Kayode etal(2018)

x Error in Kayode etal(18) Error in new method
0.0063 9.325×10−15 5.2×10−15

0.0094 1.865×10−14 5.0×10−15

0.0125 2.798×10−14 9.9×10−15

0.0156 3.730×10−14 1.64×10−14

0.0188 4.663×10−14 2.44×10−14

7. Conclusion

In this paper, a multiderivative hybrid method for the integra-
tion of second order ordinary differential equation with initial
conditions was developed. The two schemes developed have
orders 5(for k = 1) and 6(k = 2).Two test examples have been
solved to demonstrate the accuracy of the methods, where
we noticed little difference in the results of the comparison
equation(problem 2), which shows there is an improvement in
the general multistep method developed in this paper. Conse-
quently, the method is highly recommended for use for both
linear and non linear problems.

The schemes were also tested for consistency, zero sta-
bility and the absolute error was compared with Kayode et
al(2018) and there is an obvious improvement.
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