

https://doi.org/10.26637/MJM0801/0017

Separation axioms in ideal bitopological spaces

P. Maragatha Meenakshi¹* and A. Vanitha²

Abstract

In this paper, we introduce and study (i, j) -semi- \mathscr{I} - R_0 and (i, j) -semi- \mathscr{I} - R_1 spaces. Also we obtain several characterizations of this axioms.

Keywords

Ideal bitopological spaces, (i, j) -semi- \mathcal{I} -closed set, (i, j) -semi- \mathcal{I} -open set, (i, j) -semi- \mathcal{I} -closure, (i, j) -semi- \mathcal{I} kernal.

AMS Subject Classification 54D10.

¹*Department of Mathematics, Periyar E.V.R. College, Affiliated to Bharathidasan University, Tiruchirappalli-620023, Tamil Nadu, India.* ²*Department of Mathematics, Valluvar College of Science and Management, Affiliated to Bharathidasan University, Karur-639003, Tamil Nadu, India.*

***Corresponding author**: ¹maragathameenakship@gmail.com; ²vanithavalluvar@gmail.com **Article History**: Received **11** October **2019**; Accepted **25** December **2019** c 2020 MJM.

Contents

1. Introduction

The concept of ideals in topological spaces has been introduced and studied by Kuratowski [\[6\]](#page-4-1) and Vaidyanathasamy [\[10\]](#page-4-2). An ideal $\mathscr I$ on a topological space (X, τ) is a nonempty collection of subsets of *X* which satisfies (i) $A \in \mathcal{I}$ and *B* $\subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies A \cup *B* \in \mathscr{I} . Given a bitopological space (X, τ_1, τ_2) with an ideal $\mathscr I$ on *X* and if $\mathscr P(X)$ is the set of all subsets of *X*, a set operator $(.)^{\star}$: $\mathscr{P}(X) \rightarrow \mathscr{P}(X)$, called the local function [\[10\]](#page-4-2) of *A* with respect to τ_i and \mathscr{I} , is defined as follows: for $A \subset X$, $A_i^*(\tau_i, \mathscr{I}) = \{x \in X | U \cap A \notin \mathscr{I} \text{ for every } U \in$ $\tau_i(x)$, where $\tau_i(x) = \{U \in \tau_i | x \in U\}$. Observe additionally that τ_i -Cl^{*}(*A*) = *A* ∪ *A*^{\star}(τ_i , \mathscr{I}) defines a Kuratowski closure operator for $\tau^*(\mathscr{I})$, when there is no chance of confusion, $A_i^{\star}(\mathcal{I})$ is denoted by A_i^{\star} and τ_i -Int^{*}(*A*) denotes the interior of *A* in $\tau_i^*(\mathcal{I})$. In this paper, we introduce and study (i, j) -semi- $I - R_0$ and (i, j) -semi- $I - R_1$ spaces. Also we obtain several characterizations of this axioms.

2. Preliminaries

Let *A* be a subset of a bitopological space (X, τ_1, τ_2) . We denote the closure of *A* and the interior of *A* with respect to τ_i by τ_i -Cl(*A*) and τ_i -Int(*A*), respectively.

Definition 2.1. *[\[1\]](#page-4-3) A subset A of an ideal bitopological space* $(X, \tau_1, \tau_2, \mathscr{I})$ *is said to be* (i, j) -semi- \mathscr{I} -open [\[1\]](#page-4-3) *if* $A \subset \tau_i$ - $Cl^*(\tau_i$ -Int $(A))$ *.*

The complement of an (i, j) -semi- \mathcal{I} -open set is called an (i, j) -semi- $\mathscr I$ -closed set.

Definition 2.2. *[\[1\]](#page-4-3) The intersection (resp. union) of all* (*i*, *j*) $semi- \mathcal{I} -closed (resp. (*i*, *j*)-semi- \mathcal{I} -open) sets of *X* contain$ *ing (resp. contained in)* $A ⊂ X$ *is called the (i, j)*-*semi-* \mathcal{I} *closure (resp.* (i, j) -semi- \mathcal{I} -interior) of A and is denoted by (i, j) -s \mathscr{I} Cl(A) (resp. (i, j) -s \mathscr{I} Int(A)). The the intersection *of all* (i, j) -semi- \mathcal{I} -open sets of X containing A is called the (i, j) -semi- \mathcal{I} -kernal of A and is denoted by (i, j) -s \mathcal{I} Ker(A).

Definition 2.3. [\[7\]](#page-4-4) An ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$ *is said to be*

- *1.* (*i*, *j*)*-semi-* \mathcal{I} *-T*⁰ *if for every pair of distinct points in X*, *there exists an* (i, j) -semi- \mathcal{I} -open set of X containing *one of the points but not the other.*
- 2. (i, j) -semi- \mathcal{I} - T_1 *if for every pair of distinct points x, y of X, there exists a pair of* (i, j) *-semi-* \mathcal{I} *-open sets one containing x but not y and the other containing y but not x.*

3. (i, j) -semi- \mathcal{I} - T_2 *if for every pair of distinct points x, y of* X *, there exists a pair of disjoint* (i, j) *-semi-* \mathcal{I} *-open sets, one containing x and the other containing y.*

3. On (i, j) -semi- \mathscr{I} - R_0 and (i, j) -semi- \mathscr{I} - R_1 **spaces**

Definition 3.1. An ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$ is *said to be* (i, j) *-semi-* \mathscr{I} *-R₀ if for every* (i, j) *-semi-* \mathscr{I} *-open set of X contains the* (i, j) *-semi-* \mathcal{I} *-closure of each of its singletons.*

Definition 3.2. An ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$ *is said to be* (i, j) *-semi-* \mathcal{I} *-symmetric if for each* $x, y \in X$, $x \in (i, j)$ -s \mathscr{I} Cl({y}) *implies* $y \in (i, j)$ -s \mathscr{I} Cl({x}).

Theorem 3.3. An ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ is (i, j) -semi- \mathscr{I} -R₀ if, and only if it is (i, j) -semi- \mathscr{I} -symmetric.

Proof. Assume that $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - R_0 . Let $x \in (i, j)$ -*s* \mathscr{I} Cl({*y*}) and *U* be any (i, j) -semi- \mathscr{I} -open set such that $y \in U$. Then by hypothesis, $x \in U$. Therefore, every (i, j) -semi- \mathcal{I} -open set which contains *y* contains *x*. Hence, *y* ∈ (*i*, *j*)-*s* \mathcal{I} Cl({*x*}). Conversely, let *U* be an (*i*, *j*)-semi- \mathcal{I} open set and $x \in U$. If $y \notin U$, then $x \notin (i, j)$ - $s \mathscr{I}Cl({y})$, and thus by assumption, $y \notin (i, j)$ -s $\mathscr{I}Cl({x})$. Therefore, (i, j) $s\mathscr{I}Cl(\lbrace x \rbrace) \subset U$, and hence, $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} -*R*0. \Box

Theorem 3.4. An ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - T_1 *if, and only if* $(X, \tau_1, \tau_2, \mathscr{I})$ *is* (i, j) -semi- \mathscr{I} -*T*₀ *and* (i, j) *-semi-* \mathscr{I} *-R*₀

Proof. Let $x, y \in X$ and $x \neq y$. Since $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) semi- \mathscr{I} - T_0 , we may assume without loss of generality that $x \in G \subset X \setminus \{y\}$ for some (i, j) -semi- $\mathscr I$ -open set *G*. Thus, $x \notin$ (i, j) - s \mathscr{I} Cl({*y*}), and by Theorem [3.3,](#page-1-1) $y \notin (i, j)$ - $s \mathscr{I}$ Cl({*x*}). Therefore, $X \setminus (i, j)$ -s $\mathscr{I}Cl(\lbrace x \rbrace)$ is an (i, j) -semi- \mathscr{I} -open set containing *y* but not *x*. Hence, $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} -*T*1. The converse is clear. \Box

Proposition 3.5. *The following statements are equivalent for an ideal bitopological space* $(X, \tau_1, \tau_2, \mathscr{I})$ *:*

- *1.* $(X, \tau_1, \tau_2, \mathscr{I})$ *is* (i, j) *-semi-* \mathscr{I} *-R*₀ *space*;
- *2. If for any* $F \in (i, j)$ *-S* $\mathcal{I}C(X)$ *,* $x \notin F$ *, then* $F \subset U$ *and* $x \notin U$ for some $U \in (i, j)$ -S $\mathscr{I}O(X)$;
- *3. If for any* $F \in (i, j)$ *-S* $\mathscr{I}C(X)$ *such that* $x \notin F$ *, then* F \cap (i, j) -s \mathscr{I} Cl $({x})$ = 0;
- *4. If for any two distinct points* $x, y \in X$ *, then either* (i, j) *s* \mathcal{I} **Cl**({*x*}) = (*i*, *j*)*-s* \mathcal{I} **Cl**({*y*}) *or* (*i*, *j*)*-s* \mathcal{I} **Cl**({*x*}) ∩ (i, j) -s $\mathscr{I}Cl({y}) = \emptyset$.

Proof. (1)⇒(2): Let $F \in (i, j)$ -*S* $\mathcal{I}C(X)$ and $x \notin F$. Then by (1) (i, j) -*s*∮Cl $(\{x\})$ ⊂ *X* \setminus *F*. Set *U* = *X* \setminus (i, j) -*s∮*Cl $(\{x\})$, then $U \in (i, j)$ -*S* $\mathscr{I}O(X)$ with $F \subset U$ and $x \notin U$.

(2)⇒(3): Let $F \in (i, j)$ -*S* $\mathcal{I}C(X)$ such that $x \notin F$. Then by (2), there exists $U \in (i, j)$ - $S\mathscr{I}O(X)$ such that $F \subset U$ and $x \notin$ *U*. Since $U \in (i, j)$ -*S* $\mathscr{I}O(X)$, $U \cap (i, j)$ -*s* $\mathscr{I}Cl({x}) = \emptyset$ and $F \cap (i, j)$ -s \mathscr{I} Cl({x}) = 0.

(3)⇒(4): Suppose that (i, j) -*s* \mathcal{I} Cl({*x*}) $\neq (i, j)$ -*s* \mathcal{I} Cl({*y*}) for the distinct points $x, y \in X$. Then there exists $z \in (i, j)$ s I Cl({*x*}) such that $z \notin (i, j)$ - s I Cl({*y*}) (or $z \in (i, j)$ $s\mathscr{I}Cl(\{y\})$ such that $z \notin (i, j)$ - $s\mathscr{I}Cl(\{x\})$). Then there exists $V \in (i, j)$ -*S* $\mathscr{I}C(X, z)$ such that $y \notin V$, hence $x \in V$. Therefore, $x \notin (i, j)$ - $s\mathscr{I}Cl({y})$. By (3), we obtain (i, j) $s\mathscr{I}Cl({x}) \cap (i, j)$ - $s\mathscr{I}Cl({y}) = \emptyset$. The proof for the other case is similar.

(4)⇒(1): Let $V \in (i, j)$ -*S* $\mathscr{I}O(X, x)$. For each $y \notin V$, we have $x \neq y$ and $x \notin (i, j)$ - $s \mathscr{I}$ Cl({y}). This shows that (*i*, *j*) $s\mathscr{I}Cl(\lbrace x \rbrace) \neq (i, j)$ - $s\mathscr{I}Cl(\lbrace y \rbrace)$. Hence (i, j) - $s\mathscr{I}Cl(\lbrace x \rbrace) \cap$ (i, j) - $s \mathscr{I}$ Cl $({y})$ = 0 for each $y \in X \setminus V$ and (i, j) - $s \mathscr{I}$ Cl $({x})$ $∩$ ($∪$ $∪$ $(*i*, *j*)-*s*$ \mathcal{I} Cl({*y*})) = 0. Since $V ∈ (i, j)$ - $S \mathcal{I}$ O(*X*) and $y \in X \setminus V$, (i, j) - $s\mathscr{I}Cl({y}) \subset X \setminus V$ and hence $X \setminus V$ *V* = ∪ (*i*, *j*)-*sI* Cl({*y*}). Therefore, we obtain $(X\Y)$ ∩ (i, j) -*s* \mathcal{I} Cl({*x*}) = \emptyset and hence (i, j) -*s* \mathcal{I} Cl({*x*}) ⊂ *V*. Then $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - R_0 . \Box

Theorem 3.6. An ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ *is* (*i*, *j*)*-semi-* \mathscr{I} *-R*₀ *if, and only if for any* $x, y \in X$, (*i*, *j*) s I Cl({*x*}) \neq (*i*, *j*)*-s*I Cl({*y*}) *implies* (*i*, *j*)*-sI* Cl({*x*}) ∩ (i, j) -s $\mathscr{I}Cl({y}) = \emptyset$.

Proof. Suppose that $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - R_0 and x , *y* ∈ *X* such that (i, j) -*s* \mathcal{I} Cl($\{x\}$) $\neq (i, j)$ -*s* \mathcal{I} Cl($\{\gamma\}$). There exists $z \in (i, j)$ -*s* \mathcal{I} Cl({*x*}) such that $z \notin (i, j)$ -*s* \mathcal{I} Cl({*y*}) (or $z \in (i, j)$ - $s\mathscr{I}$ Cl({*y*}) such that $z \notin (i, j)$ - $s\mathscr{I}$ Cl({*x*})). Since $z \notin (i, j)$ - $s \mathcal{I}$ Cl({ y }), there exists $V \in (i, j)$ - $S \mathcal{I}$ O(X, z) such that $y \notin V$. But $z \in (i, j)$ - $s \mathscr{I}$ Cl($\{x\}$) so $x \in V$. Then $x \notin (i, j)$ - $s\mathscr{I}$ Cl({*y*}). Hence $x \in X \setminus (i, j)$ - $s\mathscr{I}$ Cl({*y*}) \in (i, j) -*S* $\mathscr{I}O(X)$. Since $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - R_0 , we have (i, j) -*s* \mathcal{I} Cl({*x*}) ⊂ *X* \ (i, j) -*s* \mathcal{I} Cl({*y*}). Hence (i, j) $s\mathscr{I}Cl(\lbrace x \rbrace) \cap (i, j)$ - $s\mathscr{I}Cl(\lbrace y \rbrace) = \emptyset$. The proof for otherwise is similar. Conversely, let $V \in (i, j)$ -*S* $\mathscr{I}O(X, x)$. We will show that (i, j) - s ∕ Cl(${x}$) ⊂ *V*. Let $y \notin V$, that is, *y* ∈ *X* \setminus *V*. Then *x* \neq *y* and *x* \notin (*i*, *j*)-*s* \mathcal{I} Cl({*y*}). This shows that (i, j) - $s\mathscr{I}Cl({x}) \neq (i, j)$ - $s\mathscr{I}Cl({y})$. By assumption, (i, j) -*s* \mathcal{I} Cl({*x*}) ∩ (i, j) -*s* \mathcal{I} Cl({*y*}) = 0. Hence *y* ∉ (i, j) - s \mathscr{I} Cl $({x})$ and therefore (i, j) - s \mathscr{I} Cl $({x}) \subset V$. Hence $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - R_0 . \Box

Theorem 3.7. An ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$ *is* (i, j) -semi- \mathcal{I} - R_0 *if, and only if for any points x and y* $in X$, (i, j) *-s* \mathcal{I} **Ker**({*x*}) $\neq (i, j)$ *-s* \mathcal{I} **Ker**({*y*}) *implies* (i, j) *s* \mathcal{I} **Ker**({*x*})∩(*i*, *j*)*-s* \mathcal{I} **Ker**({*y*}) = 0*.*

Proof. Suppose $(X, \tau_1, \tau_2, \mathscr{I})$ is an (i, j) -semi- \mathscr{I} - R_0 space. Then for any points *x* and *y* in *X*, if (i, j) -*s* \mathscr{I} Ker($\{x\}$) $\neq (i, j)$ $s\mathscr{I}$ Ker({*y*}), then (i, j) - $s\mathscr{I}$ Cl({*x*}) $\neq (i, j)$ - $s\mathscr{I}$ Cl({*y*}). As-

sume that $z \in (i, j)$ -s \mathscr{I} Ker $({x}) \cap (i, j)$ -s \mathscr{I} Ker $({y})$. By $z \in$ (i, j) -s \mathscr{I} Ker $({x})$, $x \in (i, j)$ -s \mathscr{I} Cl $({z})$. Thus by Theorem [3.6,](#page-1-2) (i, j) - s \mathscr{I} Cl $({x}) = (i, j)$ - s \mathscr{I} Cl $({z})$. Similarly, we have (i, j) - s \mathscr{I} Cl({*y*}) = (i, j) - s \mathscr{I} Cl({*z*}) = $((i, j)$ - s \mathscr{I} Cl({*x*}), a contradiction. Hence (i, j) -*s* \mathscr{I} Ker $({x}) \cap (i, j)$ -*s* \mathscr{I} Ker $({y})$ $= \emptyset$. Conversely, let (i, j) -*s* \mathscr{I} Ker $({x}) \neq (i, j)$ -*s* \mathscr{I} Ker $({y})$ implies (i, j) -*s∮* Ker $({x} \cap (i, j)$ -*s∮* Ker $({y} \cap (i, j)$ = Ø. Assume that (i, j) - $s \mathscr{I}Cl({x}) \neq (i, j)$ - $s \mathscr{I}Cl({y})$. Then (i, j) $s\mathscr{I}$ Ker($\{x\}$) \neq (*i*, *j*)- $s\mathscr{I}$ Ker($\{y\}$), and therefore by assumption, (i, j) -*s* ⊭ Ker(${x}$) ∩ (i, j) -*s* ⊭ Ker(${y}$) = 0. Now if $z \in (i, j)$ - $s \mathscr{I}$ Cl($\{x\}$), then $x \in (i, j)$ - $s \mathscr{I}$ Ker($\{\overline{z}\}$), and therefore, (i, j) -*s* \mathcal{I} Ker($\{x\}$)∩ (i, j) -*s* \mathcal{I} Ker($\{z\}$) \neq Ø. By hypothesis, (i, j) - $s\mathcal{I}(\{x\}) = (i, j)$ - $s\mathcal{I}$ Ker($\{\{z\}\}\)$. Thus $z \in (i, j)$ *s* \mathcal{I} Cl({*x*}) ∩ (*i*, *j*)-*s* \mathcal{I} Cl({*y*}) implies (*i*, *j*)-*s* \mathcal{I} Ker({*x*}) $= (i, j)$ -*s* \mathscr{I} Ker({*z*}) = (i, j) -*s* \mathscr{I} Ker({*y*}), a contradiction. Therefore (i, j) -*s* $\mathscr{I}Cl({x}) \neq (i, j)$ -*s* $\mathscr{I}Cl({y})$ implies that (i, j) - s \mathcal{I} Cl($\{x\}$) \cap (i, j) - s \mathcal{I} Cl($\{y\}$) = 0, and Theorem [3.6,](#page-1-2) $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - R_0 . \Box

Theorem 3.8. *For an ideal bitopological space* $(X, \tau_1, \tau_2, \mathscr{I})$ *, the following statements are equivalent:*

- *1.* $(X, \tau_1, \tau_2, \mathscr{I})$ *is* (i, j) *-semi-* \mathscr{I} *-R*₀*.*
- *2. For any nonempty subset A of X and* $G \in (i, j)$ -S $\mathcal{SO}(X)$ *such that* $A \cap G \neq \emptyset$ *, there exists* $F \in (i, j)$ *-S* $\mathscr{I}C(X)$ *such that* $A \cap F \neq \emptyset$ *and* $F \subset G$.
- *3. For any G* ∈ (i, j) *-S* \mathcal{S} *O*(*X*)*, G* = ∪{*F* : *F* ∈ (i, j) *-* $S\mathscr{I}C(X), F \subset G$.
- *4. For any* $F \in (i, j)$ *-S* $\mathcal{I}C(X)$ *,* $F = \bigcap \{G : G \in (i, j)$ *-* $S\mathscr{I}O(X), F \subset G$.

5. For any
$$
x \in X
$$
, $(i, j) \text{-} s \mathscr{I} \text{Cl}(\{x\}) \subset (i, j) \text{-} s \mathscr{I} \text{Ker}(\{x\})$.

Proof. (1)⇒(2): Let A be a nonempty set of *X* and $G \in (i, j)$ -*S* $\mathscr{I}O(X)$ such that *A* ∩ *G* \neq **0**. Then there exists *x* ∈ *A* ∩ *G*. Since *x* ∈ *G* ∈ (*i*, *j*)-*S* \mathcal{I} *O*(*X*), (*i*, *j*)-*s* \mathcal{I} Cl({*x*}) ⊂ *G*. Set *F* $=(i, j)$ - $s \mathcal{I}$ Cl({ x }). Then $F \in (i, j)$ - $S \mathcal{I}$ C(X), $F \subset G$ and A \cap $F \neq \emptyset$.

(2)⇒(3): Let *G* ∈ (i, j) -*S* $\mathcal{I}O(X)$, then *G* ⊃ ∪{*F* : *F* ∈ (i, j) - $S\mathscr{I}C(X), F \subset G$. Let *x* be any point of *G*. Then there exists $F \in (i, j)$ -*S* $\mathscr{I}C(X)$ such that $x \in F$ and $F \subset G$. Therefore, *x* ∈ *F* ⊂ ∪{*F* : *F* ∈ (*i*, *j*)-*S* \mathcal{I} *C*(*X*), *F* ⊂ *G*}, and hence *G* = $\cup \{F : F \in (i, j)$ -*S* $\mathscr{I}C(X)$, *F* ⊂ *G* $\}.$

 $(3) \Rightarrow (4)$: This is obvious.

(4)⇒(5): Let *x* be any point of *X* and $y \notin (i, j)$ -*s* \mathcal{I} Ker({*x*}). Then there exists $V \in (i, j)$ -*S* $\mathscr{I}O(X, x)$ any $y \notin V$; hence (i, j) -*s* \mathcal{I} Cl({*y*}) ∩ *V* = \emptyset . By (4), ∩{*G* : *G* ∈ (*i*, *j*)-*S* \mathcal{I} *O*(*X*), (i, j) -*s* \mathcal{I} Cl({*y*}) ⊂ *G*}, and there exists *G* ∈ (i, j) -*S* \mathcal{I} *O*(*X*) such that $x \notin G$ and (i, j) - $s \mathcal{I}Cl({y}) \subset G$. Therefore, (i, j) $s\mathscr{I}$ Cl($\{x\}$) \cap *G* = 0 and $y \notin (i, j)$ - $s\mathscr{I}$ Cl((i, j) - $s\mathscr{I}$ Cl($\{x\}$)) = (i, j) - s \mathcal{I} Cl($\{x\}$). Consequently, we obtain (i, j) - s \mathcal{I} Cl($\{x\}$) \subset (*i*, *j*)-*s*∮Ker({*x*}).

(5)⇒(1): Let $G \in (i, j)$ -*S* $\mathcal{I}O(X, x)$. If $y \in (i, j)$ -*s* \mathcal{I} Ker($\{x\}$), then $x \in (i, j)$ - s \mathscr{I} Cl({y}) and so $y \in G$. This implies that (i, j) -*s* \mathcal{I} Ker($\{x\}$) ⊂ *G*. Therefore, $x \in (i, j)$ -*s* \mathcal{I} Cl($\{x\}$) ⊂

 (i, j) - $s\mathscr{I}$ Ker $({x}) \subset G$. This shows that $(X, \tau_1, \tau_2, \mathscr{I})$ is an (i, j) -semi- \mathscr{I} - R_0 space. \Box

Corollary 3.9. *For an ideal bitopological space* $(X, \tau_1, \tau_2, \mathscr{I})$ *is* (i, j) -semi- \mathscr{I} -R₀ if, and only if (i, j) -s $\mathscr{I}Cl({x}) = (i, j)$ $s\mathscr{I}$ **Ker**($\{x\}$) *for each* $x \in X$.

Proof. Suppose $(X, \tau_1, \tau_2, \mathscr{I})$ is an (i, j) -semi- \mathscr{I} - R_0 space. By Theorem [3.8,](#page-2-0) (i, j) - s \mathscr{I} Cl $({x}) \subset (i, j)$ - $s \mathscr{I}$ Ker $({x})$ for each $x \in X$. Let $y \in (i, j)$ -s \mathscr{I} Ker($\{x\}$). Then we have *x* \in (i, j) -*s* \mathscr{I} Cl($\{y\}$) and by Theorem [3.6](#page-1-2) (i, j) -*s* \mathscr{I} Cl($\{x\}$) = (i, j) - s \mathscr{I} Cl($\{y\}$). Therefore, $y \in (i, j)$ - s \mathscr{I} Cl($\{x\}$) and hence (*i*, *j*)-*s*I Ker({*x*}) ⊂ (*i*, *j*)-*s*I Cl({*x*}). This shows that (*i*, *j*) $s\mathscr{I}Cl(\lbrace x \rbrace) = (i, j)$ - $s\mathscr{I}$ Ker($\lbrace x \rbrace$). The converse follows from Theorem 3.[8.](#page-2-0) \Box

Theorem 3.10. *The following statements are equivalent for an ideal bitopological space* $(X, \tau_1, \tau_2, \mathscr{I})$ *:*

- *1.* $(X, \tau_1, \tau_2, \mathscr{I})$ *is* (i, j) *-semi-* \mathscr{I} *-R*₀*.*
- *2. x* ∈ (*i*, *j*)*-s* \mathcal{I} Cl({*y*}) ⇔ *y* ∈ (*i*, *j*)*-s* \mathcal{I} Cl({*x*}) *for any points x and y in X.*

Proof. (1)⇒(2): Assume that $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} -*R*₀ and *x* ∈ (*i*, *j*)-*s* \mathcal{I} Cl({*y*}). Then (*i*, *j*)-*s* \mathcal{I} Cl({*x*}) = (*i*, *j*) $s\mathscr{I}Cl({y})$. Hence $y \in (i, j)$ - $s\mathscr{I}Cl({x})$. The other part is similar.

(2)⇒(1): Let $x \in U \in (i, j)$ -S $\mathscr{I}O(X, x)$. If $y \notin U$, then $x \notin$ (i, j) - s \mathscr{I} Cl({*y*}) and hence $y \notin (i, j)$ - s \mathscr{I} Cl({*x*}) (by (2)). Thus (i, j) - $s\mathscr{I}Cl({x}) \subset U$. Hence $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) semi- \mathscr{I} - R_0 . \Box

Theorem 3.11. *The following statements are equivalent for an ideal bitopological space* $(X, \tau_1, \tau_2, \mathcal{I})$ *:*

- *1.* $(X, \tau_1, \tau_2, \mathscr{I})$ *is* (i, j) *-semi-* \mathscr{I} *-R*₀*.*
- 2. If *F* is an (i, j) -semi- \mathcal{I} -closed subset of *X*, then *F* = (i, j) -s \mathscr{I} Ker (F) .
- *3. If F is an* (i, j) *-semi-* \mathcal{I} *-closed subset of X and* $x \in F$ *, then* (i, j) *-s* \mathscr{I} Ker $({x}) \subset F$.
- *4. If* $x \in X$ *, then* (i, j) *-s* \mathcal{I} Ker $({x}) \subset (i, j)$ *-s* \mathcal{I} Cl $({x})$ *.*

Proof. (1) \Rightarrow (2): Let *F* be an (*i*, *j*)-semi- $\mathscr I$ -closed subset of *X* and $x \notin F$. Thus $X \backslash F \in (i, j)$ - $S \mathscr{I}O(X, x)$. Since $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathcal{I} - R_0 , (i, j) -s \mathcal{I} Cl($\{\{x\}}$) ⊂ $X \setminus F$. Thus (i, j) *s* \mathcal{I} Cl({*x*}) ∩ *F* = \emptyset and *x* \notin (*i*, *j*)-*s* \mathcal{I} Ker(*F*). Therefore, (i, j) -s \mathscr{I} Ker $(F) = F$.

(2)⇒(3): If $A \subset B$, then (i, j) -s \mathcal{I} Ker $(A) \subset (i, j)$ -s \mathcal{I} Ker (B) . Then (i, j) - s \mathscr{I} Ker $({x}) \subset (i, j)$ - $s \mathscr{I}$ Ker $(F) = F$.

(3)⇒(4): Since $x \in (i, j)$ - s \mathcal{I} Cl($\{x\}$) and (i, j) - s \mathcal{I} Cl($\{x\}$) is (i, j) -semi- \mathscr{I} -closed, (i, j) -s \mathscr{I} Ker $({x}) \subset (i, j)$ -s \mathscr{I} Cl $({x})$. (4)⇒(1): If $x \in (i, j)$ - s \mathcal{I} Cl({ y }), then $y \in (i, j)$ - s \mathcal{I} Ker({ x }). Since $x \in (i, j)$ - $s \mathscr{I}$ Cl($\{x\}$) and (i, j) - $s \mathscr{I}$ Cl($\{x\}$) is (i, j) semi- \mathscr{I} -closed, by (4), we obtain $y \in (i, j)$ -s \mathscr{I} Ker($\{x\}$) ⊂ (i, j) - s \mathcal{I} Cl($\{x\}$). Then $x \in (i, j)$ - s \mathcal{I} Cl($\{y\}$) implies that $y \in$ (i, j) - s \mathscr{I} Cl({x}). So $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - R_0 . \Box

Definition 3.12. *A net* $\{x_\alpha\}_{\alpha \in \Lambda}$ *in an ideal bitopological space* $(X, \tau_1, \tau_2, \mathcal{I})$ *is called* (i, j) *-semi-* \mathcal{I} *-convergent to a point x in X if for every* $U \in (i, j)$ *-S* $\mathcal{SO}(X, x)$ *, there exists* $\alpha_0 \in \Lambda$ *such that* $x_\alpha \in U$ *for each* $\alpha \ge \alpha_0$ *.*

Lemma 3.13. *Let* $(X, \tau_1, \tau_2, \mathscr{I})$ *be an ideal bitopological space and let x and y any two points in X such that every net in* $X(i, j)$ -semi- \mathcal{I} -converging to $y(i, j)$ -semi- \mathcal{I} -converges *to x.* Then $x \in (i, j)$ -s $\mathscr{I}Cl({y}).$

Proof. Suppose $x_n = y$ for each $n \in \mathbb{N}$. Then $\{x_n\}_{n \in \mathbb{N}}$ is a net in *X* that (i, j) -semi- \mathcal{I} -convergence to *y*. Thus by assumption, (i, j) -semi- \mathcal{I} -converges to *x*. So $x \in (i, j)$ - $s \mathcal{I}$ Cl({*y*}). \Box

Theorem 3.14. *The following statements are equivalent for an ideal bitopological space* $(X, \tau_1, \tau_2, \mathscr{I})$ *:*

- *1.* $(X, \tau_1, \tau_2, \mathscr{I})$ *is* (i, j) *-semi-* \mathscr{I} *-R*₀*.*
- *2. If* $x, y \in X$ *, then* $y \in (i, j)$ *-s* \mathcal{I} Cl({*x*}) *if, and only if every net in* $X(i, j)$ -semi- $\mathscr I$ -converging to y also (i, j) *semi-*I *-converges to x.*

Proof. (1)⇒(2): Let *x*, $y \in X$ such that $y \in (i, j)$ - $s \mathscr{I}Cl({x})$. Suppose that ${x_\alpha}_{\alpha \in \Lambda}$ be a net in *X* such that ${x_\alpha}_{\alpha \in \Lambda}$ (i, j) semi- \mathcal{I} -converges to *y*. Since $y \in (i, j)$ -s $\mathcal{I}Cl({x})$, by The-orem [3.3,](#page-1-1) $x \in (i, j)$ -s \mathscr{I} Cl({y}). Conversely, let $x, y \in X$ such that every net in *X* (*i*, *j*)-semi- \mathcal{I} -converging to *y* (*i*, *j*)-semi-I -converges to *x*. Then *x* ∈ (*i*, *j*)-*s*I Cl({*y*}). By Theorem [3.10,](#page-2-1) $y \in (i, j)$ -s $\mathscr{I}Cl({x}).$

(2)⇒(1): Assume that *x* and *y* are any two points of *X* such that (i, j) -*s* \mathscr{I} Cl $(\lbrace x \rbrace) \cap (i, j)$ -*s* \mathscr{I} Cl $(\lbrace y \rbrace) \neq \emptyset$. Let $z \in (i, j)$ $s\mathscr{I}Cl({x}) \cap (i, j)$ - $s\mathscr{I}Cl({y})$. There exists a net ${x_\alpha}_{\alpha \in \Lambda}$ in (i, j) -*s* \mathscr{I} Cl({*x*}) (i, j) -semi- \mathscr{I} -converges to *z*. Since *z* $\in (i, j)$ -*s* \mathscr{I} Cl({*y*}), { x_{α} }_{$\alpha \in \Lambda$} also (*i*, *j*)-semi- \mathscr{I} -converges to *y*. Hence by (2) $z \in (i, j)$ -s $\mathscr{I}Cl({y})$. Therefore (i, j) *s* \mathcal{I} Cl({*z*}) ⊂ (*i*, *j*)-*s* \mathcal{I} Cl({*y*}) (\star). So *y* ∈ (*i*, *j*)-*s* \mathcal{I} Cl({*z*}) gives (i, j) - $s \mathscr{I}Cl({y}) \subset (i, j)$ - $s \mathscr{I}Cl({z})$ ($\star \star$). Hence from (*) and (**), (i, j) - s \mathscr{I} Cl($\{y\}$) = (i, j) - s \mathscr{I} Cl($\{z\}$). Similarly it can be shown that (i, j) - $s \mathcal{I}$ Cl $({x}) = (i, j)$ - $s \mathcal{I}$ Cl $({z})$ by taking the net in (i, j) -s $\mathscr{I}Cl({y})$. So (i, j) -s $\mathscr{I}Cl({x})$ = (i, j) -s \mathscr{I} Cl({y}). Then $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - R_0 . \Box

Definition 3.15. An ideal bitopological space $(X, \tau_1, \tau_2, \mathscr{I})$ *is said to be* (i, j) *-semi-* \mathcal{I} *-R*₁ *if for each points x and y of X* such that (i, j) -s $\mathscr{I}Cl({x}) \neq (i, j)$ -s $\mathscr{I}Cl({y})$ *, there exist disjoint* (i, j) *-semi-* \mathcal{I} *-open subsets of X, say, U and V such that* (i, j) *-s* $\mathcal{I}Cl({x}) \subset U$ *and* (i, j) *-s* $\mathcal{I}Cl({y}) \subset V$.

Proposition 3.16. *Every* (i, j) -semi- \mathcal{I} -R₁ *space is* (i, j) -semi- \mathscr{I} -R₀.

Proof. Let $U \in (i, j)$ -*S* $\mathscr{I}O(X, x)$. If $y \notin U$, then $x \notin (i, j)$ $s\mathscr{I}Cl(\{y\})$. So (i, j) - $s\mathscr{I}Cl(\{x\}) \neq (i, j)$ - $s\mathscr{I}Cl(\{y\})$. Since $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - R_1 , there exists an (i, j) -semi-I -open set *V^y* such that (*i*, *j*)-*s*I Cl({*y*}) ⊂ *V^y* and *x* ∈/ *Vy*, implies that $y \notin (i, j)$ - $s \mathscr{I}$ Cl($\{x\}$). Hence (i, j) - $s \mathscr{I}$ Cl($\{x\}$) $\subset U$. Then $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - R_0 . \Box Theorem 3.17. *The following statements are equivalent for an ideal bitopological space* $(X, \tau_1, \tau_2, \mathscr{I})$ *:*

- *1.* $(X, \tau_1, \tau_2, \mathscr{I})$ *is* (i, j) *-semi-* \mathscr{I} *-T*₂*,*
- *2.* $(X, \tau_1, \tau_2, \mathscr{I})$ *is* (i, j) *-semi-* \mathscr{I} *-R*₁ *and* (i, j) *-semi-* \mathscr{I} *-T*1*,*
- *3.* $(X, \tau_1, \tau_2, \mathscr{I})$ *is* (i, j) *-semi-* \mathscr{I} *-R₁ and* (i, j) *-semi-* \mathscr{I} *-T*₀*.*

Proof. (1) \Rightarrow (2): Since $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} -T₂, then it is (i, j) -semi- \mathscr{I} - T_1 . If $x, y \in X$ such that (i, j) - $s \mathscr{I}$ Cl $({x})$ \neq (*i*, *j*)-*s* \mathscr{I} Cl({*y*}), then $x \neq y$ and there exist disjoint (*i*, *j*)semi- \mathscr{I} -open sets *U* and *V* such that $x \in U$ and $y \in V$. Hence by Theorem [3.4,](#page-1-3) (i, j) - s \mathscr{I} Cl $({x}) = {x} \subset U$ and (i, j) - $s \mathscr{I}$ Cl({y}) = {y} $\subset V$. Hence $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) semi- \mathscr{I} - R_1 .

(2)⇒(3): Since $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - T_1 , then it is (i, j) -semi- \mathscr{I} - T_0 .

 $(3) \Rightarrow (1)$: Since $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - R_1 and (i, j) semi- \mathscr{I} -*T*₀, then by Proposition [3.16,](#page-3-0) $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) semi- \mathscr{I} - R_0 and (i, j) -semi- \mathscr{I} - T_0 . Hence by Theorem [3.4,](#page-1-3) $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - T_1 . Let $x, y \in X$ such that $x \neq$ *y*. Then (i, j) -*s* \mathcal{I} Cl($\{x\}$) = $\{x\} \neq \{y\}$ = (i, j) -*s* \mathcal{I} Cl($\{y\}$). Since $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - R_1 , there exist disjoint (i, j) -semi- \mathcal{I} -open sets U and V such that (i, j) -s $\mathcal{I}Cl({x}) =$ ${x}$ ⊂ *U* and (i, j) -*s* \mathcal{I} Cl({*y*}) = {*y*} ⊂ *V*. Hence we have $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - T_2 and thus by Theorem [3.3](#page-1-1) (X, τ) is an (i, j) -semi- \mathscr{I} - R_0 space. \Box

Corollary 3.18. *For an* (i, j) *-semi-* \mathscr{I} *-R*₁ *space* $(X, \tau_1, \tau_2, \mathscr{I})$ *, the following statements are equivalent:*

- *1.* $(X, \tau_1, \tau_2, \mathscr{I})$ *is* (i, j) *-semi-* \mathscr{I} *-T*₂*.*
- 2. $(X, \tau_1, \tau_2, \mathscr{I})$ *is* (i, j) *-semi-* \mathscr{I} *-T*₁.
- *3.* $(X, \tau_1, \tau_2, \mathscr{I})$ *is* (i, j) *-semi-* \mathscr{I} *-T*₀*.*

Theorem 3.19. *For an ideal bitopological space* $(X, \tau_1, \tau_2, \mathscr{I})$ *is* (*i*, *j*)*-semi-* \mathscr{I} *-R*₁ *if, and only if* $x \in X \setminus (i, j)$ *-s* \mathscr{I} Cl({y}) *implies that x and y have disjoint* (i, j) *-semi-* \mathcal{I} *-neighbourhoods.*

Proof. Let $x \in X \setminus (i, j)$ - $s \mathscr{I}$ Cl({ y }). Then (i, j) - $s \mathscr{I}$ Cl({ x }) \neq (i, j) -s $\mathscr{I}Cl({y})$ and x and y have disjoint (i, j) -semi- \mathscr{I} neighbourhoods. Conversely, first we show that $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - R_0 . Let *U* be an (i, j) -semi- \mathscr{I} -open set and *x* ∈ *U*. Suppose that *y* ∉ *U*. Then, (i, j) -*s* \mathcal{I} Cl({*y*})∩*U* = 0 and $x \notin (i, j)$ - $s\mathscr{I}Cl({y})$. Then there exist disjoint (i, j) semi- $\mathscr I$ -open sets U_x and U_y such that $x \in U_x$ and $y \in U_y$ and *U*_{*x*} ∩ *U*_{*y*} = \emptyset . Hence, (*i*, *j*)-*s* \mathcal{I} Cl({*x*}) ⊂ (*i*, *j*)-*s* \mathcal{I} Cl(*U_{<i>x*})</sub> and (i, j) - s \mathscr{I} Cl $(x) \cap U_y \subset (i, j)$ - s \mathscr{I} Cl $({U_x}) \cap U_y = \emptyset$. Therefore, $y \notin (i, j)$ - $s \mathscr{I}$ Cl($\{x\}$). Consequently, (i, j) - $s \mathscr{I}$ Cl($\{x\}$) ⊂ *U* and $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - R_0 . Next, we show that $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - R_1 . Suppose that (i, j) $s\mathscr{I}Cl(\lbrace x \rbrace) \neq (i, j)$ - $s\mathscr{I}Cl(\lbrace y \rbrace)$. Assume that there exists $z \in (i, j)$ -*s* \mathscr{I} Cl({*x*}) such that $z \notin (i, j)$ -*s* \mathscr{I} Cl({*y*}). Then there exist disjoint (i, j) -semi- $\mathscr I$ -open sets V_z and V_y such

that $z \in V_z$, $y \in V_y$. Since $z \in (i, j)$ -s \mathscr{I} Cl $(\{x\})$, $x \in V_z$. Since $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - R_0 , (i, j) -s \mathscr{I} Cl $(\{x\}) \subset V_z$, (i, j) - s \mathscr{I} Cl({y}) $\subset V_y$ and $V_z \cap V_y = \emptyset$. Then (X, τ_1, τ_2) is (i, j) -semi- \mathscr{I} - R_1 and thus by Theorem [3.3](#page-1-1) (X, τ) is an (i, j) semi- \mathcal{I} - R_0 space. П

Theorem 3.20. *The following statements are equivalent for an ideal bitopological space* $(X, \tau_1, \tau_2, \mathscr{I})$ *:*

- *1.* $(X, \tau_1, \tau_2, \mathscr{I})$ *is* (i, j) *-semi-* \mathscr{I} *-R*₁*.*
- *2. For each x, y* \in *X one of the following holds:*
	- *(a) If U is* (i, j) *-semi-* \mathcal{I} *-open, then* $x \in U$ *if, and only* $if y \in U.$
	- *(b) there exist disjoint* (i, j) *-semi-* \mathcal{I} *-open sets* U *and V* such that $x \in U$ and $y \in V$.
- *3. If* $x, y \in X$ *and* (i, j) *-s* \mathcal{I} Cl $(\{x\}) \neq (i, j)$ *-s* \mathcal{I} Cl $(\{y\})$ *, then there exist* (i, j) -semi- \mathcal{I} -closed sets F_1 and F_2 such *that* $x \in F_1$, $y \notin F_1$, $y \in F_2$, $x \notin F_2$, and $X = F_1 \cup F_2$.

Proof. (1)⇒(2): Let *x*, $y \in X$. Then (i, j) - s \mathcal{I} Cl($\{x\}$) = (i, j) $s\mathscr{I}Cl(\{y\})$ or (i, j) - $s\mathscr{I}Cl(\{x\}) \neq (i, j)$ - $s\mathscr{I}Cl(\{y\})$. If (i, j) $s\mathscr{I}Cl(\lbrace x \rbrace) = (i, j)$ - $s\mathscr{I}Cl(\lbrace y \rbrace)$ and *U* is (i, j) -semi- \mathscr{I} -open, then $x \in U$ implies $y \in (i, j)$ - $s \mathscr{I}Cl({x}) \subset U$ and $y \in U$ implies *x* ∈ (*i*, *j*)-*s* \mathcal{I} Cl({*y*}) ⊂ *U*. Thus consider the case that (i, j) - $s\mathscr{I}Cl({x}) \neq (i, j)$ - $s\mathscr{I}Cl({y})$. Then there exist disjoint (i, j) -semi- \mathcal{I} -open sets *U* and *V* such that $x \in (i, j)$ $s\mathscr{I}Cl(\lbrace x \rbrace) \subset U$ and $y \in (i, j)$ - $s\mathscr{I}Cl(\lbrace y \rbrace) \subset V$.

(2)⇒(3): Let *x*, $y \in X$, (i, j) -*s* \mathcal{I} Cl($\{x\}$) $\neq (i, j)$ -*s* \mathcal{I} Cl($\{y\}$). Then $x \notin (i, j)$ - $s \mathscr{I}$ Cl({*y*}) or $y \notin (i, j)$ - $s \mathscr{I}$ Cl({*x*}), say $x \notin$ (i, j) -s $\mathscr{I}Cl({y})$. Then there exists an (i, j) -semi- \mathscr{I} -open set *A* such that $x \in A$ and $y \notin A$. Then by (2) there exist disjoint (i, j) -semi- $\mathscr I$ -open sets *U* and *V* such that $x \in U$ and $y \in V$. Then $F_1 = X \setminus V$ and $F_2 = X \setminus U$ are (i, j) -semi- \mathcal{I} -closed sets such that $x \in F_1$, $y \notin F_1$, $y \in F_2$, $x \notin F_2$ and $X = F_1 \cup F_2$.

(3) \Rightarrow (1): We shall first show that $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - R_0 space. Let *U* be an (i, j) -semi- \mathscr{I} -open set such that *x* ∈ *U*. We claim that (i, j) -*s* \mathcal{I} Cl({*x*}) ⊂ *U*. For suppose *y* ∈ (i, j) - s \mathscr{I} Cl($\{\{x\}\}\cap (X\backslash U)$. Then (i, j) - s \mathscr{I} Cl($\{\{x\}\}\neq (i, j)$ $s\mathscr{I}$ Cl({*y*}) (if (*i*, *j*)- $s\mathscr{I}$ Cl({*x*}) = (*i*, *j*)- $s\mathscr{I}$ Cl({*y*}), then $y \in$ *U*) and hence by (3), there exist (i, j) -semi- \mathcal{I} -closed sets *F*₁ and *F*₂ such that $x \in F_1$, $y \notin F_1$, $y \in F_2$, $x \notin F_2$ and $X =$ *F*₁ ∪ *F*₂. Then $y \in F_2 \backslash F_1 = X \backslash F_1 \in (i, j)$ -*S* $\mathscr{I}O(X)$ and $x \notin$ *X**F*₁, a contradicts the fact that $y \in (i, j)$ -*s* \mathcal{I} Cl({*x*}). Hence $(X, \tau_1, \tau_2, \mathscr{I})$ is (i, j) -semi- \mathscr{I} - R_0 space. Let $p, q \in X$ be such that (i, j) -*s* \mathscr{I} Cl $(\lbrace p \rbrace) \neq (i, j)$ -*s* \mathscr{I} Cl $(\lbrace q \rbrace)$. Then by the given condition there exist (i, j) -semi- \mathcal{I} -closed sets H_1 and H_2 such that $p \in H_1$, $q \notin H_1$, $q \in H_2$, $p \notin H_2$ and $X = H_1 \cup H_2$. Thus $p \in H_1 \backslash H_2$ and $q \in H_2 \backslash H_1$, where $H_1 \backslash H_2$ and $H_2 \backslash H_1$ are disjoint (i, j) -semi- $\mathscr I$ -open sets. Hence (i, j) -s $\mathscr I$ Cl $(\lbrace p \rbrace) \subset$ *H*₁*H*₂ and (*i*, *j*)-*s* \mathcal{I} Cl({*q*}) ⊂ *H*₂*H*₁. Hence (*X*, τ_1 , τ_2 , \mathcal{I}) is (i, j) -semi- \mathscr{I} - R_1 space. and thus by Theorem [3.3](#page-1-1) (X, τ) is an (i, j) -semi- \mathscr{I} - R_0 space. \Box

In view of Theorems [3.17](#page-3-1) and [3.20,](#page-4-6) it now follows that

Theorem 3.21. *A bitopological space* $(X, \tau_1, \tau_2, \mathscr{I})$ *is* (i, j) *semi-* \mathscr{I} *-T*₂ *if, and only if for each x, y* \in *X such that* $x \neq y$, *there exist* (i, j) *-semi-* \mathcal{I} *-closed sets* F_1 *and* F_2 *such that* $x \in$ $F_1, y \notin F_1, y \in F_2, x \notin F_2$ *and* $X = F_1 \cup F_2$.

References

- [1] M. Caldas, S. Jafari and N. Rajesh, Semiopen sets in ideal bitopological spaces, to appear in *CUBO Mathematics Journal*, 2020.
- [2] A. S. Davis, Indexed systems of neighbourhoods for general topological spaces, *Amer. Math. Monthly*, 68(1961), 886–893.
- [3] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, *American Math. Monthly*, 97(1990), 295–310.
- [4] J. C. Kelly, Bitopological spaces, *Proc. London Math. Soc.*, 13(1963), 71-89.
- ^[5] M. Mrs \hat{F} evi \hat{c} , On pairwise R_0 and pairwise R_1 bitopological spaces, *Bull. Math. De la Soc. Sci. Mathe. de. la. R. S. de Roumanie Tome*, 30(78)(1986), 17–23.
- [6] K. Kuratowski, *Topology*, Academic press, New York, 1966.
- [7] P. Maragatha Meenakshi and A. Vanitha, Bitopological separatin axioms (submitted).
- [8] M. G. Murdeshwar and S. A. Naimpally, *R*¹ topological spaces, *Canad. Math. Bull.,* 9(1966), 521–523.
- [9] N. A. Shanin, On separability in topological spaces, *Dokl. Akad. Sciencies. USSR*, 38(1943), 166–169.
- [10] R. Vaidyanathaswamy, The localisation theory in set topology, *Proc. Indian Acad. Sci.*, 20(1945), 51–61.

? ? ? ? ? ? ? ? ? ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********