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1. Introduction and Preliminaries

The notion of Nano topology (in short, 91¢) was introduced
by Lellis Thivagar [6] which was defined in terms of approxi-
mations and boundary region of a subset of an universe using
an equivalence relation on it and also defined Nano closed
sets, Nano-interior and Nano-closure.

The class of sets namely, 8-open (resp. 0-open) sets are
playing more important role in topological spaces, because of
their applications in various fields of Mathematics and other
real fields. In [3] Caldas et al. studied various kinds of 6-
open sets and their properties in topological spaces. Also,
in [10, 11] studied various kinds of J-open sets. Recently,
[1, 5, 8] studied various kinds of generalizations of sets in
nano topological spaces. By this motivation, we present the

concept of nano generalized e-open sets [7] and study their
properties in nano topological spaces. The purpose of this
paper is to discuss some basic topological properties of the op-
erators namely closure, interior, neighbourhood, limit points,
derived set, frontier, exterior and border by using the sets nano
generalized e (resp. .#) open sets.

Definition 1.1. [6] Let U be a non-empty finite set of objects
called the universe and R be an equivalence relation on U
named as the indiscernibility relation. Elements belonging to
the same equivalence class are said to be indiscernible with
one another. Let P C U. Then,

(1) The lower approximation of P with respect to R is the

set of all objects, which can be for certain classified as

P with respect to R and it is denoted by .Z& (P). That

is, Z&(P) = U {R(]) : R(!) C P}, where R(!) denotes
leu

the equivalence class determin- ed by /.

(i) The upper approximation of P with respect to R is the
set of all objects, which can be possibly classified as P
with respect to R and it is denoted by % (P). That is,

()= U {R() :R{) P 6},
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(iii) The boundary region of P with respect to R is the set
of all objects, which can be classified neither as P nor
as not-P with respect to R and it is denoted by %r (P).
That is, %R(P) = %R(P) — fR(P)

Proposition 1.2. [6] If (U,R) is an approximation space and
P,Q C U, then

(i) & (P)CPC 2%(P).

(i) Z(0) = Z(9) = ¢ and Z(U) = 2 (U) = U.
(iii) AR (PUQ) = R (P)UZR(Q).
(iv) 2R(PNQ) C 2% (P)NZR(Q).
V) A&R(PUQ) 2 LR (P)ULR(Q).
(vi) AR(PNQ)=LR(P)NLR(Q).
(vil) Z&R(P) C . %4(Q) and Z& (P) C 2&(Q), whenever P C
Q.
(viii) Z&(P°) = [ZR(P)] and L (P°) = [%:(P)]".
() i (P) = LaTi(P) = U (P).
) Lo r(P) = U La(P) = Li(P).

Definition 1.3. [6] Let U be an universe, R be an equivalence
relation on U and 7R(P) = {U, ¢, 2R (P), % (P), %r(P)}
where P C U, 1z (P) satisfies the following axioms:

(i) Uand ¢ € (P).

(ii) The union of the elements of arbitrary sub collection of
TR (P) is in 1R (P).

(iii) The intersection of the elements of any finite sub-collection

of r(P) is in wr (P).

That is, TR (P) is a topology on U called the nano topology
on U with respect to R and P. We call (U, tr (P)) as the nano
topological space (briefly, 91ts). The elements of 7 (P) are
called as nano-open (briefly, 10) sets and [t (P)]¢ is called
as the dual nano topology of g (P). The elements of [1g (P)]¢
are called as nano-closed (briefly, Jc).

Remark 1.4. [6] If 7r(P) is the 91 on U with respect to P,
then the set B = {U, % (P), %r (P)} is the basis for r (P).

Definition 1.5. [6] If (U, 7r(P)) is a 91zs with respect to P
and if K C U, then the nano interior of K is defined as the
union of all 9o subsets of K and it is denoted by inf(K). That
is, Mint (K) is the largest Do subset of K.

The nano closure of K is defined as the intersection of all
Nc sets containing K and it is denoted by 9cl(K). That is,
Ncl(K) is the smallest e set containing K.

Definition 1.6. [4] Let (U,7r(P)) be a 9lrs and let KC U
then the nano @-interior (resp. nano 6-closure) of K is defined
and denoted by Nintg(K) =J{L:Lisa

nano open set anddcl(L) C K} (resp. Nelg(K) =
a nano closed set and Nint(L) 2O K}).

N{L:Lis
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Definition 1.7. [4] K subset K of P is said to be nano 6-
open (resp. nano 0-closed) (briefly, 9100 (resp. 910¢)) set if
K = MNintg (K) (resp. K is a nano B-open set).

Definition 1.8. [6, 12] Let (U, 7g(P)) be a ts and K C U.
Then K is said to be nano regular open (briefly, Dtro) if K =
Nint(Ncl(K)).

Definition 1.9. [9] Let (U, tg(P)) be a Nzs and let K C U
then the nano d-interior (resp. nano d-closure) of K is defined
and denoted by Mints(K) = J{L : L is a ro set

and L C K} (resp. Nels(K) = U{l € U : Nimt (Nel(L)) N
K#¢,Lisa%osetand! € L}).

Definition 1.10. [9] A subset K of X is said to be nano 6-
open (resp. nano 8-closed) (briefly, D100 (resp. 918¢)) set if
K =MNintg(K) (resp. K¢ is a nano d-open set).

Definition 1.11. [8, 9, 13]Let (U tx(P)) be aDltsand K C U.
Then K is said to be a nano §-pre (resp. nano d-semi, nano
e, nano ./ and nano 0-semi) open set (briefly 916 Zo (resp.
MNé.Yo, ‘ﬂeo N o and NO.70)) if K C Nint(Ncls(K))
(resp. K C Mcl(MNintg(K)), K C Nel(Mintg(K)) U
Nint(Nels(K)), K C Nel (MNintg(K)) UNint(Nelg(K)) and
K C Necl(Ninty(K))).

The complements of the above respective open sets are
their respective closed sets.

The family of all 916 Lo (resp. MSL 0, Neo, N o
and MO.%0) sets is denoted by 916 L20(U,1R(P)), (resp.
NOL0(U,1x (P)), NeO(U,1x(P)), NA#O(U,1(P)) and
MO.70O(U,1r(P))) and the family of all nano d-pre (resp.
nano 0-semi, nano e, nano .# and nano 6-semi) closed
(briefly, 216 Zc (resp. N6.% ¢, Nec, N4 c and NO.¥c)) sets
is denoted by M6 L2C(U, 1x(P)), (resp. N6.SC(U, tr(P)),
MNeC(U, tx(P)), N C(U,1x(P)) and NOLC(U, tR(P))).

Definition 1.12. [8, 9, 13] Let (U, 1g(P)) be a Nts and let
K C U then the nano d-pre (resp. nano d-semi, nano e, nano
A and nano 0-semi) interior of K is the union of all 916 Zo
(resp. MO.F 0, Neo, N 0 and NO.S0) sets contained in K
and denoted by MPints(K) (resp. N intg(K), Neint(K),
N A int(K) and N7 intg (K)).

Definition 1.13. [8, 9, 13] Let (U, 1g(P)) be a Nts and let
K C U then the nano §-pre (resp. nano §-semi, nano e, nano
A and nano 6-semi) closure of K is the intersection of all
M6 Pc (resp. NO.L ¢, Nec, NA ¢ and NO.7¢) sets con-
taining K and denoted by 91Pcls(K) (resp. NFcls(K),
Necl(K), N cl(K) and NS clp(K)).

Definition 1.14. [8] Let (U tz(P)) be a Nts and K C U. Then
K is said to be a nano @-pre (resp. nano 8-semi) open set
(briefly 910 Po (resp. NO.70)) if K C Nint (MNclg(K)) (resp.
K CNcl(Ninty (K))).

Definition 1.15. A subset K of (U, tg(P)) is called nano gen-
eralized
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(i) closed [2, 4] (briefly, 91gc) set if DNcl(K) C V whenever
KCVandVisNoin (U,1R(P)).

(ii) O closed [4], (briefly, MgOc) set if Nclg(K) C V when-
ever K CV andV is Mo in (U, 1r(P)).

(iii) 6 semi closed [5] (briefly, Mgh.7c) set if NS cly(K)
CV whenever K CV and V is Mo in (U, tr(P)).

(iv) O closed [1], (briefly, Mgdc ) setif N1dcl(K) CV when-
ever K CVandV is No in (U, 1r(P)).

(v) & semi closed [1], (briefly, D1gd.7c ) set if NS cls
(K) CV whenever K CV and V is 9o in (U, tx(P)).

(vi) O pre closed [1], (briefly, Mgd Pc ) set if NPcls(K)
CV whenever K CV and V is Mo in (U, tr(P)).

Definition 1.16. [1, 2, 4, 5] A subset K of a nano general-
ized (resp. 6, 6 semi, 6 , 0 semi and § pre) open (briefly,
Ngo(resp. Ngbo, NgH.0, Ngdo, Ngd. 0 and Ngd L0))
if its complement K€ is nano generalized (resp. 6, 0 semi, &,
o semi and & pre) closed (briefly, Jtgc(resp. Nghc, Ngh.7c,
Ngdc, Ngd.S ¢ and Ngd LPc¢)).

The collection of all nano generalized (resp. 6, 6 semi,
6 , 0 semi and O pre) open subsets of (U,1g(P)) is de-
noted by MGO(U, P)(resp. MGOO(U,P), NGO.SO(U, P),
NGOO(U,P), NGS6.LO(U,P) and NG ZO(U, P)).

Definition 1.17. [7] A subset K of (U, tr(P)) is called nano
generalized

(i) e closed, (briefly, MNgec) set if Necl(K) C V whenever
KCVandVisNoin (U,1R(P)).

(ii) M closed, (briefly, Ng.# ¢) setif N cl(K) CV when-
ever K CV andV is Mo in (U, 1r(P)).

The collection of all Dgec (resp. Mg.# ¢) subsets of U is
denoted by 91GeC(U, P) (resp. NG.#C(U, P)).

Definition 1.18. Let K be a subset of a Nts (U, tr(P)), the
intersection of all 9o subsets of U containing K is called nano
kernel[8] of K and is denoted by Jker(K).

Throughout this paper, (U, 7r (P)) is a 91s with respect to
P where P C U, R is an equivalence relation on U. Then U/R
denotes the family of equivalence classes of U by R.

2. Nano generalized ¢ neighbourhoods

Definition 2.1. Let K be subset of a Mzs (U, tr(P)) and € U
then a set K is called nano generalized e (resp. nano general-
ized .#') neighbourhood (briefly, MgeNbd (resp. Ng.# Nbd))
of [ € U, if there is a Ygeo (resp. Ng.# 0) set G C K with
leG.

Definition 2.2. Let (U, tr(P)) be a 9lzs and K be subset of
U. A subset S of U is said to be nano generalized e (resp.
nano generalized .#) neighbourhood (briefly, 9geNbd (resp.
Ng.# Nbd)) of K, if there exist a Dgeo (resp. Ng.# o) set G
such that K C G C S.

The collection of all DigeNbd (resp. Ng.#ZNbd) of | €
U is called DNgeNbd (resp. Ng.# Nbd) system of [ and is
denoted by NGeNbdS(1) (resp. NG.#NbdS(1)).

Example 2.3. Let U= {l,m,n,0o} with U/R = {{1},{o},
{m,n}} and P = {m,0}. Then, the 9 is defined as r (P) =
{U,9,{o},{m,n},{m,n,0}} and NGeO(U,P)
={U,¢, {m},{n}, {0}, {l,m},{l,0},{m,n},{m,o0},{n,o},
{l,m,n},{l,m,0},{l,n,0},{m,n,0}} = NGH#O(U,P).
Now, ige NbdS(l) = {U,{l,m},{l,0},{l,m,n},{l,m,0},
{1,1,0}}, NgeNbd S(m) = (U, {m}, {L,m}, {m.n}{m,o},
{l,m,n},{l,m,0},{m,n,o0}}, NgeNbdS(n) ={U,{n},{m,n},
{n,o},{l,m,n},{l,n,0},{m,n,o0}} and NgeNbdS(o)
={U,{o},{l,0},{m,0},{n,0},{l,m,0},{l,n,0},{m,n,0}}.

Remark 2.4. Every 9INbd of [ in U is igeNbd (resp.
MNg./# Nbd) of 1, because every Mo set is Ngeo (resp. Ng.# 0).
But converse need not be true as seen from the following ex-
ample.

Example 2.5. In Example 2.3, For [ € U, MNbdS(l) = {U}
and NgeNbdS(l) = {U,{l,m},{l,0},{l,m,n},{l,m,o0},
{l,n,0}}. Clearly the sets {I,m},{l,0},{l,m,n},{l,m,0}
and {/,n,0} are NgeNbdS(I) but not MNbdS(I).

Lemma 2.6. An arbitrary union of 9lgeNbd (resp. Ng .# Nbd)
of apoint/ € U is again YgeNbd (resp. Ng.# N bd) of a point
1€ U, if NGeO(U,P) (resp. NG.# O(U, P)) is closed under
arbitrary union.

Proof. Let {K; : i € I'} be an arbitrary collection of MgeNbd
of [ € U. Since for each i € I, K; is 91geNbd of [, there exist
Ngeo set G; such that] € G; C K;. Butforeachi < l, K; CUK;,
therefore [ € G; C UK;, which implies UK; is again 9lgeNbd
of .

The other case is similar.

Remark 2.7. But the intersection of YtgeNbd (resp. Ng.# Nbd)
of a point / € U is not a 1geNbd (resp. Ng.# Nbd) of the
point / € U in general.

Example 2.8. In example 2.3, the sets {/,m} and {l,0} are
NgeNbdS(I) but their intersection {/} is not a YgeN bdS(1).

Theorem 2.9. Let (U, tg(P)) be a ts. Then,
(i) Every MeNbd of [ € U is YtgeNbd of l € U.
(i1) Every WA Nbd of | € U is Mg.#Nbd of | € U.
(iii) Every Mgd.Nbd of | € U is MgeNbd of | € U.
(iv) Every Mgd ZNbd of | € U is MgeNbd of [ € U.
(v) Every Mg6.Nbd of | € U is Vig.#Nbd of | € U.
(vi) Every Mgd ZNbd of | € U is Ng.#Nbd of | € U.

Proof. (v) Let K be an arbitrary 91g0.’Nbd of | € U then
there exists an 91g0.%0 set L such that [ € G C K. By [7],
every Dg0.7o set is Ng.# o set, L is Ng.# o set such that
l € LCK. Thus K is Dg.Z Nbd of 1.

The other cases are similar.
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Remark 2.10. The converse of the Theorem 2.9 is need not
be true. It can be verified by the forthcoming example.

Example 2.11. In the Example 2.3, the set

(i) {n,o} is a MNgeNbd(n) (resp. Ng.# Nbd(n)) but not a
MNeNbd(n) (resp. N Nbd(n)).

(ii) {1,m} is a NgeNbd(l) but not a Ngd.#Nbd(1).
(iil) {l,0} is a MNgeNbd(l) but not a Ngd P Nbd(l).
(iv) {l,m} is a Ng.# Nbd(I) but not a NgO.7Nbd(l).

(v) {l,0}isa(resp. Mg.#ZNbd(l))butnotadgdF Nbd(l).

(vi) {l,0} is MgNbd(I) but not Ngd ZNbd(l).
(vii) {I,m} is Ngd PNbd(l) but not NgNbd(1).

Theorem 2.12. Let [ be any arbitrary point of a Nts (U, tg(P)).

Then 9lgeNbdS(1) satisfies the following properties.
(i) MNgeNbdS(I) # ¢
(ii) if F € 9geNbdS(l), thenl € F
(iil) if F € NgeNbdS(l) & F C H, then H € NgeNbdS(l).

Proof. (i) Since for each [ € U, U is a 9igeo set. There-
fore, I € U C U, implies U is NgeNbdS(l). Hence, U €
NgeNbdS(l). Therefore U € NgeNbdS(1) # ¢.

(i) Given F € MgeNbdS(l) implies F is NgeNbdS(1),
which implies there exists a lgeo set G such that/ € G C F.
This implies [ € F.

(iii) Given F € 9geNbdS(1) implies there exists a Dgeo
set G such that/ € G C F and F C H which implies l € G C
F C H. This shows that H € MgeNbdS(1).

The system Ng.#ZNbdS(l) is also satisfy the Theorem
2.12

Theorem 2.13. Let K be a subset of a Dts (U, tg(P)) and
MNGeO(U, P) is closed under arbitrary union, then K is a Mgeo
set iff K is D1geNbd of each of its points.

Proof. Let K be any 9igeo set of U. Then for each [ €
K C K, implies K is DgeNbdS(l). Since [ is arbitrary point
of K, implies K is 91geNbd of each of its points.

Conversely, K is 91geNbd of each of its points which
implies for each / € K, there exists Jigeo set G, such that
l € G; C K. Suppose if [ € K, there exists atleast one 9igeo

set G; such that [ € G; C |J Gj. Therefore K C |J G; CK.
leK lek
Thus it follows that K = |J G;. As each Gy is D1geo set, K is
lek
also 91geo set.

The system 91g.#Z O(U,P) is also satisfy the Theorem
2.13

Theorem 2.14. Let 91GeO(U, P) is closed under finite inter-
section, if K is 91gec subset of U and [ € U — K then there
exists a geNbd H of [ such that HNK = ¢.
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Proof. Given K is Dlgec set, U — K is Jlgeo set. By
Theorem 2.13, U — K is 91geNbd of each of its points. Let
[ € U — K, implies there exists a Jigeo set H such that [ €
H C U — K which implies HNK = ¢.

The system NMNG.ZO(U, P) is also satisfy the Theorem
2.14

Definition 2.15. A point / € U is said to be nano generalized
e (resp. nano generalized .#) limit point of a set K if for each
T € NGeO(U,1R(P)) (resp. NG.# O(U, tg(P))) containing
1, satisfies TN (K — {I}) # ¢.

Definition 2.16. Let (U, 7z(P)) be Nts and K C U, the set
of all nano generalized e (resp. nano generalized .#) limit
points of K is said to be nano generalized e (resp. nano
generalized .#) derived set of K and is denoted by 91g®,(K)

(resp. NgD 4 (K)).

Theorem 2.17. Let K and L are the subsets of a Nrs (U, Tg(P)).
Then the following properties hold.

(i) NgD.(9) = ¢.

(ii) if K C L then NgD,(K) C NgD.(L).
(iii) if I € NgD,(K) then | € NgD.(K — {1}).
(iv) NgD,(K)UNgD, (L) C NgD (KUL).
V) NgD(KNL) C NgD,(K) N NgD,(L).

Proof. (i) Let [ € U and G be a 91geo set containing /.
Then (G —{l})N¢ = ¢. This implies [ ¢ 9NgD.(¢). There-
fore for any / € U, [ is not 91ge limit point of ¢. Hence
NgDe(9) = 9.

(ii) Let I € MgD,(K). Then GN (K — {I}) # ¢, for every
MNgeo set G containing /. Since K C Limplies GN(L—{I}) #
¢. This implies [ € MgD,(L). Thus [ € NgD,(K) implies
1 € NgD,(L). Therefore NgD,(K) C NgD,(L).

(iii) Let I € 91¢®,(K). Then GN (K —{I}) # ¢, for every
Ngeo set G containing [. This implies every Dgeo set G
containing /, contains atleast one point other than / of K — {/}.
Therefore [ € MgD. (K —{I}).

(iv) Since K C KUL and L C KUL, by (ii), 91gD.(K) C
NgD (KUL) and NgD,(L) C MNgD,(KUL). Hence Ng
D (K)UNgD, (L) C NgD(KUL).

(v) Since KNL C K and KNL C L, by (ii), NgD.(KN
L) CMNgD,.(K) and gD .(KNL) C MNgD.(L). Hence Ng
De(KNL) CNgD(K)NNgD,(L).

The derived set MgD_4 () is also satisfies the Theorem
2.17

Theorem 2.18. Let NGeC(U,P) (resp. NG.#C(U,P)) is
closed under arbitrary union and if K is a subset of Izs
(U,tg(P)) then KUMgD.(K) (resp. KUNgD 4,(K)) is a
Mgec (resp. Ng.# c) set.

Proof. To prove K U91g®D,(K) is a Ngec set, it is suffi-
cient to prove U — (K U91¢D,(K)) is Jgeo set.
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Case 1: Let U — (KU1gD,(K)) = ¢, the result is obvi-
ous.

Case 2: Let U — (KUMgD.(K)) #¢p andl € U — (KU
NgD,(K)), implies I ¢ KUNgD,(K). This implies / ¢ K and
I ¢ NgD,.(K). Now | ¢ NgD,(K) implies / is not Nge limit
point of K. Therefore there exist a lgeo set G such that GN
(K—{I1}) = ¢. Since ! ¢ K, implies GNK = ¢. This implies
[ € GCU—K. Again G is geo set and GNK = ¢ implies
no point of G can be 91ge limit point of K. This follows GN
NgD(K) = ¢, implies ] € G C U —MNg®D,(K). This shows,
1€GC(U-K)N(U-NgD(K)) =U — (KUNgD,(K)).
Thatis/ € G CU — (KU91¢D,(K)). This implies U — (KU
NgD.(K)) is NgeNbd of each of its points. By Theorem
2.13,U — KUgD,(K) is DNgeo set and hence KUNgD,(K)
is Ygec set.

The other case is similar.

Theorem 2.19. Let (U, tz(P)) be a ts and K C U. Then
K is a Mgec (resp. Ng.#¢) set iff NgD.(K) C K (resp.
0D 4 (K) € K).

Proof. Suppose K is a lgec set.

Case 1: If M0, (K) = ¢, then the result is obvious.

Case 2: If 91¢D,(K) # ¢ then let [ € MgD,(K), implies
GN(K—{1}) # ¢ for every Ngeo set G containing [. If [ ¢ K,
then / € U — K. Since K is 91gec set and U — K is Jlgeo set
containing / and not containing any other point of K which
is a contradiction to I € 9Mg®,(K). Therefore € K. Thus
1 € NgD,.(K) implies [ € K. Hence 91gD,.(K) C K.

Conversely, let 9¢®,(K) C K. Let [ € U — K implies
I ¢ K. Since MgD,.(K) CK, | ¢ NgD,(K), there exists a
Ngeo set G containing [ such that GN (K — {/}) = ¢. That
isGNK =¢ as [ ¢ K, implies | € G C U — K. Therefore
U — K is NgeNbdS(1). Since [ is arbitrary, U — K is MgeNbd
of each of its points. By Theorem 2.13, U — K is 91geo set.
Hence K is 9gec set.

The other case is similar.

Definition 2.20. Let K be a subset of a 9ts (U, 7z(P)), then
nano generalized

(i) e closure of K (briefly, 91gecl(K)) is defined as the
intersection of all 9igec sets of U containing K.

(ii) A closure of K (briefly, DMg.# cl(K)) is defined as the
intersection of all 91g.# ¢ sets of U containing K.

Theorem 2.21. Let 91GeC(U,P) (resp. MNg.#C(U,P)) be
closed under arbitrary intersection and let K be any subset of
a s, (U, 1g(P)). Then the following holds.

(i) Ngecl(K)(resp. Ng.# cl(K)) is the smallest DNgec (resp.

Vg ./ c) superset of K.

(i) K is Mgec (resp. Ng.# c) iff Ngecl(K) = K (resp.
Mg cl(K) =K).

(iil) Ngecl(K) = KUMNgD.(K) (resp. Ng# cl(K) = KU
NgD_x (K)).
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Proof. (i) Let {F; : i € I'} be the collection of all igec
subsets of U containing the set K. Therefore 9gecl(K) =
N{F; : i € I}, by the definition of the DNgecl(K). Since the
intersection of an arbitrary collection of igec sets is Jigec,
implies N{F; : i € I'} is Ngec. Therefore Ngecl(K) is a Ngec
set. Also since K C F;, for each i € I, implies K C N{F; :i €
I} =Ngecl(K). Thus Ngecl(K) is a Ngec set containing the
set K. Since Ngecl(K) =N{F;:i €I}, implies Ngecl(K) C F,
for each i € I. Consequently, 9igecl(K) is the smallest igec
superset of K.

(1) If K is a Dgec set, then obviously it is the smallest
Dgec superset of K, therefore it must coincide with gecl(K).
Hence K is gec implies Ngecl (K) = K. Againif Ngecl(K) =
K, then 9gecl(K) is Ngec set, so K is a Ngec set. Hence K
is Ngec iff Ngecl(K) = K.

(iii) By Theorem 2.18, K Ug®,.(K) is a Ngec set. There-
fore K UgD,.(K) is MNgec set containing K. Therefore
MNgecl(K) C KUMED,(K). Again K C MNgecl(K), implies
MNgD(K) C NgD,(Ngecl(K)) C Ngecl(K), because
MNgecl(K) is Ngec set and by Theorem 2.19. Hence K U
NgD,.(K) C Ngecl(K). Thus VNgecl(K) = KUNgD,.(K).

The other case is similar.

Theorem 2.22. Let K and L be two subsets of a Nzs, (U, tr(P)),
then the following properties hold.

(i) MNgecl(9) = ¢, Ngecl(U) = U and MNgecl (DNgecl(K))
= MNgecl(K).

(ii) If K C L then Mgecl(K) C MNgecl(L).
(iil) Ngecl(K)UNgecl(L) C Ngecl(KUL).
(iv) Ngecl(KNL) C Ngecl(K) NNgecl(L).

Proof. (i) Since each one of the sets ¢, U and Digecl(K)
being Ngec sets. By Theorem 2.21 (ii), Dgecl (¢) = ¢,
Mgecl(U) = U and Ngecl(Ngecl(K)) = Ngecl(K).

(ii) Let K C L, then K C L C Mgecl(L). This implies
MNgecl(L) is a Ngec superset of K. But Ngecl(K) is the small-
est Ngec superset of K. Therefore Ngecl(K) C Ngecl(L).

(iii) Since K € KUL and L C KUL from (ii), Mgecl(K)
C Ngecl(KUL) and Ngecl(L) C Ngecl(K UL). Therefore
MNgecl(K) UNgecl (L) C Ngecl(KUL).

(iv) Since KNL C K and KN L C L from (ii), DNgecl (K N
L) C Mgecl(K) and Ngecl(KNL) C Ngecl(L). Therefore
Ngecl(KNL) C Ngecl(K) NNgecl(L).

The operator ig.# cl(-) is also satisfy the Theorem 2.22.

Remark 2.23. Equality does not hold in result of (ii), (iii) and
(iv) of the Theorem 2.22 as seen from the following example.

Example 2.24. In Example 2.3,

(i) the sets K = {o} and L = {I,n,0}, clearly K C L. Also
MNgecl(K) = {o} and Ngecl(L) = {l,n,0}. The- refore
MNgecl(K) # Ngecl(L).



Nano generalized e-closure and nano generalized e-interior — 94/98

(ii) the sets K = {m} and L = {n,0}, KUL = {m,n,o0}.
Also MNgecl(K) = {m}, Ngecl(L) = {n,o} and Nge
cl(KUL) =U. Clearly, MNgecl(K) UNgecl(L) # Nge
cl(KUL).

(iii) the sets K = {l,0} and L = {m,n,0}, KNL = {o}.
Also Ngecl(K) = {l,0}, Mgecl(L) = U and Ngecl(K
NL) = {o}. Clearly, DNgecl(KNL) # Ngecl(K) NNge
cl(L).

Theorem 2.25. Let K be a subset of a 9ts, (U, Tg(P)). Then
1 € Mgecl(K) (resp. Ng#cl(K)) iff GNK # ¢ for every
Ngeo (resp. Mg.# 0) set containing /.

Proof. Let | € 9gecl(K). Suppose there exists Jlgeo set
G containing [ such that GNK = ¢. Then K C U — G. Now
U — G is a Ngec set containing K implies igecl(K) CU — G
and [ ¢ U — G implies [ ¢ Ygecl(K). This is contradiction to
hypothesis. Hence GNK # ¢.

Conversely, let GNK # ¢ for every Digeo set G containing
1. Suppose [ ¢ Ngecl(K), there exists a Ngec set F containing
K such that/ ¢ F. This implies KN (U —F)=¢ and U — F is
geo set containing /. This is contradiction to the hypothesis.
Therefore I € Ngecl(K).

The other case is similar.

Proposition 2.26. Let K and L be two subsets of a s,
(U, tr(P)), then the following properties hold.

(i) If MGeC(U,P) is closed under finite union, then
Mgecl(KUL) = Ngecl(K) UMNgecl (L) for every K, L
€ NGeC(U, P).

(i) If RMG.#C(U,P) is closed under finite union, then
Ng s cl(KUL) = Ng cl(K) UNg.# cl(L) for every
K, LEMG.#C(U,P).

Proof. Let K and L be Digec sets in U. By hypothesis,
KUL is 9gec. Then Mgecl(KUL) = KUL = Ngecl(K) U
MNgecl(L).

The other case is similar.

Theorem 2.27. Let K and L be two subsets of a zs, (U, Tr(P)),
if MeC(U, P) (resp. N4 C(U,P)) is closed under finite union,
then NGeC(U, P) (resp. NG.# C(U, P)) is closed under finite
union.

Proof. Let 91eC(U, P) is closed under finite unions. Sup-
pose K, L € NGeC(U,P) and let KUL C G where G is 9o
in U. Then K C G and L C G. Hence Necl(K) C G and
Necl(L) C G. This implies Necl(K) UNecl(L) C G. By
hypothesis, 9tec/(KUL) C G. Thatis, KUL € NGeC(U, P).

The other case is similar.

Lemma 2.28. For any subset K of U, if 1O (K) C NgD,(K)
(resp. MDO(K) CNgD_y(K)), then Nel(K) = Ngecl (K) (resp.
Nel(K) = Ng cl(K)).
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Proof. For any subset K of U, MD(K) C MNgD,(K) is
always true. By hypothesis, D (K) C NgD.(K). There-
fore, MO (K) = NgD,(K). By Theorem 2.21 (iii), that is KU
Ncl(K) = AUNgecl (K), which implies Ncl(K) = Ngecl(K).

The other case is similar.

Theorem 2.29. (i) Let NGeC (U, P) is closed under finite
union and if K and L are 91gec sets such that MO (K) C
NgD.(K) and NDO(L) C NgD,(L). Then KUL is a
MNgec setin U.

(ii) Let NG.#C(U,P) is closed under finite union and if K
and L are MNg.# ¢ sets such that ND(K) C NgD_,(K)
and NMO(L) C NgD_,(L). Then KUL is a Ng.# ¢ set
inU.

Proof. Let K and L are 9igec sets such that D (K) C
NgD,(K) and NDO(L) C NgD,(L). Therefore by Lemma
2.28, Mcl(K) = MNgecl(K) and Ncl(L) = Ngecl(L). Let G
be No set such that KUL C G, then K C G and L C G. Since
K and L are MNgec sets, Ngecl(K) C G and Ngecl(L) C G.
Since Mgecl(KUL) C MNcl(KUL) = Nel(K) UNcl(L) =
Ngecl(K)UMNgecl(L) C GUG =G. Thus Ngecl (KUL) C G.
This shows that, K U L is Digec set in U.

The other case is similar.

Definition 2.30. Let K be a subset of a Mts (U, 7g(P)), then
nano generalized

(i) e interior of K (briefly, geint(K)) is defined as the
union of all geo sets of U contained in K.

(ii) . interior of K (briefly, g.#int(K)) is defined as the
union of all DMg.# o sets of U contained in K.

Remark 2.31. Every 9o is a 91geo set which implies every
Nint point of K is a Ngeint point of K. Therefore Nint(K) C
Ngeint(K) for any K C U. But the converse of this result is
not true as seen from the following example.

Example 2.32. Let U = {l,m,n} with U/R = {{I},{m, n}}
and P = {l,n}. Then, the 9% is defined as
wr(P) ={U,9,{l},{m,n}}. For K = {l,m}, MNgeint(K) =
{l,m} and Nint(K) = {l}. Clearly m € Ngeint(K) and m ¢
Nint (K), implies Ngeint(K) ¢ Nint(K).

Theorem 2.33. Let K and L be two subsets of s, (U, tr(P)),
the following properties hold.

(i) MNgeint(K) is largest Ngeo set contained in K.
(i) K is Dgeo set iff K = Ngeint (K).
(iil) Ngeint(¢) = ¢ and Ngeint(U) =U.
(iv) If K C L then Digeint (K) C Ngeint(L).
(v) Ngeint(K) UMNgeint (L) C Ngeint(KUL).

(vi) Mgeint(KNL) C Ngeint(K) NDNgeint(L).
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(vii) MNgeint(Ngeint(K)) = Ngeint (K).

Proof. (i) Let G be any 9igeo subset of K and if [ € G,
then / € G C K. Since G being Jgeo, K is NgeNbd of I.
Therefore [ is Ngeint point of K. Thus [ € G implies [ €
Ngeint (K). This implies every Hgeo subset of K is contained
in Ngeint(K). Therefore Ngeint(K) is the largest Ngeo set
contained in K.

(ii) Let K be a 9igeo set. Since K C K, K is identical with
largest Ogeo subset of K. By (i), Ngeint(K) is the largest
Ngeo subset of K. Therefore K = Ngeint (K).

(iii) Since ¢ and U are 91geo sets, by (ii), Ngeint (¢p) = ¢
and Ngeint(U) =U.

(iv) Let K C L, then | € Ngeint(K), implies there exists
Ngeo set G such that / € G C K, which implies | € G C K C
L. Thatis I € G C L. Therefore I € Mgeint(L). Thus [ €
MNgeint(K) implies [ € Ngeint(L). Therefore. Ngeint (K) C
MNgeint(L).

(v) Since K € KUL and L C KUL, from (iv), geint (K)
C Ngeint(KUL) and Ngeint (L) C Ngeint (K UL). Therefore
MNgeint (K) UNgeint (L) C Ngeint(KUL).

(vi) Since KNL C K and KNL C L, from (iv), Ngeint (K
NL) C Ngeint(K) and Ngeint (K N L) C Ngeint(L). There-
fore Ngeint (K NL) C Ngeint (K) NNgeint (L).

(vil) By (ii), K is Ngeo iff K = Ngeint(K) and by (i),
Ngeint (K) is the largest Digeo set contained in K. Therefore
Ngeint (Ngeint(K)) = Ngeint (K).

The operator DNg.# int(-) is also satisfy the Theorem 2.33
for respective open sets.

Remark 2.34. Equality does not hold in results (iv), (v) and
(vi) of the Theorem 2.33 as seen from the following example.

Example 2.35. In Example 2.3,

(i) the sets K = {o} and L = {l,n,0}, clearly K C L. Also
Mgeint(K) = {0} and Ngeint (L) = {I,n,0}.
Therefore Ngeint (K) # Ngeint (L).

(ii) thesets K ={l} and L= {n,0}, KUL = {l,n,0}. Also
MNgeint (K) = {9}, Ngeint (L) = {n,0} and Nge int (KU
L)={l,n,o0}. Clearly, MNgeint(K) UNgeint (L) # Ngeint
L).

(iii) the sets K = {l,m} and L = {l,0}, KNL = {l}. Also
Mgeint (K) = {I,m}, Ngeint (L) = {I,0} and Ngeint (K
NL) = {¢}. Clearly, Ngeint(K N L) # Ngeint(K) N
Mgeint(L).

Theorem 2.36. If K is a subset of a s, (U, 1x(P)), then
MNgeint(K) equals to the set of all points of K which are
not Dge limit points of (U — K). That is DNgeint(K) = K —
NgD. (U —K).

Proof. Let ! € K —Ng®,.(U —K), implies [ € K and
1 ¢ NgD,.(U —K). This implies / is not DNge limit point of
(U — K), therefore there exists lgeo set G containing / but
not contains the points of (U —K). Thatis GN(U —K) = ¢.
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This implies G C K. Thus [ € G C K implies [ € Ngeint(K).
Therefore K — 91g®, (U — K) C Ngeint(K).

On the other hand, if I € MNgeint(K) then [ € K as
MNgeint(K) C K and also Dgeint (K) is Ngeo set containing /
and not containing any other points of (U — K), implies / is not
Dge limit point of (U — K). Since [ is arbitrary, every point of
Ngeint(K) is point of K but not a limit point of (U —K). This
shows that / € K —Ng®,(U — K). Therefore 9geint(K) C
K—2¢®.(U — K). Hence Mgeint(K) = K —9Mg®.(U — K).
Thus Ngeint (K) equals to the set of all points of K which are
not 91ge limit points of (U — K).

The operator Mg.# int(-) is also satisfy the Theorem 2.36
for respective derived sets.

Theorem 2.37. For the subsets K and L of space U, the fol-
lowing statements are true.

(i) Ngeint(U —K) CU —Ngeint(K).
(ii) Ngeint(K —L) C Ngeint(K) —Ngeint(L).

Proof. (i) Let I € Dgeint(U — K). Since Ngeint(U —
K) C (U—K) implies [ ¢ K and hence [ ¢ Ngeint(K). This
implies [ € U —Ngeint (K). Therefore Ngeint (U —K) CU —
MNgeint (K).

(i) Let Ngeint (K — L) = Ngeint (KN (U — L)) C Ngeint(
K)NNgeint (U — L) C Ngeint (K) N (U —Ngeint (L)) = Nge
int(K) —Ngeint(L).

The operator Qg int(-) is also satisfy the Theorem 2.37.

3. Nano generalized ¢ (resp. .#) exterior

Definition 3.1. For a subset K C U, the nano generalized
e (resp. .#) exterior (briefly, Mge€r (resp. Ng.# Er))
of K is defined as 9ige€r(K) = Ngeint (U — K) (resp. Ng
M Er(K) =NgAint(U —K)).

Definition 3.2. For a subset K C U, the nano generalized
e (resp. /) border (briefly, DgeBr (resp. Ng.# Br))
of K is defined as 9geBr(K) = K — Ngeint(K) (resp. Ng
AMBr(K) =K —Ng.Aint(K)).

(Kﬁworem 3.3. Let K and L be two subsets of Nzs, (U, 1r(X)).

Then the following holds.
() NEr(K) C Nge€r(K).
(i) Nge€r(K) is Ngeo set.
(i) Nge€r(K) = U —Ngecl(K).
(iv) NgeCr[Nge€r(K)] = Ngeint[Ngecl (K)].
(v) If K C L, then Dige€r(L) C Nge€r(K).
(vi) Nge@r(KUL) C Nge®r(K)UMNgeEr(L).
(vii) Nge€r(K)NMNge€r(L) C Nge€r(KNL).

(viii) Nge€r(KUL) = Nge€r(K)NNge€r(L).
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(ix) Nge€r(U) = ¢ and Nger(¢) =U.
(x) Nge€r(K)=Nge€r[U —Nge€r(K)).
(xi) Ngeint(K) C Nge€r[Nge€r(K)].

(xii) Ngeint(K) and NgeEr(K) are mutually disjoint and
U = MNgeint(K) UNge€r(K).

0.
(xv) Nge€r(K) CU —K.

(xiv) KNNge€r(K) =

(xiii) K N Nge€r(K) = K NNgeint(U — K) C KN (U —
= ¢ by (ii). Therefore K NMNge€r(K) = ¢.
(xiv) By definition, Dige€r(K) = DNgeint(U —K) CU —

K)

K.
The Theorem 3.3 is satisfied by Mg.# €r of a set K.

Theorem 3.4. Let K and L be two subsets of zs, (U, Tz (P)).
Then the following holds.

(1) NgeBr(K) CNBr(K).

. (i) Ngeint(K)NNgeBr(K) = ¢.

Proof. (i) For any subset L of U, Mint(L) C Ngeint(L). Put
L=U —K then int(U — K) C Ngeint (U — K). This implies (iii) K is Dgeo set iff NgeBr(K) = ¢.
NEr(K) C Nge€r(K). _ .

(ii) By definition, Nge€r(K) = Ngeint (U — K) and Ngeint (K) ©V) Mgeint (NgeBr(K)) = ¢.
is mgfo set. Ther.el.core Nge€r(K) is ‘ﬁgeq set. v) NgeBr(Ngeint(K)) = 9.

(iii) By definition, Dge€r(K) = Ngeint(U —K) =U —
Ngecl(K). (vi) MNgeBr(NgeBr(K)) = NgeBr(K).

(iv) Consider Nge€r(Nge€r(K)) = NgeCr(MNgeint (U —

K)) =Nge€r(U —MNgecl(K))
)) = Ngeint(Ngecl(K)).

(WIfK CLthenU —LCU —K . This implies Ngeint (U —
L) C Ngeint (U — K). Therefore Nge€r(L) C Nge€r(K).

(vi) Since K C KUL and L C KUL. By (v), Nge€r(KU
L) C Nge€r(K) and Nge€r(KUL) C Nge€r(L). Hence
MNgeCr(KUL) C NgeCr(K) UNge€r(L).

(vii) Since KNL C K and KNL C L. By (v), Dige€r(K)
C Nge€r(KNL) and Nge€r(L) C Nge€r(KNL). Hence
Nge€r(K)NNge€r(L) C Nge€r(KNL).

(viii) Consider Nge€r(K UL) = Ngeint(U — (KUL)) =
Ngeint[(U — K) N (U — L)] 2 Ngeint (U — K) NNgeint (U —
L) = MNge€r(K) NNge€r(L). That is,

= Ngeint (U — (U —Ngecl(K)

MNge€r(KUL) D Nge€r(K) NNge€r(L). 3.1
Also, we have K C KUL and L C KUL. By (v), 9tge€r(KU
L) C MNge€r(K) and Nge€r(KUL) C Nge€r(L). Hence,

MNge€r(KUL) C Nge€r(K) NNge€r(L). (3.2)
From, (3.1) and (3.2), we have Mge€r(KUL) =
NNge€r(L).

(ix) By definition, DNge€r(U) = Neint (U —U) = Neint
(¢) = ¢ and NgeCr(¢9) = Neint (U — @) = Neint(U) =U.

(x) Consider Nge€r(U —MNge€r(K)) = Ngeint (U —

(U —Nge€r(K))) = Ngeint(Nge€r(K)) = Ngeint (Ngeint
(U —K)) =Ngeint (U — K) = Nge€r(K).

(xi) Since K C Mgecl(K), implies Ngeint(K) C Ngeint
(Mgecl(K)) = Ngeint (U —Ngeint (U —K)) = NgeCr(Ngeint
(U—K)) =geCr(Nge€r(K)). Thus Ngeint (K) C NgeCr
(MNge€r(K)).

(xii) Let us assume that ge®r(K) N Ngeint(K) # ¢,
then, there exists [ € Mge€r(K) N Ngeint(K). Therefore
1€ Nge€r(K) and ] € Ngeint(K) implies ] € U —K and [ € K,
which is not possible. Therefore our assumption is wrong.
Hence ige€r(K)NNgeint(K) = ¢. Similarly other cases can
be obtained. Now we consider Dge€r(K) = U — Ngecl(K).

Nge€r(K)
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(vii) MNgeBr(K) = K —Ngeint(K) = KNNgecl(U — K).

(viii) K C L then MgeBr(L) C NgeBr(K).
(ix) NgeBr(KUL) C NgeBr(K) UNgeBr(L).
(x) NgeBr(K) NNgeBr(L) C NgeBr(KNL).
(
v

(xi) DNgeBr K) &

NgeBr

MNgD.(U —K)
K).

(xil) K = Ngeint(K) UNgeBr(K).

NgD.(K) =

Proof. (i) Since Mint(K) C MNgeint(K) = U — Ngeint
(K) CU—Nint(K) = KN (U —Ngeint(K)) CKN(U —Nint
(K)) = K —Ngeint(K) C K —Nint(K). Therefore NgeBr
(K) CNBr(K).

(ii) Consider Ngeint (K) NNgeBr(K) = Ngeint (K)N (K —
MNgeint(K)) = Ngeint (K) N (KN (U —Ngeint (K)))
= Ngeint(K) N (U —Ngeint(K)) NK =9 NK = ¢.

(ili) Any subset K of space U is 9igeo set iff
K =MNgeint(K) < K —Ngeint(K) = ¢ < NgeBr(K) = ¢.

(iv) Consider Ngeint (NgeBr(K)) = Ngeint (K — Ngeint

)

(K)) =Ngeint (KN (U —Ngeint (K))) C Ngeint (K) NDgeint
(U — Ngeint(K)) C Ngeint(K) N (U — Ngeint(K)) = ¢ as
Mgeint(K) C K. Therefore Ngeint (NgeBr(K)) = ¢.

(v) Consider DigeBr(Ngeint (K)) = Ngeint (K) — Ngeint
(Mgeint(K)) = Ngeint (K) — Ngeint(K) = ¢.

(vi) Consider 91geBr(NgeBr(K)) = NgeBr(K) —Nge
int(NgeBr(K)) = NgeBr(K) by (iv).

(vii) NgeBr(K) = K —Ngeint (K) = KN (U —Ngeint (K))

=KNNgecl(U — K).

(viii) If K C L then Mgeint (K) C Neint (L) = U — Ngeint
(L) CU —MNgeint(K) = KN (U —Neint (L)) C KN (U —
MNgeint (K)) = L—Ngeint (L) C K —Ngeint (K) = NgeBr(L)
C NgeBr(K).

(ix) Since K C KUL and L C K UL by (viii) 9geBr(K U
L) C NgeBr(K) and NgeBr(L) 2 NgeBr(K UL). Hence
NgeBr(KUL) C NgeBr(K) UNgeBr(L).
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(x) Since KNL C K and KN L C L by (viii) DgeBr(K) C

NgeBr(KNL) and NgeBr(L) C NgeBr(KNL). Hence NgeBr(lJ ~ MNgeint (K))

NgeBr(L) C NgeBr(KNL).

(xi) By definition NgeBr(K) = K — Ngeint(K) = K —
(K —NgD,.(U—K)) =NgD,.(U — K) by Theorem 2.36 and
NgD,(K) = NgeBr(U —K) is obtained by replacing K by
U—-K.

(xii) Ngeint (K) UNgeBr(K) = Ngeint (K) U (K —Ngeint
(K)) =MNgeint(K) U (KN (U —Ngeint(K))) = (Ngeint (K)U
K) N (MNgeint(K) U (U —Ngeint(K))) = KNU = K. There-
fore K = MNgeint (K) UNgeBr(K).

The Theorem 3.4 is satisfied by Mg.#ZBr of a set K.

4. Nano generalized ¢ (resp. .#) frontier

Definition 4.1. For a subset K C U, the nano generalized
e (resp. /) frontier (briefly, NgeFr (resp. Ng.#Fr)) of
K is defined as MgeFr(K) = Ngecl(K) — Ngeint (K) (resp.
Neg M Fr(K) = Ng M cl(K) —NgMint(K)).

Theorem 4.2. Let K and L be two subsets of 91zs, (U, Tr(P)).
Then the following holds.

(i) NgeFr(K) C NgeFrs(K).

(i) NgeBr(K) C NgeFr(K).
(iii) Ngecl(K) = Ngeint (K) UNgeFr(K).
(iv) Mgeint(K)NNgeFr(K) = 9.

(v) NgeFr(K) = NgeBr(K) UNgD,(K).
(vi) K is MNgeo set iff NgeFr(K) = NgD,(K).

(vii) NgeFr(K) =Ngecl(K) NNgecl(U —K).

(viil) NgeFr(K) =NgeFr(U —K).

)
)
(ix) NgeFr(K) is a Vgec set.
(x) Ngeint(K) = K —NgeFr(K).

(xi) NgeFr(K) = ¢ iff K is Ngeo as well as Ngec set.
(xii) NgeFr(Ngeint(K)] C NgeFr(K).
(xiii) U —NgeFr(K) = Ngeint (K) UMNgeint (U — K).
(xiv) NgeFr(Ngecl(K)] € NgeFr(K).

(xv) Ngecl(K) = KUNgeFr(K).

Proof. (i) Since Mint(K) C Ngeint(K) implies
U —MNgeint(K) C U —Nint(K). Also DNgecl(K) C Ncl(K).
The- refore Ngecl(K) N (U —Ngeint(K)) C Nel(K) N (U —
Nint (K)). This implies Ngecl (K) —Ngeint (K) C Nel(K) —
N int(K). Hence Ngegr(K) C NFr(K).

(i) Since K C MNgecl(K) implies K N (U —Ngeint (K)) C
MNgecl(K) N (U — Ngeint (K)). This implies K — Ngeint (K)
C MNgecl(K) — Ngeint(K). This shows NgeBr(K) C Nge
5r(K).
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(iii) MNgeint (K) UNgeFr(K) = Ngeint (K) U (gecl (K)N
= (Mgeint(K) UMNgecl(K)) N (MNgeint (K)
U(U —MNgeint(K))) = Ngecl(K) NU = Ngecl(K).

(iv) Ngeint (K) NNgeFr(K) = Ngeint (K) N (Ngecl(K) N
(U —Ngeint(K))) = (Ngeint(K) NNgecl (K)) N (Ngeint (K)
N(U —Ngeint (K))) = Ngeint(K) N = ¢§.

(v) From (iii), Ngecl(K) = Ngeint (K) UNgeFr(K).

This implies K UMg®, (K) = Ngeint (K) UNgeFr(K) by The-
orem 2.21 (iii). But K = 9geint(K) UNgeBr(K) by The-
orem 3.4 Therefore MNgeint(K) UMNgeBr(K) UNgD.(K) =
Ngeint (K) UNgeFr(K). Hence NgeBr(K)UND(K) =Nge
3r(K).

(vi) Suppose K is Dlgeo set and by Theorem 3.4 (iv),
NgeBr(K) = ¢.  From (v) NgeFr(K) = NgeBr(K)
UMNgD,.(K) =MNgD,.(K). Therefore if K is Ngeo set, NgeFr
(K) =7gD.(K). Conversely, suppose Jgedr(K) = NgD,
(K) from (iii), Ngecl(K) = Ngeint (K ) UNgeFr(K). That is
KUMgD,.(K) = Ngeint (K) UNgeFr(K) by Theorem 2.21
implies K UNgD,.(K) = Ngeint(K) UNgD, (K) by hypothe-
sis. Therefore K = Ngeint(K) and hence K is 91geo set.

(vil) NgeFr(K) = Ngecl(K) — Ngeint (K) = Ngecl (K)N
(U —Ngeint (K)) = Ngecl(K) NNgecl (U —K).

(viii) NgeFr(U —K) =Ngecl (U —K) —Ngeint (U —K) =
(U —Ngeint(K))— (U —Ngecl(K)) =Ngecl(K) —Ngeint (K)
= NgeFr(K).

(ix) A subset K of U is Ngec iff K = Ngecl(K). Con-
sider Digecl(NgeFr(K)) = Ngecl(Ngecl(K) — Ngeint (K))
= MNgecl(Ngecl(K) N (U —Ngeint (K))) = Ngecl (Ngecl (K)
NNgecl(U — K)) C Ngecl(Ngecl(K)) N Ngecl (Ngecl(U—
K)) = MNgecl(K) NNgecl(U — K) = NgeFr(K), by (ii), Ng
ecl(MN gegr(K)) C NgeFr(K). But NgeFr(K) C Ngecl(N
gegr(K)) is always true. Therefore Dgecl(NgeFr(K))
NgeFr(K) and hence NgeFr(K) is Ngec set.

(x) K —MNgegr(K) = KN (U —NgeFr(K)) =KN (U —
(Mgecl(K)NNgecl(U—K))) =KN((U—Ngecl(K))U(U —
Ngecl(U—K))) = (KN (U —Ngecl(K))) U (KN (U —Ngecl
(U—-K))) = ¢ U(KNNgeint(K)) = Ngeint (K).

(xi) If K is both D1geo and Digec set, then K = geint
(K) and K = Ngecl(K). Now NgeFr(K) = Ngecl(K) —
MNgeint(K) = K — K = ¢. Conversely, JNgeFr(K) = ¢ im-
plies, gecl(K) — Ngeint(K) = ¢ which implies, Ngecl(K)
—Ngeint(K) C K. That is, MNgecl(K) C K. But, K C MNge
cl(K) is always true. Therefore K = 9gecl(K). Hence K is
MNgec set. Again NgeFr(K) = ¢ implies Ngecl (K) — Ngeint
(K) = ¢ which implies Mgecl(K) = Ngeint(K) implies KU
MNgD,.(K) = Ngeint (K) which implies K C Yge int(K). But
MNgeint(K) C K is always true. Therefore K = digeint(K).
Hence K is 9igeo set.

(xii) Now, NgeFr(Ngeint(K)) = Ngecl(Mgeint (K)) —
Ngeint (Ngeint(K)) C Ngecl(K) — Ngeint (K) as Ngeint (K)
C K. This implies MgeFr(Ngeint(K)) C NgeFr(K).

(xiii) Consider U — DgeFr(K) = U — (Ngecl(K) — Nge
int(K)) = (U —Ngecl(K)) UNgeint(K) = Ngeint (U — K) U
MNgeint (K).

(xiv) Now NgeFr(MNgecl(K)) = Ngecl(MNgecl(K)) —N

_
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geint(Mgecl(K)) = Ngecl(Mgecl(K)) N (U — Ngeint (Ngecl
(K))) = Ngecl(K) NNgecl (U —Ngecl(K))

Also K CNgecl(K) = U —Ngecl(K) CU — K = Ngecl
(U —Ngecl(K)) C Ngecl(U — K) sub in (4), NgeFr(Ngecl
(K)) CNgecl(K) —Ngecl(U — K) = NgeFr(K). Thus Nge
Fr(Mgecl(K)) C Ngedr(K).

(xv) From (iii), DMgecl(K) = Ngeint (K) UNgeFr(K) C
K U9DgeFr(K) as Ngeint(K) C K. Also from (iii), DgeFr(K
) € MNgecl(K) and K C Ngecl(K) is always true. There-
fore KUNge§r(K) C Ngecl(K). It follows that, K UNgeFr
(K) =Ngecl(K).

The Theorem 4.2 is satisfied by Dg.# §r of a set K.

Conclusion

In this paper, we have studied many interesting notions on
various forms of nano generalized e and nano generalized .#
open sets.
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