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In this paper we discuss some basic topological properties of generalizations of closure, interior, neighborhood,
limit points, derived set, frontier, exterior and border of the sets via nano generalized e (resp. M )-open sets in
nano topological spaces.

Keywords
Nano generalized e (resp. M )-neighbourhood, nano generalized e (resp. M )-exterior, nano generalized e (resp.
M )-frontier.

AMS Subject Classification
54B05.

1Department of Mathematics, Government College of Engineering-Srirangam, Tiruchirappalli-620012, Tamil Nadu, India.
2PG and Research Department of Mathematics, Government Arts College (Autonomous), Karur-639005, Department of Mathematics,
Annamalai University, Annamalai Nagar-608002, Tamil Nadu, India.
3Department of Mathematics, M.Kumarasamy College of Engineering (Autonomous), Karur-639113, Tamil Nadu, India.
1,4Department of Mathematics, Kandaswamy Kandar’s College, P-velur–638182, Tamil Nadu, India.
*Corresponding author: A. Vadivel
1pamani1981@gmail.com, manivannanmaths@gces.edu.in ; 2*avmaths@gmail.com; 3saravananguru2612@gmail.com;

4vcsekar_5@yahoo.co.in;
Article History: Received 19 September 2019; Accepted 22 December 2019 c©2020 MJM.

Contents

1 Introduction and Preliminaries . . . . . . . . . . . . . . . . . . . . . 89

2 Nano generalized e neighbourhoods. . . . . . . . . . . . . . .91

3 Nano generalized e (resp. M ) exterior . . . . . . . . . . . . . 95

4 Nano generalized e (resp. M ) frontier . . . . . . . . . . . . . 97

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

1. Introduction and Preliminaries
The notion of Nano topology (in short, Nt) was introduced

by Lellis Thivagar [6] which was defined in terms of approxi-
mations and boundary region of a subset of an universe using
an equivalence relation on it and also defined Nano closed
sets, Nano-interior and Nano-closure.

The class of sets namely, θ -open (resp. δ -open) sets are
playing more important role in topological spaces, because of
their applications in various fields of Mathematics and other
real fields. In [3] Caldas et al. studied various kinds of θ -
open sets and their properties in topological spaces. Also,
in [10, 11] studied various kinds of δ -open sets. Recently,
[1, 5, 8] studied various kinds of generalizations of sets in
nano topological spaces. By this motivation, we present the

concept of nano generalized e-open sets [7] and study their
properties in nano topological spaces. The purpose of this
paper is to discuss some basic topological properties of the op-
erators namely closure, interior, neighbourhood, limit points,
derived set, frontier, exterior and border by using the sets nano
generalized e (resp. M ) open sets.

Definition 1.1. [6] Let U be a non-empty finite set of objects
called the universe and R be an equivalence relation on U
named as the indiscernibility relation. Elements belonging to
the same equivalence class are said to be indiscernible with
one another. Let P⊆ U. Then,

(i) The lower approximation of P with respect to R is the
set of all objects, which can be for certain classified as
P with respect to R and it is denoted by LR(P). That
is, LR(P) =

⋃
l∈U
{R(l) : R(l)⊆ P}, where R(l) denotes

the equivalence class determin- ed by l.

(ii) The upper approximation of P with respect to R is the
set of all objects, which can be possibly classified as P
with respect to R and it is denoted by UR(P). That is,
UR(P) =

⋃
l∈U
{R(l) : R(l)∩P 6= φ}.
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(iii) The boundary region of P with respect to R is the set
of all objects, which can be classified neither as P nor
as not-P with respect to R and it is denoted by BR(P).
That is, BR(P) = UR(P)−LR(P).

Proposition 1.2. [6] If (U,R) is an approximation space and
P,Q⊆ U, then

(i) LR(P)⊆ P⊆UR(P).

(ii) LR(φ) = UR(φ) = φ and LR(U) = UR(U) = U.

(iii) UR(P∪Q) = UR(P)∪UR(Q).

(iv) UR(P∩Q)⊆UR(P)∩UR(Q).

(v) LR(P∪Q)⊇LR(P)∪LR(Q).

(vi) LR(P∩Q) = LR(P)∩LR(Q).

(vii) LR(P)⊆LR(Q) and UR(P)⊆UR(Q), whenever P⊆
Q.

(viii) UR(Pc) = [LR(P)
c] and LR(Pc) = [UR(P)]c.

(ix) URUR(P) = LRUR(P) = UR(P).

(x) LRLR(P) = URLR(P) = LR(P).

Definition 1.3. [6] Let U be an universe, R be an equivalence
relation on U and τR(P) = {U,φ ,LR(P),UR(P), BR(P)}
where P⊆ U, τR(P) satisfies the following axioms:

(i) U and φ ∈ τR(P).

(ii) The union of the elements of arbitrary sub collection of
τR(P) is in τR(P).

(iii) The intersection of the elements of any finite sub-collection
of τR(P) is in τR(P).

That is, τR(P) is a topology on U called the nano topology
on U with respect to R and P. We call (U,τR(P)) as the nano
topological space (briefly, Nts). The elements of τR(P) are
called as nano-open (briefly, No) sets and [τR(P)]c is called
as the dual nano topology of τR(P). The elements of [τR(P)]c

are called as nano-closed (briefly, Nc).

Remark 1.4. [6] If τR(P) is the Nt on U with respect to P,
then the set B = {U,LR(P),BR(P)} is the basis for τR(P).

Definition 1.5. [6] If (U,τR(P)) is a Nts with respect to P
and if K⊆ U, then the nano interior of K is defined as the
union of all No subsets of K and it is denoted by int(K). That
is, Nint(K) is the largest No subset of K.

The nano closure of K is defined as the intersection of all
Nc sets containing K and it is denoted by Ncl(K). That is,
Ncl(K) is the smallest Nc set containing K.

Definition 1.6. [4] Let (U,τR(P)) be a Nts and let K⊆ U
then the nano θ -interior (resp. nano θ -closure) of K is defined
and denoted by Nintθ (K) =

⋃
{L : L is a

nano open set andNcl(L)⊆K} (resp. Nclθ (K) =
⋂
{L : L is

a nano closed set and Nint(L)⊇ K}).

Definition 1.7. [4] K subset K of P is said to be nano θ -
open (resp. nano θ -closed) (briefly, Nθo (resp. Nθc)) set if
K =Nintθ (K) (resp. Kc is a nano θ -open set).

Definition 1.8. [6, 12] Let (U,τR(P)) be a Nts and K ⊆U .
Then K is said to be nano regular open (briefly, Nro) if K =
Nint(Ncl(K)).

Definition 1.9. [9] Let (U,τR(P)) be a Nts and let K ⊆U
then the nano δ -interior (resp. nano δ -closure) of K is defined
and denoted by Nintδ (K) =

⋃
{L : L is a Nro set

and L ⊆ K} (resp. Nclδ (K) =
⋃
{l ∈ U : Nint(Ncl(L))∩

K 6= φ , L is a No set and l ∈ L}).

Definition 1.10. [9] A subset K of X is said to be nano δ -
open (resp. nano δ -closed) (briefly, Nδo (resp. Nδc)) set if
K =Nintδ (K) (resp. Kc is a nano δ -open set).

Definition 1.11. [8, 9, 13]Let (U,τR(P)) be a Nts and K ⊆U.
Then K is said to be a nano δ -pre (resp. nano δ -semi, nano
e, nano M and nano θ -semi) open set (briefly NδPo (resp.
NδS o, Neo, NM o and NθS o)) if K ⊆ Nint(Nclδ (K))
(resp. K ⊆ Ncl(Nintδ (K)), K ⊆ Ncl(Nintδ (K)) ∪
Nint(Nclδ (K)), K ⊆ Ncl(Nintθ (K))∪Nint(Nclδ (K)) and
K ⊆Ncl(Nintθ (K))).

The complements of the above respective open sets are
their respective closed sets.

The family of all NδPo (resp. NδS o, Neo, NM o
and NθS o) sets is denoted by NδPO(U,τR(P)), (resp.
NδS O(U,τR (P)), NeO(U,τR(P)), NM O(U,τR(P)) and
NθS O(U,τR(P))) and the family of all nano δ -pre (resp.
nano δ -semi, nano e, nano M and nano θ -semi) closed
(briefly, NδPc (resp. NδS c, Nec, NM c and NθS c)) sets
is denoted by NδPC(U,τR(P)), (resp. NδSC(U, τR(P)),
NeC(U,τR(P)), NMC(U,τR(P)) and NθSC(U, τR(P))).

Definition 1.12. [8, 9, 13] Let (U,τR(P)) be a Nts and let
K ⊆U then the nano δ -pre (resp. nano δ -semi, nano e, nano
M and nano θ -semi) interior of K is the union of all NδPo
(resp. NδS o, Neo, NM o and NθS o) sets contained in K
and denoted by NPintδ (K) (resp. NS intδ (K), Neint(K),
NM int(K) and NS intθ (K)).

Definition 1.13. [8, 9, 13] Let (U,τR(P)) be a Nts and let
K ⊆U then the nano δ -pre (resp. nano δ -semi, nano e, nano
M and nano θ -semi) closure of K is the intersection of all
NδPc (resp. NδS c, Nec, NM c and NθS c) sets con-
taining K and denoted by NPclδ (K) (resp. NS clδ (K),
Necl(K), NM cl(K) and NS clθ (K)).

Definition 1.14. [8] Let (U,τR(P)) be a Nts and K ⊆U. Then
K is said to be a nano θ -pre (resp. nano θ -semi) open set
(briefly NθPo (resp. NθS o)) if K ⊆Nint(Nclθ (K)) (resp.
K ⊆Ncl(Nintθ (K))).

Definition 1.15. A subset K of (U,τR(P)) is called nano gen-
eralized
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(i) closed [2, 4] (briefly, Ngc) set if Ncl(K)⊆V whenever
K ⊆V and V is No in (U,τR(P)).

(ii) θ closed [4], (briefly, Ngθc) set if Nclθ (K)⊆V when-
ever K ⊆V and V is No in (U,τR(P)).

(iii) θ semi closed [5] (briefly, NgθS c) set if NS clθ (K)
⊆V whenever K ⊆V and V is No in (U,τR(P)).

(iv) δ closed [1], (briefly, Ngδc ) set if Nδcl(K)⊆V when-
ever K ⊆V and V is No in (U,τR(P)).

(v) δ semi closed [1], (briefly, NgδS c ) set if NS clδ
(K)⊆V whenever K ⊆V and V is No in (U,τR(P)).

(vi) δ pre closed [1], (briefly, NgδPc ) set if NPclδ (K)
⊆V whenever K ⊆V and V is No in (U,τR(P)).

Definition 1.16. [1, 2, 4, 5] A subset K of a nano general-
ized (resp. θ , θ semi, δ , δ semi and δ pre) open (briefly,
Ngo(resp. Ngθo, NgθS o, Ngδo, NgδS o and NgδPo))
if its complement KC is nano generalized (resp. θ , θ semi, δ ,
δ semi and δ pre) closed (briefly, Ngc(resp. Ngθc, NgθS c,
Ngδc, NgδS c and NgδPc)).

The collection of all nano generalized (resp. θ , θ semi,
δ , δ semi and δ pre) open subsets of (U,τR(P)) is de-
noted by NGO(U,P)(resp. NGθO(U,P), NGθS O(U, P),
NGδO(U,P), NGδS O(U,P) and NGδPO(U,P)).

Definition 1.17. [7] A subset K of (U,τR(P)) is called nano
generalized

(i) e closed, (briefly, Ngec) set if Necl(K)⊆V whenever
K ⊆V and V is No in (U,τR(P)).

(ii) M closed, (briefly, NgM c) set if NM cl(K)⊆V when-
ever K ⊆V and V is No in (U,τR(P)).

The collection of all Ngec (resp. NgM c) subsets of U is
denoted by NGeC(U,P) (resp. NGMC(U,P)).

Definition 1.18. Let K be a subset of a Nts (U,τR(P)), the
intersection of all No subsets of U containing K is called nano
kernel[8] of K and is denoted by Nker(K).

Throughout this paper, (U,τR(P)) is a Nts with respect to
P where P⊆ U, R is an equivalence relation on U. Then U/R
denotes the family of equivalence classes of U by R.

2. Nano generalized e neighbourhoods

Definition 2.1. Let K be subset of a Nts (U,τR(P)) and l ∈U
then a set K is called nano generalized e (resp. nano general-
ized M ) neighbourhood (briefly, NgeNbd (resp. NgM Nbd))
of l ∈U , if there is a Ngeo (resp. NgM o) set G ⊂ K with
l ∈ G.

Definition 2.2. Let (U,τR(P)) be a Nts and K be subset of
U . A subset S of U is said to be nano generalized e (resp.
nano generalized M ) neighbourhood (briefly, NgeNbd (resp.
NgM Nbd)) of K, if there exist a Ngeo (resp. NgM o) set G
such that K ⊂ G⊂ S.

The collection of all NgeNbd (resp. NgM Nbd) of l ∈
U is called NgeNbd (resp. NgM Nbd) system of l and is
denoted by NGeNbdS(l) (resp. NGM NbdS(l)).

Example 2.3. Let U = {l,m,n,o} with U/R = {{l},{o},
{m,n}} and P = {m,o}. Then, the Nt is defined as τR(P) =
{U,φ ,{o},{m,n},{m,n,o}} and NGeO(U,P)
= {U,φ , {m},{n},{o},{l,m},{l,o},{m,n},{m,o},{n,o},
{l,m,n},{l,m,o},{l,n,o},{m,n,o}} = NGM O(U,P).
Now, Nge NbdS(l) = {U,{l,m},{l,o},{l,m,n},{l,m,o},
{l,n,o}}, NgeNbd S(m) = {U,{m},{l,m},{m,n},{m,o},
{l,m,n},{l,m,o},{m,n,o}}, NgeNbdS(n)= {U,{n},{m,n},
{n,o},{l,m,n},{l, n,o},{m,n,o}} and NgeNbdS(o)
= {U,{o},{l,o},{m,o},{n,o},{l,m,o},{l,n,o},{m,n,o}}.

Remark 2.4. Every NNbd of l in U is NgeNbd (resp.
NgM Nbd) of l, because every No set is Ngeo (resp. NgM o).
But converse need not be true as seen from the following ex-
ample.

Example 2.5. In Example 2.3, For l ∈U , NNbdS(l) = {U}
and NgeNbdS(l) = {U,{l,m},{l,o},{l,m,n},{l,m,o},
{l,n,o}}. Clearly the sets {l,m},{l,o},{l,m,n},{l,m,o}
and {l,n,o} are NgeNbdS(l) but not NNbdS(l).

Lemma 2.6. An arbitrary union of NgeNbd (resp. Ng M Nbd)
of a point l ∈U is again NgeNbd (resp. NgM N bd) of a point
l ∈U , if NGeO(U,P) (resp. NGM O(U,P)) is closed under
arbitrary union.

Proof. Let {Ki : i∈ I} be an arbitrary collection of NgeNbd
of l ∈U . Since for each i ∈ I, Ki is NgeNbd of l, there exist
Ngeo set Gi such that l ∈Gi⊆Ki. But for each i∈ I, Ki⊆∪Ki,
therefore l ∈ Gi ⊆ ∪Ki, which implies ∪Ki is again NgeNbd
of l.

The other case is similar.

Remark 2.7. But the intersection of NgeNbd (resp. NgM Nbd)
of a point l ∈U is not a NgeNbd (resp. NgM Nbd) of the
point l ∈U in general.

Example 2.8. In example 2.3, the sets {l,m} and {l,o} are
NgeNbdS(l) but their intersection {l} is not a NgeN bdS(l).

Theorem 2.9. Let (U,τR(P)) be a Nts. Then,

(i) Every NeNbd of l ∈U is NgeNbd of l ∈U .

(ii) Every NM Nbd of l ∈U is NgM Nbd of l ∈U .

(iii) Every NgδS Nbd of l ∈U is NgeNbd of l ∈U .

(iv) Every NgδPNbd of l ∈U is NgeNbd of l ∈U .

(v) Every NgθS Nbd of l ∈U is NgM Nbd of l ∈U .

(vi) Every NgδPNbd of l ∈U is NgM Nbd of l ∈U .

Proof. (v) Let K be an arbitrary NgθS Nbd of l ∈U then
there exists an NgθS o set L such that l ∈ G ⊆ K. By [7],
every NgθS o set is NgM o set, L is NgM o set such that
l ∈ L⊆ K. Thus K is NgM Nbd of l.

The other cases are similar.
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Remark 2.10. The converse of the Theorem 2.9 is need not
be true. It can be verified by the forthcoming example.

Example 2.11. In the Example 2.3, the set

(i) {n,o} is a NgeNbd(n) (resp. NgM Nbd(n)) but not a
NeNbd(n) (resp. NM Nbd(n)).

(ii) {l,m} is a NgeNbd(l) but not a NgδS Nbd(l).

(iii) {l,o} is a NgeNbd(l) but not a NgδPNbd(l).

(iv) {l,m} is a NgM Nbd(l) but not a NgθS Nbd(l).

(v) {l,o} is a (resp. NgM Nbd(l)) but not a NgδP Nbd(l).

(vi) {l,o} is NgNbd(l) but not NgδPNbd(l).

(vii) {l,m} is NgδPNbd(l) but not NgNbd(l).

Theorem 2.12. Let l be any arbitrary point of a Nts (U,τR(P)).
Then NgeNbdS(l) satisfies the following properties.

(i) NgeNbdS(l) 6= φ

(ii) if F ∈NgeNbdS(l), then l ∈ F

(iii) if F ∈NgeNbdS(l) & F ⊆ H, then H ∈NgeNbdS(l).

Proof. (i) Since for each l ∈U , U is a Ngeo set. There-
fore, l ∈ U ⊆ U , implies U is NgeNbdS(l). Hence, U ∈
NgeNbdS(l). Therefore U ∈NgeNbdS(l) 6= φ .

(ii) Given F ∈ NgeNbdS(l) implies F is NgeNbdS(l),
which implies there exists a Ngeo set G such that l ∈ G⊆ F .
This implies l ∈ F .

(iii) Given F ∈NgeNbdS(l) implies there exists a Ngeo
set G such that l ∈ G⊆ F and F ⊆ H which implies l ∈ G⊆
F ⊆ H. This shows that H ∈NgeNbdS(l).

The system NgM NbdS(l) is also satisfy the Theorem
2.12

Theorem 2.13. Let K be a subset of a Nts (U,τR(P)) and
NGeO(U,P) is closed under arbitrary union, then K is a Ngeo
set iff K is NgeNbd of each of its points.

Proof. Let K be any Ngeo set of U . Then for each l ∈
K ⊆ K, implies K is NgeNbdS(l). Since l is arbitrary point
of K, implies K is NgeNbd of each of its points.

Conversely, K is NgeNbd of each of its points which
implies for each l ∈ K, there exists Ngeo set G, such that
l ∈ Gl ⊆ K. Suppose if l ∈ K, there exists atleast one Ngeo
set Gl such that l ∈ Gl ⊆

⋃
l∈K

Gl . Therefore K ⊆
⋃

l∈K
Gl ⊆ K.

Thus it follows that K =
⋃

l∈K
Gl . As each Gl is Ngeo set, K is

also Ngeo set.
The system NgM O(U,P) is also satisfy the Theorem

2.13

Theorem 2.14. Let NGeO(U,P) is closed under finite inter-
section, if K is Ngec subset of U and l ∈U −K then there
exists a NgeNbd H of l such that H ∩K = φ .

Proof. Given K is Ngec set, U −K is Ngeo set. By
Theorem 2.13, U −K is NgeNbd of each of its points. Let
l ∈U −K, implies there exists a Ngeo set H such that l ∈
H ⊆U−K which implies H ∩K = φ .

The system NGM O(U,P) is also satisfy the Theorem
2.14

Definition 2.15. A point l ∈U is said to be nano generalized
e (resp. nano generalized M ) limit point of a set K if for each
T ∈NGeO(U,τR(P)) (resp. NGM O(U,τR(P))) containing
l, satisfies T ∩ (K−{l}) 6= φ .

Definition 2.16. Let (U,τR(P)) be Nts and K ⊂U , the set
of all nano generalized e (resp. nano generalized M ) limit
points of K is said to be nano generalized e (resp. nano
generalized M ) derived set of K and is denoted by NgDe(K)
(resp. NgDM (K)).

Theorem 2.17. Let K and L are the subsets of a Nts (U,τR(P)).
Then the following properties hold.

(i) NgDe(φ) = φ .

(ii) if K ⊆ L then NgDe(K)⊆NgDe(L).

(iii) if l ∈NgDe(K) then l ∈NgDe(K−{l}).

(iv) NgDe(K)∪NgDe(L)⊆NgDe(K∪L).

(v) NgDe(K∩L)⊆NgDe(K)∩NgDe(L).

Proof. (i) Let l ∈U and G be a Ngeo set containing l.
Then (G−{l})∩φ = φ . This implies l /∈NgDe(φ). There-
fore for any l ∈ U , l is not Nge limit point of φ . Hence
NgDe(φ) = φ .

(ii) Let l ∈NgDe(K). Then G∩ (K−{l}) 6= φ , for every
Ngeo set G containing l. Since K ⊆ L implies G∩(L−{l}) 6=
φ . This implies l ∈ NgDe(L). Thus l ∈ NgDe(K) implies
l ∈NgDe(L). Therefore NgDe(K)⊆NgDe(L).

(iii) Let l ∈NgDe(K). Then G∩ (K−{l}) 6= φ , for every
Ngeo set G containing l. This implies every Ngeo set G
containing l, contains atleast one point other than l of K−{l}.
Therefore l ∈NgDe(K−{l}).

(iv) Since K ⊆ K∪L and L⊆ K∪L, by (ii), NgDe(K)⊆
NgDe(K ∪ L) and NgDe(L) ⊆ NgDe(K ∪ L). Hence Ng
De(K)∪NgDe(L)⊆NgDe(K∪L).

(v) Since K ∩L ⊆ K and K ∩L ⊆ L, by (ii), NgDe(K ∩
L) ⊆ NgDe(K) and NgDe(K ∩ L) ⊆ NgDe(L). Hence Ng
De(K∩L)⊆NgDe(K)∩NgDe(L).

The derived set NgDM (·) is also satisfies the Theorem
2.17

Theorem 2.18. Let NGeC(U,P) (resp. NGMC(U,P)) is
closed under arbitrary union and if K is a subset of Nts
(U,τR(P)) then K ∪NgDe(K) (resp. K ∪NgDM (K)) is a
Ngec (resp. NgM c) set.

Proof. To prove K ∪NgDe(K) is a Ngec set, it is suffi-
cient to prove U− (K∪NgDe(K)) is Ngeo set.
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Case 1: Let U − (K ∪NgDe(K)) = φ , the result is obvi-
ous.

Case 2: Let U − (K ∪NgDe(K)) 6= φ and l ∈U − (K ∪
NgDe(K)), implies l /∈K∪NgDe(K). This implies l /∈K and
l /∈NgDe(K). Now l /∈NgDe(K) implies l is not Nge limit
point of K. Therefore there exist a Ngeo set G such that G∩
(K−{l}) = φ . Since l /∈ K, implies G∩K = φ . This implies
l ∈ G⊆U−K. Again G is Ngeo set and G∩K = φ implies
no point of G can be Nge limit point of K. This follows G∩
NgDe(K) = φ , implies l ∈ G⊆U −NgDe(K). This shows,
l ∈ G ⊆ (U −K)∩ (U −NgDe(K)) = U − (K ∪NgDe(K)).
That is l ∈ G⊆U− (K∪NgDe(K)). This implies U− (K∪
NgDe(K)) is NgeNbd of each of its points. By Theorem
2.13, U−K∪NgDe(K) is Ngeo set and hence K∪NgDe(K)
is Ngec set.

The other case is similar.

Theorem 2.19. Let (U,τR(P)) be a Nts and K ⊆U . Then
K is a Ngec (resp. NgM c) set iff NgDe(K) ⊆ K (resp.
NgDM (K)⊆ K).

Proof. Suppose K is a Ngec set.
Case 1: If NgDe(K) = φ , then the result is obvious.
Case 2: If NgDe(K) 6= φ then let l ∈NgDe(K), implies

G∩(K−{l}) 6= φ for every Ngeo set G containing l. If l /∈K,
then l ∈U −K. Since K is Ngec set and U −K is Ngeo set
containing l and not containing any other point of K which
is a contradiction to l ∈ NgDe(K). Therefore l ∈ K. Thus
l ∈NgDe(K) implies l ∈ K. Hence NgDe(K)⊆ K.

Conversely, let NgDe(K) ⊆ K. Let l ∈ U −K implies
l /∈ K. Since NgDe(K) ⊆ K, l 6∈ NgDe(K), there exists a
Ngeo set G containing l such that G∩ (K−{l}) = φ . That
is G∩K = φ as l /∈ K, implies l ∈ G ⊆ U −K. Therefore
U−K is NgeNbdS(l). Since l is arbitrary, U−K is NgeNbd
of each of its points. By Theorem 2.13, U −K is Ngeo set.
Hence K is Ngec set.

The other case is similar.

Definition 2.20. Let K be a subset of a Nts (U,τR(P)), then
nano generalized

(i) e closure of K (briefly, Ngecl(K)) is defined as the
intersection of all Ngec sets of U containing K.

(ii) M closure of K (briefly, NgM cl(K)) is defined as the
intersection of all NgM c sets of U containing K.

Theorem 2.21. Let NGeC(U,P) (resp. NgMC(U,P)) be
closed under arbitrary intersection and let K be any subset of
a Nts, (U,τR(P)). Then the following holds.

(i) Ngecl(K)(resp. NgM cl(K)) is the smallest Ngec (resp.
NgM c) superset of K.

(ii) K is Ngec (resp. NgM c) iff Ngecl(K) = K (resp.
NgM cl(K) = K).

(iii) Ngecl(K) = K ∪NgDe(K) (resp. NgM cl(K) = K ∪
NgDM (K)).

Proof. (i) Let {Fi : i ∈ I} be the collection of all Ngec
subsets of U containing the set K. Therefore Ngecl(K) =
∩{Fi : i ∈ I}, by the definition of the Ngecl(K). Since the
intersection of an arbitrary collection of Ngec sets is Ngec,
implies ∩{Fi : i ∈ I} is Ngec. Therefore Ngecl(K) is a Ngec
set. Also since K ⊆ Fi, for each i ∈ I, implies K ⊆ ∩{Fi : i ∈
I}=Ngecl(K). Thus Ngecl(K) is a Ngec set containing the
set K. Since Ngecl(K)=∩{Fi : i∈ I}, implies Ngecl(K)⊆F ,
for each i ∈ I. Consequently, Ngecl(K) is the smallest Ngec
superset of K.

(ii) If K is a Ngec set, then obviously it is the smallest
Ngec superset of K, therefore it must coincide with Ngecl(K).
Hence K is Ngec implies Ngecl(K)=K. Again if Ngecl(K)=
K, then Ngecl(K) is Ngec set, so K is a Ngec set. Hence K
is Ngec iff Ngecl(K) = K.

(iii) By Theorem 2.18, K∪NgDe(K) is a Ngec set. There-
fore K ∪NgDe(K) is Ngec set containing K. Therefore
Ngecl(K) ⊆ K ∪NgDe(K). Again K ⊆ Ngecl(K), implies
NgDe(K) ⊆ NgDe(Ngecl(K)) ⊆ Ngecl(K), because
Ngecl(K) is Ngec set and by Theorem 2.19. Hence K ∪
NgDe(K)⊆Ngecl(K). Thus Ngecl(K) = K∪NgDe(K).

The other case is similar.

Theorem 2.22. Let K and L be two subsets of a Nts, (U,τR(P)),
then the following properties hold.

(i) Ngecl(φ) = φ , Ngecl(U) =U and Ngecl(Ngecl(K))
=Ngecl(K).

(ii) If K ⊂ L then Ngecl(K)⊂Ngecl(L).

(iii) Ngecl(K)∪Ngecl(L)⊂Ngecl(K∪L).

(iv) Ngecl(K∩L)⊂Ngecl(K)∩Ngecl(L).

Proof. (i) Since each one of the sets φ , U and Ngecl(K)
being Ngec sets. By Theorem 2.21 (ii), Ngecl (φ) = φ ,
Ngecl(U) =U and Ngecl(Ngecl(K)) =Ngecl(K).

(ii) Let K ⊂ L, then K ⊂ L ⊂ Ngecl(L). This implies
Ngecl(L) is a Ngec superset of K. But Ngecl(K) is the small-
est Ngec superset of K. Therefore Ngecl(K)⊂Ngecl(L).

(iii) Since K ⊂ K∪L and L⊂ K∪L from (ii), Ngecl(K)
⊂ Ngecl(K ∪ L) and Ngecl(L) ⊂ Ngecl(K ∪ L). Therefore
Ngecl(K)∪Ngecl(L)⊂Ngecl(K∪L).

(iv) Since K∩L⊂ K and K∩L⊂ L from (ii), Ngecl(K∩
L) ⊂ Ngecl(K) and Ngecl(K ∩ L) ⊂ Ngecl(L). Therefore
Ngecl(K∩L)⊂Ngecl(K)∩Ngecl(L).

The operator NgM cl(·) is also satisfy the Theorem 2.22.

Remark 2.23. Equality does not hold in result of (ii), (iii) and
(iv) of the Theorem 2.22 as seen from the following example.

Example 2.24. In Example 2.3,

(i) the sets K = {o} and L = {l,n,o}, clearly K ⊂ L. Also
Ngecl(K) = {o} and Ngecl(L) = {l,n,o}. The- refore
Ngecl(K) 6=Ngecl(L).
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(ii) the sets K = {m} and L = {n,o}, K ∪ L = {m,n,o}.
Also Ngecl(K) = {m}, Ngecl(L) = {n,o} and Nge
cl(K∪L) =U . Clearly, Ngecl(K)∪Ngecl(L) 6=Nge
cl(K∪L).

(iii) the sets K = {l,o} and L = {m,n,o}, K ∩ L = {o}.
Also Ngecl(K) = {l,o}, Ngecl(L) =U and Ngecl(K
∩L) = {o}. Clearly, Ngecl(K∩L) 6=Ngecl(K)∩Nge
cl(L).

Theorem 2.25. Let K be a subset of a Nts, (U,τR(P)). Then
l ∈ Ngecl(K) (resp. NgM cl(K)) iff G∩K 6= φ for every
Ngeo (resp. NgM o) set containing l.

Proof. Let l ∈Ngecl(K). Suppose there exists Ngeo set
G containing l such that G∩K = φ . Then K ⊆U −G. Now
U−G is a Ngec set containing K implies Ngecl(K)⊆U−G
and l /∈U−G implies l /∈Ngecl(K). This is contradiction to
hypothesis. Hence G∩K 6= φ .

Conversely, let G∩K 6= φ for every Ngeo set G containing
l. Suppose l /∈Ngecl(K), there exists a Ngec set F containing
K such that l /∈ F . This implies K∩(U−F) = φ and U−F is
Ngeo set containing l. This is contradiction to the hypothesis.
Therefore l ∈Ngecl(K).

The other case is similar.

Proposition 2.26. Let K and L be two subsets of a Nts,
(U,τR(P)), then the following properties hold.

(i) If NGeC(U,P) is closed under finite union, then
Ngecl(K∪L) =Ngecl(K)∪Ngecl(L) for every K, L
∈NGeC(U,P).

(ii) If NGMC(U,P) is closed under finite union, then
NgM cl(K∪L) =NgM cl(K)∪NgM cl(L) for every
K, L ∈NGMC(U,P).

Proof. Let K and L be Ngec sets in U . By hypothesis,
K ∪L is Ngec. Then Ngecl(K ∪L) = K ∪L = Ngecl(K)∪
Ngecl(L).

The other case is similar.

Theorem 2.27. Let K and L be two subsets of a Nts, (U,τR(P)),
if NeC(U,P) (resp. NMC(U,P)) is closed under finite union,
then NGeC(U,P) (resp. NGMC(U,P)) is closed under finite
union.

Proof. Let NeC(U,P) is closed under finite unions. Sup-
pose K, L ∈NGeC(U,P) and let K ∪L ⊆ G where G is No
in U . Then K ⊆ G and L ⊆ G. Hence Necl(K) ⊆ G and
Necl(L) ⊆ G. This implies Necl(K)∪Necl(L) ⊆ G. By
hypothesis, Necl(K∪L)⊆ G. That is, K∪L ∈NGeC(U,P).

The other case is similar.

Lemma 2.28. For any subset K of U , if ND(K)⊆NgDe(K)
(resp. ND(K)⊆NgDM (K)), then Ncl(K)=Ngecl(K) (resp.
Ncl(K) =NgM cl(K)).

Proof. For any subset K of U , ND(K) ⊂ NgDe(K) is
always true. By hypothesis, ND(K) ⊂ NgDe(K). There-
fore, ND(K) =NgDe(K). By Theorem 2.21 (iii), that is K∪
Ncl(K) =A∪Ngecl(K), which implies Ncl(K) =Ngecl(K).

The other case is similar.

Theorem 2.29. (i) Let NGeC(U,P) is closed under finite
union and if K and L are Ngec sets such that ND(K)⊂
NgDe(K) and ND(L) ⊂ NgDe(L). Then K ∪ L is a
Ngec set in U .

(ii) Let NGMC(U,P) is closed under finite union and if K
and L are NgM c sets such that ND(K)⊂NgDM (K)
and ND(L)⊂NgDM (L). Then K∪L is a NgM c set
in U .

Proof. Let K and L are Ngec sets such that ND(K) ⊂
NgDe(K) and ND(L) ⊂ NgDe(L). Therefore by Lemma
2.28, Ncl(K) = Ngecl(K) and Ncl(L) = Ngecl(L). Let G
be No set such that K∪L⊂ G, then K ⊂ G and L⊂ G. Since
K and L are Ngec sets, Ngecl(K) ⊂ G and Ngecl(L) ⊂ G.
Since Ngecl(K ∪ L) ⊂ Ncl(K ∪ L) = Ncl(K) ∪Ncl(L) =
Ngecl(K)∪Ngecl(L)⊂G∪G=G. Thus Ngecl (K∪L)⊂G.
This shows that, K∪L is Ngec set in U .

The other case is similar.

Definition 2.30. Let K be a subset of a Nts (U,τR(P)), then
nano generalized

(i) e interior of K (briefly, Ngeint(K)) is defined as the
union of all Ngeo sets of U contained in K.

(ii) M interior of K (briefly, NgM int(K)) is defined as the
union of all NgM o sets of U contained in K.

Remark 2.31. Every No is a Ngeo set which implies every
Nint point of K is a Ngeint point of K. Therefore Nint(K)⊂
Ngeint(K) for any K ⊂U . But the converse of this result is
not true as seen from the following example.

Example 2.32. Let U = {l,m,n} with U/R = {{l},{m, n}}
and P = {l,n}. Then, the Nt is defined as
τR(P) = {U,φ ,{l},{m,n}}. For K = {l,m}, Ngeint(K) =
{l,m} and Nint(K) = {l}. Clearly m ∈Ngeint(K) and m /∈
Nint (K), implies Ngeint(K) 6⊂Nint(K).

Theorem 2.33. Let K and L be two subsets of Nts, (U,τR(P)),
the following properties hold.

(i) Ngeint(K) is largest Ngeo set contained in K.

(ii) K is Ngeo set iff K =Ngeint(K).

(iii) Ngeint(φ) = φ and Ngeint(U) =U .

(iv) If K ⊂ L then Ngeint(K)⊂Ngeint(L).

(v) Ngeint(K)∪Ngeint(L)⊂Ngeint(K∪L).

(vi) Ngeint(K∩L)⊂Ngeint(K)∩Ngeint(L).
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(vii) Ngeint(Ngeint(K)) =Ngeint(K).

Proof. (i) Let G be any Ngeo subset of K and if l ∈ G,
then l ∈ G ⊆ K. Since G being Ngeo, K is NgeNbd of l.
Therefore l is Ngeint point of K. Thus l ∈ G implies l ∈
Ngeint(K). This implies every Ngeo subset of K is contained
in Ngeint(K). Therefore Ngeint(K) is the largest Ngeo set
contained in K.

(ii) Let K be a Ngeo set. Since K ⊆ K, K is identical with
largest Ngeo subset of K. By (i), Ngeint(K) is the largest
Ngeo subset of K. Therefore K =Ngeint(K).

(iii) Since φ and U are Ngeo sets, by (ii), Ngeint(φ) = φ

and Ngeint(U) =U .
(iv) Let K ⊂ L, then l ∈Ngeint(K), implies there exists

Ngeo set G such that l ∈ G⊂ K, which implies l ∈ G⊂ K ⊂
L. That is l ∈ G ⊂ L. Therefore l ∈ Ngeint(L). Thus l ∈
Ngeint(K) implies l ∈Ngeint(L). Therefore. Ngeint(K) ⊂
Ngeint(L).

(v) Since K ⊂ K∪L and L⊂ K∪L, from (iv), Ngeint(K)
⊂Ngeint(K∪L) and Ngeint(L)⊂Ngeint(K∪L). Therefore
Ngeint(K)∪Ngeint(L)⊂Ngeint(K∪L).

(vi) Since K∩L⊂ K and K∩L⊂ L, from (iv), Ngeint(K
∩L) ⊂ Ngeint(K) and Ngeint(K ∩ L) ⊂ Ngeint(L). There-
fore Ngeint(K∩L)⊂Ngeint(K)∩Ngeint(L).

(vii) By (ii), K is Ngeo iff K = Ngeint(K) and by (i),
Ngeint(K) is the largest Ngeo set contained in K. Therefore
Ngeint(Ngeint(K)) =Ngeint(K).

The operator NgM int(·) is also satisfy the Theorem 2.33
for respective open sets.

Remark 2.34. Equality does not hold in results (iv), (v) and
(vi) of the Theorem 2.33 as seen from the following example.

Example 2.35. In Example 2.3,

(i) the sets K = {o} and L = {l,n,o}, clearly K ⊂ L. Also
Ngeint(K) = {o} and Ngeint(L) = {l,n,o}.
Therefore Ngeint(K) 6=Ngeint(L).

(ii) the sets K = {l} and L = {n,o}, K∪L = {l,n,o}. Also
Ngeint(K)= {φ}, Ngeint(L)= {n,o} and Nge int(K∪
L)= {l,n,o}. Clearly, Ngeint(K)∪Ngeint(L) 6=Ngeint(K∪
L).

(iii) the sets K = {l,m} and L = {l,o}, K ∩L = {l}. Also
Ngeint(K) = {l,m}, Ngeint(L) = {l,o} and Ngeint(K
∩L) = {φ}. Clearly, Ngeint(K ∩ L) 6= Ngeint(K)∩
Ngeint(L).

Theorem 2.36. If K is a subset of a Nts, (U,τR(P)), then
Ngeint(K) equals to the set of all points of K which are
not Nge limit points of (U −K). That is Ngeint(K) = K−
NgDe(U−K).

Proof. Let l ∈ K −NgDe(U −K), implies l ∈ K and
l 6∈NgDe(U −K). This implies l is not Nge limit point of
(U −K), therefore there exists Ngeo set G containing l but
not contains the points of (U−K). That is G∩ (U−K) = φ .

This implies G⊆ K. Thus l ∈ G⊆ K implies l ∈Ngeint(K).
Therefore K−NgDe(U−K)⊆Ngeint(K).

On the other hand, if l ∈ Ngeint(K) then l ∈ K as
Ngeint(K)⊆ K and also Ngeint(K) is Ngeo set containing l
and not containing any other points of (U−K), implies l is not
Nge limit point of (U−K). Since l is arbitrary, every point of
Ngeint(K) is point of K but not a limit point of (U−K). This
shows that l ∈ K−NgDe(U −K). Therefore Ngeint(K) ⊆
K−NgDe(U−K). Hence Ngeint(K) = K−NgDe(U−K).
Thus Ngeint(K) equals to the set of all points of K which are
not Nge limit points of (U−K).

The operator NgM int(·) is also satisfy the Theorem 2.36
for respective derived sets.

Theorem 2.37. For the subsets K and L of space U , the fol-
lowing statements are true.

(i) Ngeint(U−K)⊆U−Ngeint(K).

(ii) Ngeint(K−L)⊆Ngeint(K)−Ngeint(L).

Proof. (i) Let l ∈ Ngeint(U −K). Since Ngeint(U −
K)⊆ (U −K) implies l /∈ K and hence l /∈Ngeint(K). This
implies l ∈U−Ngeint(K). Therefore Ngeint(U−K)⊆U−
Ngeint(K).

(ii) Let Ngeint(K−L) =Ngeint(K∩(U−L))⊆Ngeint(
K)∩Ngeint(U−L)⊆Ngeint(K)∩ (U−Ngeint(L)) =Nge
int(K)−Ngeint(L).

The operator NgM int(·) is also satisfy the Theorem 2.37.

3. Nano generalized e (resp. M ) exterior
Definition 3.1. For a subset K ⊆U , the nano generalized
e (resp. M ) exterior (briefly, NgeEr (resp. NgM Er))
of K is defined as NgeEr(K) = Ngeint(U −K) (resp. Ng
MEr(K) =NgM int(U−K)).

Definition 3.2. For a subset K ⊆U , the nano generalized
e (resp. M ) border (briefly, NgeBr (resp. NgM Br))
of K is defined as NgeBr(K) = K−Ngeint(K) (resp. Ng
MBr(K) = K−NgM int(K)).

Theorem 3.3. Let K and L be two subsets of Nts, (U,τR(X)).
Then the following holds.

(i) NEr(K)⊆NgeEr(K).

(ii) NgeEr(K) is Ngeo set.

(iii) NgeEr(K) =U−Ngecl(K).

(iv) NgeEr[NgeEr(K)] =Ngeint[Ngecl(K)].

(v) If K ⊆ L, then NgeEr(L)⊆NgeEr(K).

(vi) NgeEr(K∪L)⊆NgeEr(K)∪NgeEr(L).

(vii) NgeEr(K)∩NgeEr(L)⊆NgeEr(K∩L).

(viii) NgeEr(K∪L) =NgeEr(K)∩NgeEr(L).
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(ix) NgeEr(U) = φ and NgeEr(φ) =U .

(x) NgeEr(K) =NgeEr[U−NgeEr(K)].

(xi) Ngeint(K)⊆NgeEr[NgeEr(K)].

(xii) Ngeint(K) and NgeEr(K) are mutually disjoint and
U =Ngeint(K)∪NgeEr(K).

(xiv) K∩NgeEr(K) = φ .

(xv) NgeEr(K)⊆U−K.

Proof. (i) For any subset L of U, Nint(L)⊆Ngeint(L). Put
L =U−K then Nint(U−K)⊆Ngeint(U−K). This implies
NEr(K)⊆NgeEr(K).

(ii) By definition, NgeEr(K)=Ngeint(U−K) and Ngeint(K)
is Ngeo set. Therefore NgeEr(K) is Ngeo set.

(iii) By definition, NgeEr(K) = Ngeint(U −K) = U −
Ngecl(K).

(iv) Consider NgeEr(NgeEr(K)) =NgeEr(Ngeint(U−
K)) =NgeEr(U−Ngecl(K)) =Ngeint(U−(U−Ngecl(K)
)) =Ngeint(Ngecl(K)).

(v) If K⊆L then U−L⊆U−K . This implies Ngeint(U−
L)⊆Ngeint(U−K). Therefore NgeEr(L)⊆NgeEr(K).

(vi) Since K ⊆ K∪L and L⊆ K∪L. By (v), NgeEr(K∪
L) ⊆ NgeEr(K) and NgeEr(K ∪ L) ⊆ NgeEr(L). Hence
NgeEr(K∪L)⊆NgeEr(K)∪NgeEr(L).

(vii) Since K∩L⊆ K and K∩L⊆ L . By (v), NgeEr(K)
⊆ NgeEr(K ∩ L) and NgeEr(L) ⊆ NgeEr(K ∩ L). Hence
NgeEr(K)∩NgeEr(L)⊆NgeEr(K∩L).

(viii) Consider NgeEr(K∪L) =Ngeint(U− (K∪L)) =
Ngeint[(U −K)∩ (U −L)] ⊇Ngeint(U −K)∩Ngeint(U −
L) =NgeEr(K)∩NgeEr(L). That is,

NgeEr(K∪L)⊇NgeEr(K)∩NgeEr(L). (3.1)

Also, we have K ⊆ K∪L and L⊆ K∪L. By (v), NgeEr(K∪
L)⊆NgeEr(K) and NgeEr(K∪L)⊆NgeEr(L). Hence,

NgeEr(K∪L)⊆NgeEr(K)∩NgeEr(L). (3.2)

From, (3.1) and (3.2), we have NgeEr(K ∪L) =NgeEr(K)
∩NgeEr(L).

(ix) By definition, NgeEr(U) =Neint(U −U) =Neint
(φ) = φ and NgeEr(φ) =Neint(U−φ) =Neint(U) =U .

(x) Consider NgeEr(U−NgeEr(K)) =Ngeint(U−
(U −NgeEr(K))) = Ngeint(NgeEr(K)) = Ngeint(Ngeint
(U−K)) =Ngeint(U−K) =NgeEr(K).

(xi) Since K ⊆Ngecl(K), implies Ngeint(K) ⊆Ngeint
(Ngecl(K))=Ngeint(U−Ngeint(U−K))=NgeEr(Ngeint
(U −K)) =NgeEr(NgeEr(K)). Thus Ngeint(K)⊆NgeEr
(NgeEr(K)).

(xii) Let us assume that NgeEr(K) ∩Ngeint(K) 6= φ ,
then, there exists l ∈ NgeEr(K) ∩Ngeint(K). Therefore
l ∈NgeEr(K) and l ∈Ngeint(K) implies l ∈U−K and l ∈K,
which is not possible. Therefore our assumption is wrong.
Hence NgeEr(K)∩Ngeint(K)= φ . Similarly other cases can
be obtained. Now we consider NgeEr(K) =U−Ngecl(K).

(xiii) K ∩NgeEr(K) = K ∩Ngeint(U −K) ⊆ K ∩ (U −
K) = φ by (ii). Therefore K∩NgeEr(K) = φ .

(xiv) By definition, NgeEr(K) =Ngeint(U −K)⊆U −
K.

The Theorem 3.3 is satisfied by NgMEr of a set K.

Theorem 3.4. Let K and L be two subsets of Nts, (U,τR(P)).
Then the following holds.

(i) NgeBr(K)⊆NBr(K).

(ii) Ngeint(K)∩NgeBr(K) = φ .

(iii) K is Ngeo set iff NgeBr(K) = φ .

(iv) Ngeint(NgeBr(K)) = φ .

(v) NgeBr(Ngeint(K)) = φ .

(vi) NgeBr(NgeBr(K)) =NgeBr(K).

(vii) NgeBr(K) = K−Ngeint(K) = K∩Ngecl(U−K).

(viii) K ⊆ L then NgeBr(L)⊆NgeBr(K).

(ix) NgeBr(K∪L)⊆NgeBr(K)∪NgeBr(L).

(x) NgeBr(K)∩NgeBr(L)⊆NgeBr(K∩L).

(xi) NgeBr(K) = NgDe(U −K) & NgDe(K) =
NgeBr(U−K).

(xii) K =Ngeint(K)∪NgeBr(K).

Proof. (i) Since Nint(K) ⊆ Ngeint(K)⇒ U −Ngeint
(K)⊆U−Nint(K)⇒K∩(U−Ngeint(K))⊆K∩(U−Nint
(K))⇒ K−Ngeint(K) ⊆ K−Nint(K). Therefore NgeBr
(K)⊆NBr(K).

(ii) Consider Ngeint(K)∩NgeBr(K)=Ngeint(K)∩(K−
Ngeint(K)) =Ngeint(K)∩ (K∩ (U−Ngeint(K)))
=Ngeint(K)∩ (U−Ngeint(K))∩K = φ ∩K = φ .

(iii) Any subset K of space U is Ngeo set iff
K =Ngeint(K)⇔ K−Ngeint(K) = φ ⇔NgeBr(K) = φ .

(iv) Consider Ngeint(NgeBr(K)) =Ngeint(K−Ngeint
(K))=Ngeint(K∩(U−Ngeint(K)))⊆Ngeint(K)∩Ngeint
(U −Ngeint(K)) ⊆ Ngeint(K)∩ (U −Ngeint(K)) = φ as
Ngeint(K)⊆ K. Therefore Ngeint(NgeBr(K)) = φ .

(v) Consider NgeBr(Ngeint(K)) =Ngeint(K)−Ngeint
(Ngeint(K)) =Ngeint(K)−Ngeint(K) = φ .

(vi) Consider NgeBr(NgeBr(K)) =NgeBr(K)−Nge
int(NgeBr(K)) =NgeBr(K) by (iv).

(vii) NgeBr(K)=K−Ngeint(K)=K∩(U−Ngeint(K))
= K∩Ngecl(U−K).

(viii) If K ⊆ L then Ngeint(K)⊆Neint(L)⇒U−Ngeint
(L) ⊆ U −Ngeint(K) ⇒ K ∩ (U −Neint(L)) ⊆ K ∩ (U −
Ngeint(K))⇒L−Ngeint(L)⊆K−Ngeint(K)⇒NgeBr(L)
⊆NgeBr(K).

(ix) Since K ⊆ K∪L and L⊆ K∪L by (viii) NgeBr(K∪
L) ⊆ NgeBr(K) and NgeBr(L) ⊇ NgeBr(K ∪ L). Hence
NgeBr(K∪L)⊆NgeBr(K)∪NgeBr(L).
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(x) Since K∩L⊆K and K∩L⊆ L by (viii) NgeBr(K)⊆
NgeBr(K∩L) and NgeBr(L)⊆NgeBr(K∩L). Hence NgeBr(K)∩
NgeBr(L)⊆NgeBr(K∩L).

(xi) By definition NgeBr(K) = K−Ngeint(K) = K−
(K−NgDe(U−K)) =NgDe(U−K) by Theorem 2.36 and
NgDe(K) =NgeBr(U −K) is obtained by replacing K by
U−K.

(xii) Ngeint(K)∪NgeBr(K)=Ngeint(K)∪(K−Ngeint
(K)) =Ngeint(K)∪(K∩(U−Ngeint(K))) = (Ngeint(K)∪
K)∩ (Ngeint(K)∪ (U −Ngeint(K))) = K ∩U = K. There-
fore K =Ngeint(K)∪NgeBr(K).

The Theorem 3.4 is satisfied by NgMBr of a set K.

4. Nano generalized e (resp. M ) frontier
Definition 4.1. For a subset K ⊆U , the nano generalized
e (resp. M ) frontier (briefly, NgeFr (resp. NgMFr)) of
K is defined as NgeFr(K) = Ngecl(K)−Ngeint(K) (resp.
NgMFr(K) =NgM cl(K)−NgM int(K)).

Theorem 4.2. Let K and L be two subsets of Nts, (U,τR(P)).
Then the following holds.

(i) NgeFr(K)⊆NgeFrδ (K).

(ii) NgeBr(K)⊆NgeFr(K).

(iii) Ngecl(K) =Ngeint(K)∪NgeFr(K).

(iv) Ngeint(K)∩NgeFr(K) = φ .

(v) NgeFr(K) =NgeBr(K)∪NgDe(K).

(vi) K is Ngeo set iff NgeFr(K) =NgDe(K).

(vii) NgeFr(K) =Ngecl(K)∩Ngecl(U−K).

(viii) NgeFr(K) =NgeFr(U−K).

(ix) NgeFr(K) is a Ngec set.

(x) Ngeint(K) = K−NgeFr(K).

(xi) NgeFr(K) = φ iff K is Ngeo as well as Ngec set.

(xii) NgeFr[Ngeint(K)]⊆NgeFr(K).

(xiii) U−NgeFr(K) =Ngeint(K)∪Ngeint(U−K).

(xiv) NgeFr[Ngecl(K)]⊆NgeFr(K).

(xv) Ngecl(K) = K∪NgeFr(K).

Proof. (i) Since Nint(K) ⊆ Ngeint(K) implies
U −Ngeint(K) ⊆U −Nint(K). Also Ngecl(K) ⊆ Ncl(K).
The- refore Ngecl(K)∩ (U −Ngeint(K)) ⊆Ncl(K)∩ (U −
Nint (K)). This implies Ngecl(K)−Ngeint(K)⊆Ncl(K)−
N int(K). Hence NgeFr(K)⊆NFr(K).

(ii) Since K ⊆Ngecl(K) implies K∩ (U−Ngeint(K))⊆
Ngecl(K)∩ (U −Ngeint(K)). This implies K−Ngeint(K)
⊆ Ngecl(K)−Ngeint(K). This shows NgeBr(K) ⊆ Nge
Fr(K).

(iii) Ngeint(K)∪NgeFr(K) =Ngeint(K)∪(Ngecl(K)∩
(U−Ngeint(K))) = (Ngeint(K)∪Ngecl(K))∩ (Ngeint(K)
∪(U−Ngeint(K))) =Ngecl(K)∩U =Ngecl(K).

(iv) Ngeint(K)∩NgeFr(K) =Ngeint(K)∩(Ngecl(K)∩
(U−Ngeint(K))) = (Ngeint(K)∩Ngecl(K))∩ (Ngeint(K)
∩(U−Ngeint(K))) =Ngeint(K)∩φ = φ .

(v) From (iii), Ngecl(K) =Ngeint(K)∪NgeFr(K).
This implies K∪NgDe(K)=Ngeint(K)∪NgeFr(K) by The-
orem 2.21 (iii). But K = Ngeint(K)∪NgeBr(K) by The-
orem 3.4 Therefore Ngeint(K)∪NgeBr(K)∪NgDe(K) =
Ngeint(K)∪NgeFr(K). Hence NgeBr(K)∪ND(K) =Nge
Fr(K).

(vi) Suppose K is Ngeo set and by Theorem 3.4 (iv),
NgeBr(K) = φ . From (v) NgeFr(K) = NgeBr(K)
∪NgDe(K) =NgDe(K). Therefore if K is Ngeo set, NgeFr
(K) =NgDe(K). Conversely, suppose NgeFr(K) =NgDe
(K) from (iii), Ngecl(K) =Ngeint(K)∪NgeFr(K). That is
K ∪NgDe(K) = Ngeint(K)∪NgeFr(K) by Theorem 2.21
implies K∪NgDe(K) =Ngeint(K)∪NgDe(K) by hypothe-
sis. Therefore K =Ngeint(K) and hence K is Ngeo set.

(vii) NgeFr(K) =Ngecl(K)−Ngeint(K) =Ngecl(K)∩
(U−Ngeint(K)) =Ngecl(K)∩Ngecl(U−K).

(viii) NgeFr(U−K)=Ngecl(U−K)−Ngeint(U−K)=
(U−Ngeint(K))−(U−Ngecl(K))=Ngecl(K)−Ngeint(K)
=NgeFr(K).

(ix) A subset K of U is Ngec iff K = Ngecl(K). Con-
sider Ngecl(NgeFr(K)) = Ngecl(Ngecl(K)−Ngeint(K))
=Ngecl(Ngecl(K)∩ (U−Ngeint(K))) =Ngecl(Ngecl(K)
∩Ngecl(U −K)) ⊆ Ngecl(Ngecl(K))∩Ngecl(Ngecl(U−
K)) =Ngecl(K)∩Ngecl(U −K) =NgeFr(K), by (ii), Ng
ecl(N geFr(K)) ⊆ NgeFr(K). But NgeFr(K) ⊆ Ngecl(N
geFr(K)) is always true. Therefore Ngecl(NgeFr(K)) =
NgeFr(K) and hence NgeFr(K) is Ngec set.

(x) K−NgeFr(K) = K ∩ (U −NgeFr(K)) = K ∩ (U −
(Ngecl(K)∩Ngecl(U−K)))=K∩((U−Ngecl(K))∪(U−
Ngecl(U−K))) = (K∩(U−Ngecl(K)))∪(K∩(U−Ngecl
(U−K))) = φ ∪ (K∩Ngeint(K)) =Ngeint(K).

(xi) If K is both Ngeo and Ngec set, then K = Ngeint
(K) and K = Ngecl(K). Now NgeFr(K) = Ngecl(K)−
Ngeint(K) = K −K = φ . Conversely, NgeFr(K) = φ im-
plies, Ngecl(K)−Ngeint(K) = φ which implies, Ngecl(K)
−Ngeint(K) ⊆ K. That is, Ngecl(K) ⊆ K. But, K ⊆ Nge
cl(K) is always true. Therefore K =Ngecl(K). Hence K is
Ngec set. Again NgeFr(K) = φ implies Ngecl(K)−Ngeint
(K) = φ which implies Ngecl(K) =Ngeint(K) implies K∪
NgDe(K) =Ngeint(K) which implies K ⊆Nge int(K). But
Ngeint(K) ⊆ K is always true. Therefore K = Ngeint(K).
Hence K is Ngeo set.

(xii) Now, NgeFr(Ngeint(K)) = Ngecl(Ngeint(K))−
Ngeint(Ngeint(K))⊆Ngecl(K)−Ngeint(K) as Ngeint(K)
⊆ K. This implies NgeFr(Ngeint(K))⊆NgeFr(K).

(xiii) Consider U −NgeFr(K) =U − (Ngecl(K)−Nge
int(K)) = (U−Ngecl(K))∪Ngeint(K) =Ngeint(U−K)∪
Ngeint(K).

(xiv) Now NgeFr(Ngecl(K)) = Ngecl(Ngecl(K))−N
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geint(Ngecl(K)) =Ngecl(Ngecl(K))∩ (U−Ngeint(Ngecl
(K))) =Ngecl(K)∩Ngecl(U−Ngecl(K))

Also K ⊆Ngecl(K)⇒U−Ngecl(K)⊆U−K⇒Ngecl
(U −Ngecl(K)) ⊆Ngecl(U −K) sub in (4), NgeFr(Ngecl
(K))⊆Ngecl(K)−Ngecl(U −K) =NgeFr(K). Thus Nge
Fr(Ngecl(K))⊆NgeFr(K).

(xv) From (iii), Ngecl(K) = Ngeint(K)∪NgeFr(K) ⊆
K∪NgeFr(K) as Ngeint(K)⊆ K. Also from (iii), NgeFr(K
) ⊆ Ngecl(K) and K ⊆ Ngecl(K) is always true. There-
fore K∪NgeFr(K)⊆Ngecl(K). It follows that, K∪NgeFr
(K) =Ngecl(K).

The Theorem 4.2 is satisfied by NgMFr of a set K.

Conclusion
In this paper, we have studied many interesting notions on

various forms of nano generalized e and nano generalized M
open sets.
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